When Static Analysis Meets LLMs
A Neuro-Symbolic Approach

Chengpeng Wang
Email: wang6590@purdue.edu
Homepage: https://chengpeng-wang.github.io/
Oct. 29t , 2024

PURDUE

mailto:wang6590@purdue.edu
https://chengpeng-wang.github.io/

Programming in the Al Era

» Copy-and-paste the code from intelligent search engine
» Prompt-and-paste the code from LLM bots
» Comment-and-select the code recommended by LLM-powered IDE

Your Al puif bfbgrammer

The next step for LGTM.com: GitHub

code scanning!

Today, GitHub code scanning has all of LGT key features—and more! The time has therefore come o=

& GitHub Copilot

to announce the plan for the gradual deprecatio LGTM.com.

E PURDUE When Static Analysis Meets LLMs

UNIVERSITY

A Nature Shift of Programming

» Shift from writing code to validating correctness
» Writing code is cheap
» Validating correctness is expensive

»Program analysis: Automate validating code correctness
» Dynamic testing
» Static analysis

»In this talk, we only discuss static analysis

E PURDUE When Static Analysis Meets LLMs
UNIVERSITY

Outline

»Background of Static Analysis

»Recent Research on LLMs for Static Analysis
> LLMDFA [NeurlPS’ 24]

»Neuro-Symbolic Static Analysis

E PURDUE When Static Analysis Meets LLMs

UNIVERSITY

Outline

»Background of Static Analysis

E PURDUE When Static Analysis Meets LLMs

UNIVERSITY

Static Analysis

» Statically analyze the behavior of a given program.
» For any input, reason whether a specific assertion (program property) can always hold?
» For specific inputs, reason whether a specific assertion (program property) may be

violated?
* |s it correct?
Program * |s it robust?
g i - * |sit safe?
AnaIVSIS * Is it optimizable?
Program
» Application:

» Compiler optimization
» Bug detection / Security auditing

E PURDUE When Static Analysis Meets LLMs

UNIVERSITY

Example: Divide-by-Zero Bug Detection

public static void bar(int x, int y){
if (x != 0)
return (y * 1.0 / x);
else
return (x x 1.0 / y); //bug

»Program property
»y at Line 5 may have zero value.
¥

public static void main(){
int a = @; //zero
int b = parseInt(“123"”);
10 System.out.println(bar(b, a));

O oo~ Uk Wi

»Analysis: Data Dependency Analysis

: ; 11 String arg = args[@];
» c atLine 13 depends on c at Line 12 12 int ¢ = parselntiarg); //potential zero
>y can be zero at Line 1 1 Jystem-out-printinbar(a, c));
> Hence, y at Line 5 can be zero 1o, System-out.printin(bar(a, c));
>Implicati0n (e12,%12) > (c,t12) > (c,£13) (v, %1) (v, ¥s)
» Divide-by-Zero bug Data-flow Path

E PURDUE When Static Analysis Meets LLMs 6

UNIVERSITY

Static Analysis as Undecidable Problem

» (Rice Theorem) Verifying a semantic property is undecidable for a program
In Turing-complete language.

* |s it correct?
"__</_> Program _ * s it robust?
ecderporll + . -— * Isit safe?
Analysis

* |s it optimizable?

Program

»Unable to design a specific algorithm that always give a correct answer in

finite time.
» Over/under-approximation: Introduce false positives/negatives

E PURDUE When Static Analysis Meets LLMs

UNIVERSITY

Constraint Solving in Static Analysis

» SMT solvers serve as fundamental building blocks in static analysis
Z3: An efficient SMT solver

L De Moura, N Bjerner - International conference on Tools and Algorithms ..., 2008 - Springer

... 23 I8 a new and efficient SMT Solver freely available from Microsoft ... An SMT solver is a tool
for deciding the satisfiability (or dually the validity) of formulas in these theories. SMT solvers ...

W RE W SIE WSIERE 11209 #HEXE FFE 21 THEF 2P

»Encode the program semantics with logical constraints
»Symbolic execution: Klee
» Path-sensitive data-flow analysis: Pinpoint
»Memory-safety detector: Facebook Infer

Great Success: Separation Logic and Facebook Infer

Professor Peter O'Hearn is Awarded the 2016 Godel Prize

Peter O'Hearn, Professor of Computer Science and member of UCL's Programming
Principles, Logic and Verification Research (PPLV) Group, has been awarded the 2016 Gadel
Prize. Peter will receive the award jointly with Stephen Brookes, Professor of Computer
Science at Camegie Mellon University, at the 43rd International Colloguium On Automata,
Languages and Programming (ICALF 2016), 12-15 July 2016, in Rome, Italy.

Peter's paper Resources, Concurrency and Logical Reasoning infroduces and advances the
idea of Concurrent Separation Logic (CSL), which has had a far-reaching impact in both
theoretical and practical realms.

For the last thirty years experts have regarded shared-memory concurrency as one of the
greatest challenges in program verification. CSL is a revolutionary advance on previous
approaches. It builds on the Separation Logic for sequential programs due to Peter and the
late John Reynolds, using the separation idea to support modular reasoning.

Mainstream Static Bug Detectors

SN copacy |arQ| Il () coverity’ @
‘a? 7
ON'T SHOOT THE MESS ‘

FindBugs PMD FxCop Codacy SonarQube Coverity Cppcheck PVS-Studio
' /l ™] '
»paCEuPP . Imie
TECHNOLOGIE
Clang RIPS Lint CodeRush Polyspace Cppdepend Helix QAC Semmle

e I\//Q/Q/ @ Sourcebrella
PINPOINT

PURDUE When Static Analysis Meets LLMs 10

UNIVERSITY

Research Gap: Compilation Reliance

» Existing semantic analysis requires intermediate representations (IRs) of
programs generated by successful compilation

» Fail to discover security vulnerabilities in the incomplete code during the development

F © FindBugsUnljava
O PUDTIV SCalAL ANL YELrLNUDUYSFALCILEVELL) 1 PELUNT VERSAUN_FAILA_LEVEL
(Sl |
C++ =) mmm) |LVM IR
; N’ y: wblic static String getFindBugsF
|)

publ tat viwersion() { return E }
Clang publi i oolean i ugsEr (final
/ThrowableResultOfMethodCalll gnored /
| inal ble cause = ErrorUtil.g (
1 St raceElenent[] stack 0
- if (st null && length > 8) {
V 4 final String className = stack|[®].getClassName();
if (classNam ny
)

[_\ ,’ ey AN R o731 cnsaomesi
‘) Oot ‘ Soot IR | i

JAVA

E PURDUE When Static Analysis Meets LLMs

UNIVERSITY

11

Research Gap: Customization

»Require comprehensive specifications

»Require hacking the compilation infrastructure
» Example: Traverse abstract syntax tree (AST) or LLVM IR for C/C++ analysis

e

public static void main(){
inta=0;
int b = new_function(“123”);
System.out.printin(bar(b, a));
String arg = args[0];
int ¢ = new_function(arg);
System.out.printin(bar(a, c));

What are the MISRA C++ 2023

History and buckground

nar

nar

Dynamic code execution should not be vulnerable to
injection attacks

& Vulnerability
NoSQL operations should not be vulnerable to injection
attacks

& Vulnerability

Cc= b'- HTTP request redirections should not be open to forging
. attacks
System.out.printin(bar(a, c));
} & Vulnerability
- H Deserialization should not be vulnerable to injection
Divide-by-zero bug detection atacks

Customized specification

PURDUE

UNIVERSITY

When Static Analysis Meets LLMs

& Vulnerability

More bug types

12

Reshaping Static Analysis with LLMs

> LLMs: Magic Box

»Input: Program + Questions
» Output: Answers

» New opportunities
»SMT solvers -> LLMs

» New challenges
»>?77?

W) Peter O'Hearn-1
; Researcher at Meta Al (FAIR), Prof at University College ...

1XA®

Some news. I've joined Meta Al (FAIR), to do research
related to reasoning.

There are many interesting and challenging technical
problems to work on. These include teaching neural nets
to reason about code, interfacing them with symbolic
reasoning components, using reasoning and semantics to
help with code synthesis, and much more. Reasoning and
planning are also a central part central to FAIR's broader
vision for nextgen Al systems, for human-level machine
intelligence (or AGI), and | fully expect to do work on
reason+planning for other-than-code as well.

Additionally, I'm attracted to the open research culture of
FAIR, which emphasizes collaboration and publication of
research to the community, and | like the way Meta Al has
embraced open source with Llama.

This all promises to be great fun!

13

e

Outline

»Recent Research on LLMs for Static Analysis
> LLMDFA [NeurlPS’ 24]

Chengpeng Wang, Wugqi Zhang, Zian Su, Xiangzhe Xu, Xiaoheng Xie, and Xiangyu Zhang. LLMDFA: Analyzing
dataflow in code with large language model. Advances in Neural Information Processing Systems, 2024.

PURDUE When Static Analysis Meets LLMs

UNIVERSITY

14

Data-flow Analysis Problem

» Given the sets of sources/sinks in specific forms, determine whether the
value of a source can reach a sink.

»Example: DBZ bug detection, Cross-Site Scripting(XSS) bug detection

/* read string from file into data */

1 public static void bar(int x, int y){) ,)

2 if (x '= 0) streamFileInput = new FileInputStream(file);

3 return (y * 1.0 / readerInputStream = new InputStreamReader(streamFileInput, "UTF-8");

4 else readerBuffered = new BufferedReader(readerInputStream);

2) return (x x 1.0 /|y)} //bug /* POTENTIAL FLAW: Read data from a file */

7 public static void main(){ /* This will be reading the first "1line" of the file, which

8 int a = @; //zero * could be very long if there are little or no newlines in the file */
9 Int b = parseInt("123"); [data = readerBuffered.readLine():]

10 System.out.println(bar(b, a));
11 String arg = args[@];
12 |int c = parselnt(arg); //potential zero

if (data !'= null)

13 yStem.out.princtln(baria, cJJ; {
14 c = b; /* POTENTIAL FLAW: Display of data in web page after using replaceAll() to remove script tags,
15) System.out.printin(bar(a, c)); response.getWriter().println("
bad(): data = " + data.replaceAll("(<script=>)", ""));
16
}

@ PURDUE When Static Analysis Meets LLMs 15

UNIVERSITY

Understanding Programs with LLMs

»LLMs are good interpreters of programs in different languages.
» Chain-of-Thought: What’s the value of ~z* used at the line 14? Please think step by step.

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18

E PURDUE

UNIVERSITY

public class Demo {
public static int foo(
if (Math.abs(b) > 1)
System.out.printin(a / b);
return b;
}
public static void main(
Xx=1;
y=10/x;
x=0;
y=x+1;
z=xly;
zZ=X;
System.out.printin(y / z);
x = foo(y, 2);
System.out.printin(x

a,

X);

bX{

[] args){

ChatGPT Poe
The value of the variable z used at line 14 is 0.

Let's go through the code step by step:

1.int x 1; - Initializes x with the value 1.

2.int y = 10 / x; - Calculates y as the result of dividing 10 by the value of x, which is
1. So y is assigned the value 10.

3.x = @; - Updates the value of x to 0.

4.y = X + 1; - Assigns y as the result of adding the value of x (0) and 1. So y is
assigned the value 1.

5.int z = x / y; - Calculates z as the result of dividing the value of x (0) by the value
of y (1). So z is assigned the value 0.

6.z = x; - Updates the value of z to the value of x, which is 0.

7.System.out.println(y / z); - Prints the result of dividing y (1) by z (0), which is
not defined and would result in an exception.

8.x = foo(y, z); - Calls the foo method with arguments y (1) and z (0). The foo
method divides a by b only if the absolute value of b is greater than 1. Since b is 0, the
division is not performed, and the foo method returns 0. So X is assigned the value 0.

9. System.out.println(x / x); - Prints the result of dividing x (0) by x (0), which
would result in an exception since the division by zero is not defined.

Therefore, the value of z used at line 14 is 0.

When Static Analysis Meets LLMs

16

Our Vision

» LLMs for Data-flow Analysis
» Analyze code as specific kind of textual data
» No need to build the code

» Easy to customize the analysis
» Analyze code via prompting

» Align with program semantics
» No need to propose any abstraction upon the code

-

ch o A A =

inc(mlik—‘ —/ — — '

™ /—r \ x=

LAV Compiler =}— . —_— i] prompt LLM
 JAVA |

S Frontend
Current Static Analysis Our Proposal

compilable IR
customized DFA result

E PURDUE When Static Analysis Meets LLMs

UNIVERSITY

e

New Challenge

»Hallucination degrades the accuracy

» Does the value of the variable z defined at the line 13 depends on the value of the
variable x defined at the line 10?

PURDUE

UNIVERSITY

1 public class Demo {
2 public static int foo(int a,
3 if (Math.abs(b) > 1)
4 System.out.printin(a / b);
5 return b;
6 }
7 public static void
8 int x=1;
9 int y=10/x;
10 x=0;
11 y=x+1,
12 int z=xl/y;
13 Z=X
14 System.out.printin(y / 2);
15 x = foo(y, z);
16 System.out.printin(x ! X);
17 }
18 }

main(String[] args){

ChatGPT Poe

int b){ No, the value of the variable z defined at line 13 does not depend on the value of the
variable x defined at line 10.

Let's go through the code again to understand the sequence of operations:

1.int x = 1; - Initializes x with the value 1.

2.int y = 1@ / x; - Calculates y as the result of dividing 10 by the value of x, which is
1. So y is assigned the value 10.

3.x = @; - Updates the value of x to 0.

4.y = X + 1; - Assigns y as the result of adding the value of x (0) and 1. So y is
assigned the value 1.

5.int z = x / y; - Calculates z as the result of dividing the value of x (0) by the value
of y (1). So z is assigned the value 0.

6.z = x; - Updates the value of z to the value of x, whichis 0.

As we can see, the assignment of the value 0 to z at line 6 does not depend on the value of
X at line 10. It simply assigns the value of x (0) to z.

Therefore, the value of the variable z defined at line 13 does not depend on the value of the
variable x defined at line 10.

When Static Analysis Meets LLMs

18

Central Issue: Mitigating Hallucinations

»Tricky case
» Lengthy program + complex bug

»Divide-and-Conquer
»Decompose the program into small code snippets
»Decompose the bug specification into several simpler properties
»Solve and merge

19

Key ldea: Summary-based Data-flow Analysis

»Example: DBZ detection

:1;

1 public class Demo {

2 pyblic static int fool(int a, int {

3 if (Math.abs(b) > 1)

4 Systeg.out.printinia / b);

5 returnée 9 parameter -> return value
6 }

7 public static void main(String[] args){

8 .

9

10 y = X\+ 1;

11 y; 0 source -> argument

12 Z = X}

13 stem.out.grintln(y / z);

14 = fooly,(z); _

15 Vs t. pr‘intln(x4;®; output value -> sink

7y (3)

E PURDUE When Static Analysis Meets LLMs

UNIVERSITY

e

LLMDFA: Agent-Centric Solution

»Instantiate summary-based DFA with LLMs

» P-l: Source/sink identification
> P-ll: Dataflow summarization

» P-Ill: Path feasibility validation Actions (Extract)

PURDUE When Static Analysis Meets LLMs

UNIVERSITY

Environment

@

® ®
\ 4 A
Sum@ Vali@
ol °/ eo| o,/ o

L 24 L 24

Source/ Sink] [Summary

(o

Memory

21

Extract

» Utilize LLMs to synthesize source/sink extractors

» Structural search in most cases
» Tree traversal + string match
» Multi-modal synthesis problem
» Spec: Programming-by-Natural Language
» AST + Example code: Programming-by-Example

Spec AST Examples (€] Parsing
“ﬁ: E Library
on

l | .
synthesize evaluate | V/‘ Extt;flctor — Source/Sink

8. &

(o

fix

Program CFG

E PURDUE When Static Analysis Meets LLMs

UNIVERSITY

Environment

Program CFG

@
v

Actions @

O]

®

®

@ Summarize) Vali@
®

[Source/Smk Summary

Bug

Memory

22

e

Example: Source/Sink Extractor Synthesis

Spec AST 7 E;<amples

%/ﬂié\

~ .
/ synthesuel evaluate

/ LLM
\

\
4

int x1 = @; // src: x1
double x2 = ©.9; // src: x2
float x3 = @.6f; // src: x3

Parsmg
E Library

var s = "@";

int x4 = parselnt(s); //src: x4
int z = 1;

int a =2z / x; // sink: x

int b=z %vy; // sink: y

int c = x + y;

Examples used for
synthesizing extractors

PURDUE

UNIVERSITY

—

Extractor

Role: You are a good programmer and familiar with AST of programs.
Description: Please write the Python script traversing AST and identify sources/sinks for data flow analysis.

Source/Sink Info: There are several forms of sources/sinks: [Spec]. Also, we offer several example programs
containing sources/sinks and their corresponding ASTs: [Example Programs + ASTs]

Synthesis Task: Please write a Python script to extract the sources/sinks on AST. You may refer to the AST
structure of the example programs, and a skeleton AST traverser program. [skeleton]

Fixing Task: Here is the synthesized result of last round: [script]. When executing the script, we encounter the
following error: [error message]. Here are missed sources/sinks are missed: [missed ones)]. Here are the variables

misidentified as sources/sinks: [incorrect ones]. Please fix it and return a runnable script.

Prompt Template

def is_interesting(node):

return (node.type==“binary_expr”

and (node.op == “%” or
node.op == “/”))
~ o def traverse(node, sinks):
S if is_interesting(node):

sinks.append(node.sec_operand)
return sinks
for child in node.children:
sinks = traverse(child, sinks)
sinks = traverse(ast_root, [])

Synthesized Sink Extractor for DBZ detection

When Static Analysis Meets LLMs

Summarize

» A dataflow path from source to sink consists of several intra-procedural
dataflow summaries
» Focus on intra-procedural dataflows only

1 public class Demo { Environment

2 public static int foo(int a, int(b){

3 if (Math.abs(b) > 1) Program CFG

4 Systegp.out.println(a / b);

5 returné(e parameter -> return value

6 } @ @ ®

7 public static void main(Stringl[] args){) — :
3 0t x = 1; Actions (Extract @mamze Validate
9

10 1; @ @/ o| @ ®
11 ' 0 source -> argument < 4

12 ; [Source/Sink] [Summary] Bug
13 stem.out.gprintln(y / z);

14 = fool(y, ; . Memor

15 Vs t, rintln(m; output value -> sink Y

E PURDUE When Static Analysis Meets LLMs

UNIVERSITY

e

Role: You are a good Java programmer. You are good at understanding the semantics of Java programs.

Here are several rules:
(1) If they are the same variable and not overwritten between two lines, the answer should be yes.
(2) If the variable a is assigned with the value of the variable b, then answer should be yes. [Other rules]

Here are several examples:

Example 1: User: [Program] [Question]

System: [Answer: Yes] [Explanation: y is assigned with x at line 2 and not over-written between lines 2 and 3.
Hence, the value of y at line 3 is the same as x defined at line 1. The answer is Yes.]

[Other examples]

Question: Now I give you a function: [FUNCTION]
Please answer: Does [VAR1] used at line [LL1] have the same value as [VAR2] defined at line [L2] ?

Please think it step by step. Return Yes/No with the explanation.

PURDUE

UNIVERSITY

Prompt Template

o feem-- -2
Question in prompt: @’ - TS~ __-- —P@

x@4, z@%1,
Result: @ @ @ @
x@%y x@%¢4, z@%, z2@414

p

1
2
3
4
5
6
7
8
9
10
11
12
13

14
15
16
17 }

Example: Dataflow Summarization

ublic class Demo {

public static int foo(int a, int b){
if (Math.abs(b) > 1)

System.out.println(a / b);

return b;

}

public static void main(String[] args){
i x = 1;

When Static Analysis Meets LLMs

€@ source -> argument

25

Validate

» Leverage LLMs to synthesize path validators

» Stitch summaries across functions
» Ask LLMs to encode and solve path conditions
» Utilize Z3 Python binding (Z3: Domain Expert)

/Path info ZB Solver

synthesize

A%

Parser {D—» Script AT »Bug

Summary——»

Validator
) s
Program CFG

E PURDUE When Static Analysis Meets LLMs

UNIVERSITY

Environment

Program CFG

O] ®

@@ﬁ@ Validate

@ ® ®

Z
[Source/Smk] Summary] [Bug]

Memory

26

e

Example: Path Validator Synthesis

[59

Coo~NoOoUsWNPRE

PURDUE

UNIVERSITY

e parameter -> sink

Role: You are a good programmer and familiar with Z3 python bindmng .
Description: Please write a Python program using Z3 python binding to encode the path condition.

Path Info: Here is a path: [path]. Note that the value of [variable] is 0. Line [line number] is in the
[true/false] branch of the if-statement, of which the condition is [branch condition].

Synthesis Task: Please write a Python script to solve the path condition using Z3 python binding, You
can refer to the skeleton : [skeleton]

Fixing Task: Here is the synthesized result of last round: [script]. When executing the synthesized script,
we encounter the following error: [error message]. Please fix the bug and return a runnable script.

Prompt Template

from z3 import *
s = Solver()

b = Int(‘b’)
) |:oci - o)) UNSAT!
s.add(Abs(b) > 1)
print(s.check())

Synthesized Path Validator

Path info Z B Solver
_ synthesize |
Summary—> |Za fix v
Parser CD > script |2AT
%ﬂ LLM Validator
Program CFG I
public class Demo {
public static int foo(int a, int(b){
if (Math.abs(b) > 1)
System.out.printin(a /(:);
return b;
¥
public static void main(String[] args){
- - 1;
inty 1;
int z Y o source -> argument
Z = X;
System.out.gintln(y / z);
x = fooly, ;
System.out.println(x / x);
}
}

When Static Analysis Meets LLMs

27

e

Workflow of LLMDFA

[Spec AST Examples

info

2 2 Solver

Parsing Pat
= " Library E a
[—; & EE ﬂ, / lIsynthesize |
synthesize evaluate | EXtriCtor — Q) —* Examples LLM > a » E-{ /fﬁ# SAT -
LLM S"‘.“'CE/ Summarizer Summary Pagset {D >| Script 5‘
Sink Y LLM Validator Bug
L) &
J Phase I: Phase II: Phase III:
Program CFG J Source/Sink Extraction Dataflow Summarization Path Feasibility Validation
PURDUE When Static Analysis Meets LLMs 28

UNIVERSITY

Main Results: Juliet Test Suite

»LLMDFA
Bug Phase gpt-3.5) gpt-4) gemini-1.0) claude-3
P%) RO F1 | PP RO F1 | P) RO F1 | PR R(Go) F1
Extract 100.00 100.00 1.00 | 100.00 100.00 1.00 | 100.00 100.00 1.00 | 100.00 100.00 1.00
DBZ Summarize 9095 9757 094 | 9532 9843 097 | 83.57 8247 083 | 8926 9238 (091
Validate 8158 9920 090 | 8976 100.00 095 | 7983 9373 086 | 8574 9452 090
Detection | 73.75 92.16 0.82 | 81.38 9575 0.87 | 66.57 7421 0.70 | 7691 82.67 0.80
Extract 100.00 100.00 1.00 | 100.00 100.00 1.00 | 100.00 100.00 1.00 | 100.00 100.00 1.00
XSS Summarize 86.52 9625 091 | 97.84 9976 099 | 8879 9731 093 | 9417 9783 096
Validate 100.00 100.00 1.00 | 100.00 9891 0.99 | 100.00 99.07 1.00 | 100.00 95.29 (.98
"~ Detection |[100.00 9231 096 | 100.0 98.64 0.99 | 100.00 9460 0.97 | 100.0 86.49 0.93
Extract T00.00 T00.00 T.00 | T00.00 T00.00 T.00 | T00.00 T00.00 T.00 | 100.00 T00.00 T.0
0SCI Summarize 89.57 8576 0.88 | 9458 93.12 094 | 8721 96.54 092 | 9826 97.87 0.98
Validate 100.00 97.14 0.99 | 100.00 100.00 1.00 | 100.00 98.13 0.99 | 100.00 100.00 1.00
Detection [100.00 78.38 0.83 | 100.00 89.19 0.94 | 100.00 94.59 0.97 | 100.00 97.30 0.99

PURDUE When Static Analysis Meets LLMs

UNIVERSITY

Main Results: Juliet Test Suite

»Comparison with baselines

1.00

0.75

0.50

Precision

0.25

0.00

PURDUE

UNIVERSITY.

DBZ

X588

B LLMDFA
=
2
fus
OSCI

1.00 -

B CodeFuseQuery Pinpoint

DBZ XS8 QSsCl

When Static Analysis Meets LLMs

M End-to-End
1.00 ~

0.75 |-

F1 score

0.50 |-

0.25 -

0.00

DBZ

X8S

OSsCl

30

e

Ablation Study: LLMDFA with GPT-3.5

» NoSynExt: Identify sources/sinks with LLMs via few-shot CoT
» NoCoTl: Determine data-flow summaries without CoT

» NoSynVal: Examine path feasibility with LLMs without invoking solvers

precision precision precision
1.00 1.00
0.75)
080
/025
0
F1 score recall F1 score recall F1 score
DBZ XSS OSCI
PURDUE When Static Analysis Meets LLMs

UNIVERSITY

=== [[MDFA
mm= NoSynExt

NoCoT

mm= NoSynVal

31

e

LLMDFA: Takeaway

»Agent-centric solution

» Tool using/synthesis
» Used tool
» Light-weighted static analyzer (Parser), Formal method (Z3 SMT solver)
» Created tool
» Source/sink extractors, path validators

» Agentless (No planning)
» Difficult for LLMs to discover an effective policy in static analysis

PURDUE When Static Analysis Meets LLMs

UNIVERSITY

32

e

Outline

»Neuro-Symbolic Static Analysis

PURDUE When Static Analysis Meets LLMs

UNIVERSITY

33

LLMDFA: Neuro-Symbolic Approach

»Symbolic analysis
» Parsing-based source/sink extraction
» SMT solving-based path feasibility validation

»Neural analysis
» Code interpreter
» Tool synthesizer

34

The Role of LLMs: Code Interpreter

»Analyze incomplete code

1 public class Demo {
2 public static int foo(int a, int b)
3 if (Math.abs(b) > 1)
4 System.out.printin(a / b);
5 return b;
6 }
7 public static void main(String[] args){
8 int x=1;
9 int y=10/x;
10 x=0;
11 y=x+1;
12 int z=xly;
13 Z=X;
14 System.out.printin(y / 2);
15 x = fool(y, 2);
16 System.out.printin(x !/ x);
17}
18 }

E PURDUE

UNIVERSITY

ChatGPT Poe
The value of the variable z used at line 14 is 0.

Let's go through the code step by step:

1.int x = 1; - Initializes x with the value 1.

2.int y = 1@ / x; - Calculates y as the result of dividing 10 by the value of x, which is
1. So y is assigned the value 10.

3.X = @; - Updates the value of x to 0.

4.y = X + 1; - Assigns y as the result of adding the value of x (0) and 1. So y is
assigned the value 1.

5.int z = x / y; - Calculates z as the result of dividing the value of x (0) by the value
of y (1). So z is assigned the value 0.

6.z = X; - Updates the value of z to the value of x, whichis 0.

7.System.out.println(y / z); - Prints the result of dividing y (1) by z (0), which is
not defined and would result in an exception.

8.x = foo(y, z); - Calls the foo method with arguments y (1) and z (0). The foo
method divides a by b only if the absolute value of b is greater than 1. Since b is 0, the
division is not performed, and the foo method returns 0. So X is assigned the value 0.

9.System.out.println(x / x); - Prints the result of dividing x (0) by x (0), which
would result in an exception since the division by zero is not defined.

Therefore, the value of z used at line 14 is 0.

When Static Analysis Meets LLMs

35

e

The Role of LLMs: Code Interpreter

»Analyze programs in multiple languages

. function foola, b) {
if (Math.abs(b) > 1) {
console.log{a / b},
}

return b;

-}
7 What's the value of the variable z used at the line 15?

. function main{} {

let x = 1; GPT-3.5-Turbo Poe «s

let v = 18 / x;

x = 0; At line 15 in the provided JavaScript code, the value of the variable z is @. This is because z
y =x+ 1; is reassigned the value of x at line 14 (z = x;), and at that point in the code, x is .

let z = x / y;

Z=X;

console,.log(y / zJ);

x = foo(y, z);

console.log(x / xJ;

5. 1

. main();

PURDUE When Static Analysis Meets LLMs

UNIVERSITY

36

The Role of LLMs: Program Synthesizer

» Apply external tools autonomously
» Reduce original task to domain-specific program synthesis

Spec AST Examples 5 Parsing Path info
[@ nﬁ Hbrary / 15YntheS|ze Z .3 Solver
— : : |Extractor — SOl.lI‘Ce/ Summary—> = ‘/NS}_
synthesize evaluate | Sink Parser SAT
iy 1 v,) fD—» Script »Bug
LLM fix Script LLM .
Validator
D & S
S JAVR
Program CFG Program CFG
Source/sink Extraction Path feasibility validation

E PURDUE When Static Analysis Meets LLMs 37

UNIVERSITY

Another Role of LLMs: Knowledge Base

»Enhance existing static analyzers with more library specifications

Label APIs as Source/Sink Label Formal Params as Source

Among the following external calls, ..., what You are analyzing cron-utils... Among the
are the potential source and sink related to following public methods, ..., which can be
Code-Injection attack (CWE-94)? called by a downstream package with

potentially malicious end-user inputs?
package class method

class method documentation
java.io ObjectInputStream readObject

FieldExpression accept "Accept a visitor.."
javax. ConstraintValidat buildConstrai
validation orContext ntViolation.. CronParser parse “Parse string.."

Large Language Model (few-shot) Large Language Model (zero-shot)

ObjectInputStream.readObject CronParser.parse(String expr)
ConstraintValidatorContext.buildCo.. CronValidator.isValid(String expr,..)

@ PURDUE When Static Analysis Meets LLMs
UNIVERSITY

Another Role of LLMs: Knowledge Base

» Detect hard-to-formulated bugs
» E.g., performance bugs caused by library function usage

| am using Ruby on Rails to implement a Ruby app. Please summarize several Please give me several concrete example code for each pattern.

patterns of inefficient usage of the APls in Ruby on Rails, which may cause costly
interaction with databases.

GPT-3.5-Turbo Poe

Here are some concrete examples illustrating the patterns of inefficient APl usage in Ruby
GPT-3.5-Turbo Poe - on Rails that may lead to costly interactions with databases:

In Ruby on Rails, inefficient usage of APIs can lead to costly interactions with databases. 1. N+1 Queries:
Some common patterns that can cause performance issues include:

ruby

1. N+1 Queries: This occurs when a query is made for each record in a collection,

resulting in a large number of database calls. This can be avoided by using eager # Inefficient way

loading with includes or joins to fetch associated records in a single query. . E:::u:ﬂs;ou}:uu
2. Unnecessary Data Loading: Retrieving more data than needed can put unnecessary puts post.comments.count

strain on the database. Select only the required fields using select or pluck to end

reduce the amount of data fetched. ¥ Effictent waylusing| enger loading
3. Inefficient Data Retrieval: Avoid loading large datasets into memory when only a osts = Post.includes(: comments)

subset of records is needed. Use pagination or limit the number of records fetched s OO e

using Limit and of fset. enEUts et

E PURDUE When Static Analysis Meets LLMs

UNIVERSITY

39

e

Neuro-Symbolic Static Analysis

» Left half brain: Rigorous reasoning

» Traditional program analyzers
» Other external tools: SMT solver, parser

»Right half brain: Intuitive thinking

» Different roles of LLMs
» Code interpreter
» Program synthesizer
» Knowledge base
» Etc

PURDUE When Static Analysis Meets LLMs

UNIVERSITY

el
| > |

40

Large Language Model vs Large Reasoning Model

»Large Reasoning Models (LRMs), e.g., OpenAl o1, target general reasoning tasks

»Example: Analyzing intra-file taint flows in TaintBench

Metrics LLMDFA GPT-3.5 GPT-4 GPT-40-mini OpenAlol

Precision 66.27% 40.00% 63.93% 46.97% 62.03%
Recall 78.57% 22.86% 55.71% 44.29% 70%
F1 Score 0.72 0.29 0.60 0.46 0.66

E PURDUE When Static Analysis Meets LLMs 41

UNIVERSITY

e

Future Directions

»Domain-specific Reasoning
» LRMs may not effectively solve all the domain-specific problems
» Performance concerns: Time/Token costs
» Discover more roles of LLMs
» Planning + Reinforcement learning

»Hallucination Mitigation
» New prompting strategies
» Tool using
» Semantic alignment

PURDUE When Static Analysis Meets LLMs

UNIVERSITY

42

Q&A

e

* ChengpengWang
* Email: wang6590@purdue.edu

* Homepage: https://chengpeng-wang.github.io/

PURDUE When Static Analysis Meets LLMs

UNIVERSITY

43

mailto:wang6590@purdue.edu
https://chengpeng-wang.github.io/

	Slide 0: When Static Analysis Meets LLMs A Neuro-Symbolic Approach
	Slide 1: Programming in the AI Era
	Slide 2: A Nature Shift of Programming
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: Static Analysis
	Slide 6: Example: Divide-by-Zero Bug Detection
	Slide 7: Static Analysis as Undecidable Problem
	Slide 8: Constraint Solving in Static Analysis
	Slide 9: Great Success: Separation Logic and Facebook Infer
	Slide 10: Mainstream Static Bug Detectors
	Slide 11: Research Gap: Compilation Reliance
	Slide 12: Research Gap: Customization
	Slide 13: Reshaping Static Analysis with LLMs
	Slide 14: Outline
	Slide 15: Data-flow Analysis Problem
	Slide 16: Understanding Programs with LLMs
	Slide 17: Our Vision
	Slide 18: New Challenge
	Slide 19: Central Issue: Mitigating Hallucinations
	Slide 20: Key Idea: Summary-based Data-flow Analysis
	Slide 21: LLMDFA: Agent-Centric Solution
	Slide 22: Extract
	Slide 23: Example: Source/Sink Extractor Synthesis
	Slide 24: Summarize
	Slide 25: Example: Dataflow Summarization
	Slide 26: Validate
	Slide 27: Example: Path Validator Synthesis
	Slide 28: Workflow of LLMDFA
	Slide 29: Main Results: Juliet Test Suite
	Slide 30: Main Results: Juliet Test Suite
	Slide 31: Ablation Study: LLMDFA with GPT-3.5
	Slide 32: LLMDFA: Takeaway
	Slide 33: Outline
	Slide 34: LLMDFA: Neuro-Symbolic Approach
	Slide 35: The Role of LLMs: Code Interpreter
	Slide 36: The Role of LLMs: Code Interpreter
	Slide 37: The Role of LLMs: Program Synthesizer
	Slide 38: Another Role of LLMs: Knowledge Base
	Slide 39: Another Role of LLMs: Knowledge Base
	Slide 40: Neuro-Symbolic Static Analysis
	Slide 41: Large Language Model vs Large Reasoning Model
	Slide 42: Future Directions
	Slide 43: Q&A

