
Advances in AI-powered Code Security:
Next-Level Bug Detection

Chengpeng Wang
Purdue University

https://chengpeng-wang.github.io
 Email: wang6590@purdue.edu

https://continuation.passing.style/

Advances in AI-powered Code Security: Next-Level Bug Detection

Outline

• Static Bug Detection

• LLM-driven Data-flow Bug Detection

• LLMSAN

• LLMDFA

• RepoAudit

• Configurable LLM-Agent for Static Analysis

• LLMSA

• Neuro-Symbolic CodeQL

1

Advances in AI-powered Code Security: Next-Level Bug Detection

Programming in the AI Era

• Copy-and-paste the code from intelligent search engine

• Prompt-and-paste the code from LLM bots

• Comment-and-select the code recommended by LLM-powered IDE

2

Advances in AI-powered Code Security: Next-Level Bug Detection

A Nature Shift of Programming

• Shift from writing code to validating correctness

• Writing code is cheap

• Validating correctness is expensive

• Critical for software reliability

• Static analysis: Reason the program statically without execution

• Determine whether a specific property 𝜙 holds for any inputs

3

𝜙

Advances in AI-powered Code Security: Next-Level Bug Detection

Example: Divide-by-Zero (DBZ) Bug Detection

4

Does 𝜙 always hold?

• Target property𝜙: All the divisors are not equal to 0

• Rule-based symbolic analysis discovers a data-flow path from a source to a sink

• Sources: Faulty values, Sinks: Operands of dangerous operations

No
Counterexample: args[0] = “0” and 𝑦@ℓ5 = 0

Advances in AI-powered Code Security: Next-Level Bug Detection

• Existing effort: Make it more precise, more efficient, and more scalable

• Limitations

• Compilation reliance

• Customization obstacle

• Specification burden

Mainstream Static Bug Detectors

5

CodeQL

Advances in AI-powered Code Security: Next-Level Bug Detection

Limitation I: Compilation Reliance

• Existing static bug detectors/analysis platforms require intermediate representations
(IRs) of programs generated by successful compilation

• Fail to discover security vulnerabilities in the incomplete code

• Incomplete code: Program under the development, code snippets generated by AI

6

LLVM IR
clang

Rule-based
Symbolic analysis

Advances in AI-powered Code Security: Next-Level Bug Detection

Limitation II: Customization Obstacle

• Existing static bug detectors/analysis platforms only target specific bug types and can
not support the user-friendly customization

• Require the expert knowledge on hacking the compiler infrastructure

7

Advances in AI-powered Code Security: Next-Level Bug Detection

Limitation III: Specification Burden

• Existing static bug detectors/analysis platforms require manually specified specifications,
such as library semantic specifications

• Example: Library APIs that may return zero values for the Divide-by-Zero detection

• Require laborious manual effort

8

public static void main(){
int a = 0;
int b = parseInt(“123”);
System.out.println(bar(b, a));
String arg = args[0];
int c = parseInt(arg);
System.out.println(bar(a, c));
c = b;
System.out.println(bar(a, c));

}

Advances in AI-powered Code Security: Next-Level Bug Detection

• Build a compilation-free, customizable, and intelligent static analysis
• No reliance on build/compilation
• No reliance on expertise
• No reliance on labor work

Our Goal

9

Advances in AI-powered Code Security: Next-Level Bug Detection

Outline

• Static Bug Detection

• LLM-driven Data-flow Bug Detection

• LLMSAN

• LLMDFA

• RepoAudit

• Configurable LLM-Agent for Static Analysis

• LLMSA

• Neuro-Symbolic CodeQL

Chengpeng Wang, et al. Sanitizing Large Language Models in Bug Detection with Data-Flow. EMNLP Findings 2024

Chengpeng Wang, et al. LLMDFA: Analyzing dataflow in code with large language model. NeurIPS 2024

10

Jinyao Guo, et al. REPOAUDIT: An Autonomous LLM-Agent for Repository-Level Code Auditing. [ongoing]

Advances in AI-powered Code Security: Next-Level Bug Detection

Reshaping Static Analysis with LLMs

11

Advances in AI-powered Code Security: Next-Level Bug Detection

• LLMs for static analysis

• Analyze code as specific kind of textual data

• No need to build the code

• Easy to customize the analysis

• Analyze code via prompting

• Serve as knowledge base of specifications

• Pretrained upon huge data

Our Vision

12

Existing Static Analyzers Our Proposal

Advances in AI-powered Code Security: Next-Level Bug Detection

LLMs are NOT Silver Bullets for Static Analysis

• Hallucinations introduce FPs/FNs

• Empirical study [arXiv 2024]

• Select 100 buggy functions

• Before and after fixes

• Bug type + location + root cause: precision ~30%

• Even worse in repo-level detection

13

Steenhoek B, et al. A Comprehensive Study of the Capabilities of Large Language Models for Vulnerability Detection, arXiv 2024.

Advances in AI-powered Code Security: Next-Level Bug Detection

Few-shot CoT Prompting-based Bug Detection

• Check the detection results

• Simple solution: Using LLMs as verifiers while still hallucinate

LLM

(Verifier)

Bug
(Detector)

14

Advances in AI-powered Code Security: Next-Level Bug Detection

Key Idea: Data-flow Paths as Verifiable Bug Proofs

• Generate bug proofs: Data-flow paths from sources to sinks

• Sanitize data-flow paths via divide-and-conquer

• Data sanitization: Whether start/end values conform to the forms of sources/sinks

• Flow sanitization: Whether the faulty value can be propagated along the path in each step

15

1 public static void bar(int x, int y){
2 if (x != 0)
3 return (y * 1.0 / x);
4 else
5 return (x * 1.0 / y); //bug
6 }
7 public static void main(){
8 int a = 0; //zero
9 int b = parseInt(“123”);
10 System.out.println(bar(b, a));
11 String arg = args[0];
12 int c = parseInt(arg); //potential zero
13 System.out.println(bar(a, c));
14 c = b;
15 System.out.println(bar(a, c));
16 }

Program: [Example Program with a DBZ bug]

Explanation: v is assigned with 0 at line 3. Then u is initialized

with v at line 7 and used as a divisor at line 9, causing a DBZ bug.

Dataflow path: [(v, ℓ3), (u, ℓ7), (u, ℓ9)]

(𝑐, ℓ12) (𝑐, ℓ13) (𝑦, ℓ1) (𝑦, ℓ5)

(𝑐, ℓ14) (𝑐, ℓ13) (𝑦, ℓ1) (𝑦, ℓ5)

(𝑏, ℓ9) (𝑏, ℓ10) (𝑥, ℓ1) (𝑥, ℓ3)

valid

spurious

spurious

𝑝1:

𝑝2:

𝑝3:

(𝑒12, ℓ12)

(𝑒9 , ℓ9)

Few-shot Example

Advances in AI-powered Code Security: Next-Level Bug Detection

LLMSAN: LLM-driven Bug Detection with Sanitization

• Sanitize data-flow paths emitted by few-shot CoT prompting

• Four sanitizers powered by parsers and LLMs

• Decompose the validation of syntactic and semantic properties

• Syntactic properties can be perfectly validated by parsing-based sanitizers

16

Hallucination

Hallucination

Data Sanitizer

Flow Sanitizer

parser LLM

LLM Bug reports with
data-flow paths

program

bug examples

Type Sanitizer

Order Sanitizer

Functionality Sanitizer

Reachability Sanitizer

bug definition

𝑝2

𝑝1

𝑝3

𝑝1

𝑝2 𝑝3

𝑝2
𝑝3

(𝑐, ℓ) (𝑒 , ℓ)

(𝑐, ℓ) (𝑐, ℓ) (𝑥, ℓ) (𝑥, ℓ)

few-shot

CoT

Advances in AI-powered Code Security: Next-Level Bug Detection

LLMSAN: Discussion

• End-to-end prompting in the detection phase

• Pro: Compilation-free and easy to customize

• Con: Low recall, e.g., GPT-3.5 powered LLMSAN misses all the DBZ bugs

• How to improve: Avoid black-box detection

17

black-box

(,) (,)

(,) (,) (,) (,)

Advances in AI-powered Code Security: Next-Level Bug Detection

• Example: DBZ detection

• Problem decomposition

• Source/sink extraction

• Dataflow summarization

• Path feasibility validation

Key Idea: Summary-based Static Analysis

18

1

2

3

source -> argument

parameter -> return value

output value -> sink

source

sink
sink

sink

sink

Advances in AI-powered Code Security: Next-Level Bug Detection

LLMDFA: Analyzing Data-flow with LLMs

19

Problem Decomposition

Tool Synthesis

Advances in AI-powered Code Security: Next-Level Bug Detection

Comparison with LLMSAN

• LLMSAN vs LLMDFA powered by GPT-3.5 and GPT-4

20

GPT-3.5

GPT-4

DBZ XSS OSCI

Advances in AI-powered Code Security: Next-Level Bug Detection

LLMDFA: Discussion

21

• High cost of LLMDFA due to

• The large numbers of sources/sinks

• The large numbers of functions

• The large numbers of function calls

Advances in AI-powered Code Security: Next-Level Bug Detection

RepoAudit: Repository-level Bug Detection

• Enhanced version of LLMDFA: Autonomous LLM-agent

• Memory

• Summarize data-flow facts along different paths via prompting LLMs with single functions

• Tool using

• Planning

• Start from functions containing sources

• Search for sinks by exploring callers and callees on demand

22

Advances in AI-powered Code Security: Next-Level Bug Detection

Outline

• Static Bug Detection

• LLM-driven Data-flow Bug Detection

• LLMSAN

• LLMDFA

• RepoAudit

• Configurable LLM-Agent for Static Analysis

• LLMSA

• Neuro-Symbolic CodeQL

23

Chengpeng Wang, et al. LLMSA: A Compositional Neuro-Symbolic Approach to Compilation-free and Customizable Static Analysis. arXiv 2024.

Advances in AI-powered Code Security: Next-Level Bug Detection

Towards More Customizable Analysis

• LLMSAN & LLMDFA & RepoAudit

• Agent-centric solutions: More precise, more complete, and more scalable

• No planning: Fixed action space

• Determine whether two program values are data-flow reachable or not

• How to address more diverse analysis demands

• Program slicing

• Implicit flow analysis

• Control-flow integrity analysis

• Solution: Build a configurable agent

24

Advances in AI-powered Code Security: Next-Level Bug Detection

Key Idea I: Bridging Syntactic & Semantic Properties

• Analyzing non-trivial semantic properties is undecidable while syntactic analysis is decidable

• Semantic: Data dependency, points-to relation

• Syntactic: control flow order, control dependency

• Static analysis agent = Syntactic analysis + Semantic analysis

• Parsing-based analyzers for syntactic analysis

• LLMs for semantic analysis

25

Advances in AI-powered Code Security: Next-Level Bug Detection

Key Idea II: Datalog as Analysis Policy Language

• Represent syntactic/semantic properties as symbolic/neural relations

• Derive new properties based on Datalog rules

• Example: intra-procedural program slicing (backward slicing)

• Neural relation: DataDep

Analysis Policy Neural Relation Spec

26

Advances in AI-powered Code Security: Next-Level Bug Detection

LLMSA: Configurable LLM-Agent for Static Analysis

• Program: The targeted program

• Analysis policy: Neuro-symbolic Datalog program for defining the LLM-agent

• Neural relation spec: Define the prompts for neural relation generation

Lazy, incremental, and parallel prompting

27

Advances in AI-powered Code Security: Next-Level Bug Detection

LLMDFA as an Instance of LLMSA

• Absolute Path Traversal (APT) Detection

• Provide Source/Sink examples to define APTSrcNeural/APTSinkNeural

28

Advances in AI-powered Code Security: Next-Level Bug Detection

Outline

• Static Bug Detection

• LLM-driven Data-flow Bug Detection

• LLMSAN

• LLMDFA

• RepoAudit

• Configurable LLM-Agent for Static Analysis

• LLMSA

• Neural-Symbolic CodeQL

29

Advances in AI-powered Code Security: Next-Level Bug Detection

From LLMSA to Neuro-Symbolic CodeQL

• Build the next-generation static analysis platform

• Neural analysis: LLMs

• Symbolic analysis: CodeQL also supports semantic analysis

• Natural advantages: Compilation-free and multi-lingual supports

• More attractive features

• ???

• ???

30

Advances in AI-powered Code Security: Next-Level Bug Detection

Problem: Specification Burden

• CodeQL: The symbolic analyzer that reasons code with specifications via Datalog rules

• All the program facts are derived from code and specified specifications

• Tricky issues:

• What if bugs cannot be formulated, e.g., performance bug?

• What if library APIs can not be comprehensively enumerated?

• What if the rule-based analysis reports false positives due to low-quality of specifications?

31

Advances in AI-powered Code Security: Next-Level Bug Detection

Future Work I: Multi-modal Static Analysis

• Proposal I: LLMs retrieve specs for CodeQL as neural relations

• Library spec

• Bug spec

• Proposal II: LLMs examine the data provenance witness of CodeQL

• Example: Check the data-flow paths in data-flow analysis with LLMs

• Similar to sanitization phase in LLMSAN

• Parametric design: Multi-modal knowledge base + RAG

R1(e1, e2) <-- R2(e1, e2), R3(e1, e2),… Rn(e1, e2), NeuralRelation(e1)

32

Advances in AI-powered Code Security: Next-Level Bug Detection

Problem: Customization Obstacle

• Ideal mode of static bug detection: Few-shot CoT prompting

• LLMDFA supports prompting-based customization

• Limitation: Only target data-flow bugs

• LLMSA customizes the agent for static analysis

• Limitation: Difficult to specify the analysis policy

33

Advances in AI-powered Code Security: Next-Level Bug Detection

Future Work II: Autonomous Static Analysis

• Proposal: Synthesize neuro-symbolic static analyzers from multi-modal data

• Example: Patches = Buggy/Non-buggy code + Bug description

• Previous trial: Synthesize queries based on pos/neg examples for code search [ECOOP 2023]

• Synthesize neuro-symbolic CodeQL queries to detect diverse types of bugs

• Step 1: Search caller functions of dev_kfree_skb via CodeQL relations

• Step 2: Utilize LLMs to check the code in each caller function

BugCase(e) <- R11(e)
R11 <-- R12, R13, … R1n
R21 <-- R22, R23, … R2m

BugCase(e) <- R11(e)
R11 <-- R12, … R1n, NeuralRelation
R21 <-- R22, … R2m, NeuralRelation

34

Chengpeng Wang, et al. Synthesizing Conjunctive Queries for Code Search. ECOOP 2023.

Advances in AI-powered Code Security: Next-Level Bug Detection

Hallucination Mitigation in Neuro-Symbolic Analysis

• Tool using: Use the rules in CodeQL as many as possible

• Tool synthesis: Synthesize tools to populate the neural relations

• LLM sanitization: Post-verify the outputs of LLMs before utilizing them in the rule evaluation

35

Advances in AI-powered Code Security: Next-Level Bug Detection

Three Paradigms of Static Analysis

36

Symbolic Static
Analysis

Neuro-Symbolic
Static Analysis

Neural Static
Analysis

➢ Rule-based expert system

➢ Explainable
➢ Deterministic

➢ Limited applicability
➢ Restricted usability
➢ Single modality (code only)

➢ Data-driven black box

➢ Extensive applicability
➢ Flexible usability
➢ Multi-modality (code, doc, etc)

➢ Unexplainable
➢ Nondeterministic
➢ Hallucinatory

➢ LLM agent

➢ (Relatively) Explainable
➢ (Relatively) Deterministic

➢ Extensive applicability
➢ Flexible usability
➢ Multi-modality

LLMSAN LLMDFA

LLMSARepoAudit

Advances in AI-powered Code Security: Next-Level Bug Detection

Conclusion

• Static bug detection is critical for software reliability in the AI era.

• Conventional symbolic static analysis cannot well support AI-generated code.

• LLMs can reshape static analysis but are not silver bullets due to inherent hallucinations.

• Developing neuro-symbolic static bug detection techniques holds great potential.

• Compilation-free and Customizable

• Multi-modal and Autonomous

37

Advances in AI-powered Code Security: Next-Level Bug Detection

Q&A

38

• Chengpeng Wang

• Homepage: https://chengpeng-wang.github.io/

• Email: wang6590@purdue.edu

https://chengpeng-wang.github.io/
mailto:wang6590@purdue.edu

	Slide 0: Advances in AI-powered Code Security: Next-Level Bug Detection
	Slide 1: Outline
	Slide 2: Programming in the AI Era
	Slide 3: A Nature Shift of Programming
	Slide 4: Example: Divide-by-Zero (DBZ) Bug Detection
	Slide 5: Mainstream Static Bug Detectors
	Slide 6: Limitation I: Compilation Reliance
	Slide 7: Limitation II: Customization Obstacle
	Slide 8: Limitation III: Specification Burden
	Slide 9: Our Goal
	Slide 10: Outline
	Slide 11: Reshaping Static Analysis with LLMs
	Slide 12: Our Vision
	Slide 13: LLMs are NOT Silver Bullets for Static Analysis
	Slide 14: Few-shot CoT Prompting-based Bug Detection
	Slide 15: Key Idea: Data-flow Paths as Verifiable Bug Proofs
	Slide 16: LLMSAN: LLM-driven Bug Detection with Sanitization
	Slide 17: LLMSAN: Discussion
	Slide 18: Key Idea: Summary-based Static Analysis
	Slide 19: LLMDFA: Analyzing Data-flow with LLMs
	Slide 20: Comparison with LLMSAN
	Slide 21: LLMDFA: Discussion
	Slide 22: RepoAudit: Repository-level Bug Detection
	Slide 23: Outline
	Slide 24: Towards More Customizable Analysis
	Slide 25: Key Idea I: Bridging Syntactic & Semantic Properties
	Slide 26: Key Idea II: Datalog as Analysis Policy Language
	Slide 27: LLMSA: Configurable LLM-Agent for Static Analysis
	Slide 28: LLMDFA as an Instance of LLMSA
	Slide 29: Outline
	Slide 30: From LLMSA to Neuro-Symbolic CodeQL
	Slide 31: Problem: Specification Burden
	Slide 32: Future Work I: Multi-modal Static Analysis
	Slide 33: Problem: Customization Obstacle
	Slide 34: Future Work II: Autonomous Static Analysis
	Slide 35: Hallucination Mitigation in Neuro-Symbolic Analysis
	Slide 36: Three Paradigms of Static Analysis
	Slide 37: Conclusion
	Slide 38: Q&A

