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Memory safety sanitizers, the sharp weapon for detecting invalid memory operations during execution, employ runtime

metadata to model the memory and help ind memory errors hidden in the programs. However, location-based methods, the

most widely deployed memory sanitization methods thanks to high compatibility, face the low protection density issue: the

number of bytes safeguarded by one metadata is limited. As a result, numerous memory accesses require loading excessive

metadata, leading to a high runtime overhead.

To address this issue, we propose a new shadow encodingwith segment folding to increase the protection density. Speciically,

we characterize neighboring bytes with identical metadata by building novel summaries, called folded segments, on those

bytes to reduce unnecessary metadata loadings. The new encoding uses less metadata to safeguard large memory regions

with fewer instructions than existing works, speeding up memory sanitization.

We implement our designed technique as GiantSan. Our evaluation using the SPEC CPU 2017 benchmark shows that

GiantSan outperforms the state-of-the-art sanitization methods with 61.37% and 41.94% less runtime overhead than ASan

and ASan--, respectively. Moreover, under the same redzone setting, GiantSan detects 463 fewer false negative cases than

ASan and ASan-- in testing the real-world project PHP.
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1 Introduction

The freedom to manipulate memory through pointers guaranteed by unsafe languages like C and C++ leads to
numerous kinds of memory safety violations. As reported in the 2022 CWE Top 25 Most Dangerous Software
Weaknesses [46], for instance, out-of-bounds write, out-of-bounds read, and use-after-free rank 1st, 5th, and
7th among all weaknesses, respectively. For program reliability, researchers have proposed a series of memory
sanitizing techniques [2, 9, 10, 13, 21, 26, 28, 29, 34, 35, 40, 42, 49, 50] to detect invalid memory operations during
the program execution.
Though tremendous eforts have been made to improve memory sanitization, most methods have limited

compatibility, resulting in false negatives or low eiciency in many scenarios. Pointer-based methods, for instance,
protect memory accesses with bufer bounds propagated along with pointer arithmetics. However, the propagation
highly depends on program instrumentation with type information of pointers, which is not always available. It
is a well-known issue [4, 9, 10, 26, 28, 34, 35, 41, 43, 45] that propagation often fails due to pointer-integer casting
or uninstrumented external libraries without type information (e.g., third-party codes distributed in binary form).
As a result, the pointer-based sanitizers cannot detect errors once the propagation fails.

Location-based methods stand out among the various memory sanitizers due to their high compatibility, which
comes from a simpler safety model that does not rely on pointer information to maintain metadata. Speciically,
each byte in the memory is assigned one of the two states, addressable or non-addressable, and a memory access
is safe if the target bytes are all addressable. The addressability states are stored in a dedicated shadow memory
and can be retrieved anytime, eliminating the need for instrumentation to propagate metadata. For compatibility
considerations, memory sanitizers integrated into GCC [14], LLVM [27] compiler projects, and Android [3]
system are all location-based [30, 40, 41].

State: 0x4

Addressable Non-Addressable

State: 0x0 State: 0xfa

first 4 bytes
addressable

all 8 bytes
addressable

non-addressable
region in the heap

Fig. 1. Shadow encoding in ASan, where all objects are 8-byte
aligned. The addressable bytes within a segment must occupy
a prefix of the segment. By default, ASan uses eight diferent
state codes for addressable bytes within the segments and
reserves the other state codes for other purposes (e.g., recording
why the bytes are non-addressable).

However, though location-based methods ofer
high compatibility and are fast in metadata main-
tenance [43], they are deicient in protecting mem-
ory operations 1 involving multiple instructions, and
they require excessive runtime checks compared with
other methods like pointer-based solutions. Specii-
cally, pointer-based methods safeguard memory op-
erations by checking whether the memory region
being accessed is within a safe bound. In contrast,
location-based methods do not have such a bound, and
they have to break operations down into instructions
and check each instruction separately to ensure no
non-addressable bytes are accessed. Therefore, though
location-based methods save time in metadata main-
tenance, they incur more runtime checks, which are
time-consuming.
The root cause of the excessive check issue is the low protection density caused by the ineicient shadow

memory encoding. The protection density is the number of bytes safeguarded by one piece of metadata. Each
byte in the memory has two diferent states: addressable or non-addressable. Technically, it requires at least
one bit to distinguish the two states. Therefore, on average, location-based methods must load and decode one
shadow byte for every eight memory bytes. The protection density can be slightly increased according to memory

1In this paper, a memory operation refers to a series of instructions manipulating the memory region of the same object. For example,

łmemset(p, 0, 1024)ž is one memory operation manipulating 1024 bytes and consists of at least 1024/8 = 128 mov instructions related to � in a

64-bit system.
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Memory object

good good good good good good good part
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Memory bad bad
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(a) Existing location-based encoding. łgoodž: all bytes in
the segment are addressable; łbadž: all bytes are non-
addressable; łpartž: only some bytes in the segment are
addressable (partially good).

Memory object

4 good 2 good good part
Shadow
Memory bad bad

1 folded segment visited
Task: check the
region [L, R)

L R

(b) Segment Folding: build a summary for łgoodž seg-
ments. Only one folded segment needs to be visited in-
stead of four unfolded ones for the region [�, �).

Fig. 2. Folded segments reduce metadata loadings.

alignment: some consecutive bytes must be both addressable or non-addressable, and thus their states can be
merged. However, because most objects are only guaranteed to be 8-byte aligned, and this optimization is limited
to only a few neighboring bytes.

Figure 1 illustrates the shadow encoding with the low protection density in the most widely deployed sanitizer,
AddressSanitizer (a.k.a. ASan) [40]. It partitions the virtual memory space into a sequence of aligned segments
and employs one 8-bit integer (called the segment state in this paper) to encode all byte states within the segment.
Segments are sized at 8 bytes so that no two objects share the same segment 2. Checking a memory region
containing � bytes requires loading ⌈�8 ⌉ segment states, which results in signiicant runtime overhead. For
instance, checking whether a 1KB region contains a non-addressable byte requires loading 128 segment states in
ASan. A past study [50] shows that ASan is about 2× slower than native execution, and about 80% of the runtime
overhead comes from excessive runtime checks and metadata loadings.
This paper addresses the low protection density issue to improve the eiciency of location-based memory

sanitization. Despite the various segment states, almost all segments visited during the execution are łgoodž
segments (i.e., the segments without non-addressable bytes) because most memory operations are safe and only
manipulate addressable bytes. Inspired by this observation, our key insight is to build a summary for łgoodž
segments to help reduce segment state loadings, thus increasing the sanitizing eiciency. We call the summarizing
process łsegment foldingž.
Let us illustrate our insight with Figure 2. Figure 2a shows how existing methods work: when accessing a

memory region, they need to check all segments to ensure all accessed bytes are addressable. Checking the region
[�, �) involves 4 segments, and all those segments are łgoodž since this region is safe to access. Figure 2b shows
how the segment folding works: it builds a summary of the łgoodž segments and uses the summary of segments
to speed up the checking of the region [�, �). However, the folding is not free: storing the summary needs extra
shadow memory space.

To reduce the shadow memory required to store the summary, we design the binary folding strategy: a folded
segment only summarizes 2� łgoodž segments for some integer � . In a modern 64-bit system, � cannot exceed 64

because the maximum object size is less than 264. As a result, six shadow bits are suicient to record the folding
degree � . Combined with the 8-byte alignment optimization, all the segment states and the folding degree � can
be recorded in one 8-bit integer. As a result, the new shadow memory encoding with segment folding is compact
enough to build upon the shadow memory widely adopted by existing location-based methods.

2ASan assumes all objects are 8-byte aligned, which is satisied in most cases due to the basic assumption of heap allocation.

ACM Trans. Comput. Syst.
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We present GiantSan, a dynamic memory error detector with a novel shadow encoding based on segment
folding. To the best of our knowledge, GiantSan is the irst location-based method that can safeguard a sequential
region of arbitrary size in � (1) time. We evaluate GiantSan on SPEC CPU 2017, the industry-standard CPU-
intensive benchmark suite. GiantSan reduces the geometric mean runtime overhead down to 43.48%, compared
with 74.89% and 112.58% in the state-of-the-art location-based designs ASan-- [50] and ASan [40], respectively.
The promising result indicates that GiantSan outperforms its competitors.

To sum up, this work makes the following contributions:

• We formulate and summarize the low protection density issue of location-based sanitizers.
• We introduce the segment folding algorithm to increase protection density signiicantly.
• We implement our approach as a tool named GiantSan and provide empirical evidence that it outperforms
the state-of-the-art methods with less runtime overhead.

2 Technical Background

This section introduces fundamental knowledge about existing memory sanitizing techniques.

2.1 Existing Solutions for Memory Safety

There are two categories of memory safety violations: 1) Spatial Errors: access memory locations outside the
allocated region of objects, and 2) Temporal Errors: access an object when it is not valid (e.g., unallocated or
deallocated).
Although many memory safety violation detecting tools have been proposed [5ś7, 9, 10, 13, 21, 24, 25, 28,

35, 38, 40, 42, 49, 50], many only provide partial memory safety guarantees. Some, like Softbound [34], Delta
Pointers [25], TailCheck [16], and LFP [9, 10], only support the detection of spatial errors. In contrast, other
trends of existing work, like CETS [35] and PTAuth [13], only support the detection of temporal errors.
All sanitizers need extra metadata to model the memory and validate whether one memory region can be

accessed. Among the existing eforts to provide a full safety guarantee, there are two main philosophies:

• Pointer-based: Pointer-based methods [6, 9, 10, 13, 16, 24, 25, 28, 35, 38] model the memory from the
perspective of pointers by tracking the memory region safe to access for each pointer. They encapsulate
the pointer and a tag in a new pointer representation, and they use the tag as the bound for the safe region
or as the index for retrieving the bound.

• Location-based: Location-based methods [5, 7, 21, 40, 42, 49, 50] model the memory from the perspective
of memory bytes by recording which byte is addressable. The byte states are recorded in a compact shadow
memory, and location-based methods inspect the shadow memory to check the state of each accessed byte.

The core diference between the two philosophies is the dependence on the data type information of pointers.
Speciically, whenever pointer arithmetic creates a new pointer, pointer-based methods need to convert it into
the new pointer representation and propagate the tag from the source pointer to the new pointer. Therefore, in
pointer-based methods, all instructions must be aware of whether they are manipulating pointers so that the
tag is propagated correctly and not misused. In contrast, memory protection in location-based methods only
depends on the metadata binding to the memory address instead of pointers.

Unfortunately, the type information of pointers is not always available. For example, programs can use external
libraries distributed in binary formwithout type information, and all values are treated as integers. Moreover, even
with the source codes available, the type information of pointers may not be available since the pointer-integer
casting can eliminate the type information. The casting converts pointers into integers, and later, pointers are
manipulated by integer arithmetic instead of pointer arithmetic. As a result, it is challenging to distinguish
between the customized pointer representation and the native integers, which might result in tag misuse or tag
propagation failure [4, 9, 10, 26, 28, 34, 35, 41, 43, 45].

ACM Trans. Comput. Syst.
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Table 1. Diference between operation-level protection and instruction-level protection on the pointer � . The Analysis Method

column shows the static analysis used to identify the operations in the source codes. � in the fourth case is the size of vec.

Analysis Method Example # Checks (operation-level) # Checks (instruction-level)

Constant Propagation p[0] + p[10] + p[20] 1 3

Predeined Semantics memset(p, 0, N) 1 Θ(� )

Loop Bound Analysis
for (auto i = 0; i < N; i++)

p[i] = foo(i);
1 N

Must-alias Analysis
p[0] = 10
for (auto i : vec)

p[i] = foo(i);

1 slow check + N fast checks
(with bound cached)

N+1 slow checks
(with nothing cached)

Once the pointer tag is lost due to propagation failure, the pointer-based methods cannot protect the pointer
and all new pointers derived from it. Some eforts attempt [2, 9, 10, 24] to recover from the tag loss by obtaining
a new tag based on the pointer values from dedicated data structures, e.g., shadow memory, similar to the
location-based methods. However, location-based methods only require distinguishing two states of bytes with
a compact shadow memory. In contrast, keeping tags to distinguish diferent objects requires a much larger
shadow memory. Large shadow memory causes excessive memory consumption and signiicantly afects runtime
eiciency due to a high memory footprint [40, 43].
One of the most representative eforts in tag reobtaining is the Baggy Bound Checking (BBC) [2]. To avoid

large shadow memory footprints, it rounds allocation sizes up to a power of two to reduce the total variety of
tags. As a result, it cannot detect errors within the rounded-up allocation size. For example, it cannot detect
the out-of-bound access łp[700]ž for a bufer łchar p[600]ž because the bufer is rounded up to łchar p[1024]ž.
Therefore, due to the tolerance of many spatial violations, BBC is less suitable for testing [2, 43].

Due to their high dependence on pointer type information, pointer-based methods are less compatible in the
complicated real-world testing environment. In contrast, location-based methods are much more widely adopted
because they only need to know which memory address is being accessed. That is why general-purpose compiler
projects like LLVM and GCC only integrate location-based methods. However, location-based methods have their
own eiciency issue, which we aim to address in this paper, discussed in the following.

2.2 Location-based checking with shadow memory

Shadow memory is a technique to monitor and maintain the states of bytes in the memory, widely used in
memory safety sanitizers [5, 19, 40ś42, 49, 50]. It is the most eicient data structure to implement location-based
methods. Location-based methods partition the virtual memory space into ixed-sized segments and use shadow
memory to record the segment state, which encodes the states of bytes within the segment. Speciically, shadow
memory is an array of shadow units, each of which stores a piece of metadata. We use the notationm to represent
the global array, � for the number of segments, and ��ℎ���� for the size of each segment. The following is how
shadow memory is declared:

ShadowUnitType m[N];

Given a memory address � , the state of the segment covering the address � can be loaded by:

m[ (intptr_t)�/��ℎ���� ]

ACM Trans. Comput. Syst.
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Location-based methods can only detect whether a byte is addressable but cannot guarantee that the byte
belongs to the desired object. Most existing location-based methods integrate redzones [21, 40, 42, 49, 50] and
memory quarantine [1, 21, 40, 42, 49, 50] to detect sophisticated memory errors. Speciically, redzones are non-
addressable paddings between objects (for spatial error detection), andmemory quarantine delays the re-allocation
of memory regions to ensure that an object’s memory region is not addressable during a particular time (for
temporal error detection).
Runtime Checks. Before accessing� bytes starting from an address � , location-based methods safeguard the
memory access by checking whether all� target bytes are addressable. The metadata indicating the addressability
of bytes comes from the shadow memory. The metadata only has a limited bit width (e.g., 8 bits) to enable compact
shadow memory and can not hold much information. As a result,� is small in existing location-based methods
so that the byte states can be encoded with a limited bit width.

Example 1. ASan [40] uses ��ℎ���� = 8, and 8-bit signed integers as the ShadowUnitType.�[�] = 0 means the
p-th segment is a łgoodž segment (i.e., all bytes in this segment are addressable), and�[�] = � (1 ≤ � ≤ 7) means
the p-th segment is a �-partial segment (i.e., only the irst � bytes in this segment are addressable). ASan creates one
runtime check for all memory accesses with� ≤ 8:

1 int8_t v = m[p / 8];

2 if (v != 0 and (p & 7) + w > v) {

3 ReportError(p, w)

4 }

5 access [p, p + w)

The maximum allowable value of � determines the protection density: larger � means more bytes can be
safeguarded by the metadata, thus resulting in fewer metadata loadings and runtime checks. However, for memory
eiciency, location-based methods need to use compact shadow memory, which cannot allocate a large bit width
for a piece of metadata, and ineicient shadow encoding can only employ small � and limits the protection
density.

2.3 Problems and Challenges

In this section, we demonstrate how protection density afects sanitizing eiciency by presenting two protection
principles used in diferent sanitizers: 1) operation-level protection aims to protect a memory operation consisting
of multiple instructions as a whole, and 2) instruction-level protection safeguards each instruction separately. We
discuss why operation-level protection requires a high protection density and generates fewer runtime checks.
We also discuss the challenges in enabling operation-level protection in location-based methods.

A memory operation is a series of memory accesses toward the allocated region of one single object. Table 1
shows four types of commonly used runtime checks based on the semantics of memory operations, all associated
with the pointer � . For example, constant propagation can tell that � [0], � [10], and � [20] are all memory accesses
towards � with constant ofsets. Operation-level protection safeguards all three instructions at once by testing
[&� [0],&� [21]) ⊆ bound(�). Similarly, the memset and bounded loop require only one check under operation-
level protection. In contrast, the instruction-level protection checks all instructions executed separately. For
example, � [0], � [10], and � [20] involve three instructions, and the instruction-level protection checks each of
them separately.

Moreover, the operation-level protection can also reduce metadata loadings with caching. The operation-level
protection can cache the bound of � for future memory accesses on � , as listed in the fourth case of Table 1. Once
the bound of � is loaded when checking � [0] = 10, the bound can be cached in a local variable and used to check
all instructions in the loop. In contrast, the instruction-level protection checks each instruction separately, and

ACM Trans. Comput. Syst.
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1 void foo(int *p, size_t n) {

2 for (size_t i = 0; i < n; i++) {

3 p[i]++;

4 }

5 }

(a) A simple bounded loop, whose bound can be analyzed before optimization.

1 void foo(int *p, size_t n) {

2 size_t n_vec = (n - n % 8);

3 size_t j = 0;

4 if (n >= 8) {

5 for (size_t i = 0; i < n_vec; i += 8) {

6 p[i + 0] += 1;

7 p[i + 1] += 1;

8 p[i + 2] += 1;

9 p[i + 3] += 1;

10 p[i + 4] += 1;

11 p[i + 5] += 1;

12 p[i + 6] += 1;

13 p[i + 7] += 1; // to be vectorized.

14 }

15 j = n_vec;

16 }

17 for (; j < n; j++) p[j] += 1;

18 }

(b) The optimization unrolls the loop to foster vectorization.

Fig. 3. The optimization lowers the abstraction level.

the metadata loaded can only safeguard the corresponding instruction. Caching metadata with low protection
density cannot help speed up future checks because it does not contain much information.

The operation-level protection requires much fewer checks than the instruction-level protection. However, it
needs to eiciently verify memory regions of arbitrary sizes, which, unfortunately, is not available in existing
location-based methods, as discussed in Section 2.2. Meanwhile, operation-level protection is sensitive to the
abstraction level of the code. The transformation passes from the compiler lower the abstraction level of the
high-level language features in the source code, bringing the program closer to machine code. For example, a
loop with a ixed bound in the source code may be unrolled or split into two loops with variant bounds during
the compilation process. Building operation-level protection needs to consider the interaction with the compiler
optimization.

Example 2. Figure 3a contains a simple bounded loop. Theoretically, SCEV analysis is suicient to infer the bound
of this loop and yields the operation-level protection about the memory region [&p[0], &p[n + 1]). However, the
optimization pipeline would convert the loop from a simple form into a complicated form, as shown in Figure 3b. The
original single memory operation is duplicated into nine separate memory instructions, and the single loop is split
into two loops. The analysis cannot handle multiple instructions across multiple loops, thus failing to infer the bound
of the loop.

Summary. Existing location-based methods have the following deiciencies of the instruction-level protection,
all caused by the low protection density. We attempt to address the deiciencies by increasing protection density.

• Ineicient in safeguarding large memory regions.
• Ineicient in caching history.

ACM Trans. Comput. Syst.
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Memory object redred freed

bad good good good good part bad freed
Shadow
Memory

Runtime
Check

Spatial Error: 
visiting "bad" Safe! Temporal Error: 

visiting "freed" 

(a) Shadow memory technique. łgoodž means all bytes in
the segment are addressable; łpartž means partially good -
only the first several bytes in the segment are addressable;
łbadž and łfreedž represent non-addressable segments
maintained by redzones and memory quarantine.

object redred freed

bad (2) (1) (1) (0) part bad freed
Shadow
Memory

Spatial Error: 
visiting "bad" Safe! Temporal Error: 

visiting "freed" 

Runtime
Check

Memory

(b) ł(�)ž indicates that this segment is a folded segment
combining two consecutive folded segments with the fold-
ing degree ł(� − 1)ž. In particular, ł(0)ž indicates łgoodž
segments. A segment with code ł(�)ž summarizes 2� con-
secutive łgoodž segments.

Fig. 4. High-level comparison between GiantSan and existing approaches: the majority of consecutive segments can be
folded and checked as a whole.

3 GiantSan in a Nutshell

We present GiantSan, a novel location-based sanitizer enabling operation-level protection. Our main observation
is that most segments being visited during execution are łgoodž segments, so characterizing and protecting
good-segment-only memory regions with a customized summary suice in most cases. For example, in Figure 4a,
the łSafe!ž region requires loading 5 segment states. In contrast, in Figure 4b, GiantSan combines nearby łgoodž
segments to avoid visiting łgoodž segments repeatedly and conducts only 2 checks. Figure 5 shows two key
phases of GiantSan:

• The runtime support library hooks all objects’ allocation and deallocation to initialize the metadata in
shadow memory (Section 4.1) during the execution.

• The instrumentation system inserts checks to protect memory operations. Operation-level protection
requires diferent instrumentation logic for consecutive region checks (Section 4.2) and history caching
(Section 4.3). The construction of the operation-level protection needs to cooperate with compiler opti-
mization (Section 4.4).

The runtime support library sets the metadata in the shadow memory. Speciically, to implement the runtime
support library, we irst need to design metadata modeling the memory by answering the following question:
Question 1: How to fold segments and encode the folded segments in the shadow memory?
Solution: GiantSan employs the recursive binary folding strategy: two consecutive łgoodž segments, or two
consecutive folded segments with the same size, are combined to form a new folded segment. As illustrated
in Figure 4b, the (1)-folded segment combines two łgoodž segments, and the (2)-folded segment combines two
(1)-folded segments. The folded segments summarize addressable regions, speeding up the segment checks, and
only the folding degree (�) needs to be recorded. We discuss the details in Section 4.1.
GiantSan utilizes the optimized shadow memory to safeguard memory regions. To solve the deiciencies

discussed in Section 2.3, we face two main questions:
Question 2: How to eiciently safeguard given memory regions with arbitrary sizes?
Solution: Safeguarding a memory region is simpliied into checking whether the folding degree is large enough.
More speciically, if we want to check whether � consecutive segments contain non-addressable bytes, we can

ACM Trans. Comput. Syst.



GiantSan: Eficient Operation-Level Memory Sanitization with Segment Folding • 1:9
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Fig. 5. GiantSan’s workflow

check whether the irst and last 2⌊log2 � ⌋ segments are folded, signiicantly reducing the required metadata. We
place the details of locating the folded segments in Section 4.2.
Question 3: How to build a cache to speed up further checks?
Solution: GiantSan caches the last folded segment visited for a given pointer, which can be considered as a
temporary bound for all accesses checked. The bound helps reduce the metadata loadings for future accesses on
the same pointer. We discuss the caching algorithm in Section 4.3.
Question 4: How to cooperate with the compiler optimization?
Solution: GiantSan uses pseudo instrumentation to cooperate with compiler optimization. Speciically, before
the optimization pipeline lowers the abstraction level, GiantSan scans memory operations and encodes the
information about all protection tasks with a customized LLVM intrinsic, which serves as placeholders rather
than actual instructions, to avoid disturbing the optimization. During the optimization pipeline, GiantSan reines
the intrinsics (e.g., remove the ones whose corresponding memory operations are removed by the optimization).
The intrinsic is materialized to sanitization instructions at the late stage of the optimization pipeline. We discuss
pseudo instrumentation in Section 4.4.

4 Design

In this section, we present the design of GiantSan, an eicient location-based sanitizer with high protection
density. Like existing location-basedmethods,GiantSan needs redzones andmemory quarantine for sophisticated
errors.

Figure 5 illustrates GiantSan’s general worklow. The runtime support library hooks the object’s allocation to
update the shadow memory, and the instrumentation uses the shadow memory to safeguard memory regions.
Sections 4.1, 4.2, and 4.3 present detailed solutions to the three questions mentioned in Section 3. Section 4.4 de-
scribes how to generate operation-level checks with pseudo instrumentation. In the end, Section 4.5 demonstrates
the implementation details.

4.1 Shadow Encoding in GiantSan

In this section, we describe GiantSan’s shadow memory encoding. We choose the commonly used eight-byte
segment shadow memory as ASan [40]. The whole virtual memory is divided into small segments of 8 bytes, and

ACM Trans. Comput. Syst.
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the metadata for a segment is stored in an 8-bit data type. Same as ASan, GiantSan ensures that all objects are
8-byte aligned, which does not make a huge diference to the memory layout because, as discussed in previous
work [40], most objects in modern systems are naturally 8-byte aligned.

GiantSan achieves high protection density by building summaries on łgoodž segments, the ones containing
no non-addressable bytes. The summary strategy is binary folding, which locates and folds consecutive 2� łgoodž
segments and encodes the value � in the shadow memory. The folded segment containing 2� łgoodž segments is
named as an (�)-folded segment. As illustrated in Figure 6, an � value in the shadow memory indicates at least
8 × 2� and less than 8 × 2�+1 consecutive bytes are addressable. In modern 64-bit systems, � cannot exceed 64

because the maximum object size is less than 264.
After introducing the folded segments, three categories of segment states exist: 1) the folding degree � for

(�)-folded segments, 2) the value � for k-partial segments, which has only the irst � bytes addressable, and 3)
error codes for non-addressable segments. There are at most 64 diferent � and 7 diferent � . We use the denotation
�[�] to represent the metadata stored in the �-th shadow byte, and�[�] is deined as follows:

Definition 1 (State Code). �[�] is an 8-bit unsigned integer that can store values within [0, 256).

�[�] =





64 − �, the p-th segment is an (i)-folded segment

72 − �, the p-th segment is a k-partial segment

> 72, error codes

The monotonicity of� simpliies memory checks. A smaller�[�] means more consecutive addressable bytes
following the �-th segments. Suppose that we want to check whether the �-th segment is a folded segment with
a folding degree equal to or higher than 3. In that case, we only need to check whether�[�] ≤ 64 − 3. Any
�[�] breaking the inequality indicates that there are non-addressable bytes in the memory region [8�, 8(� + 23)).
Checking the folding degree is the key to memory protection, which is discussed later in Section 4.2.

Memory 8B

(2) (2) (2) (2) (1) (1) (0) 4-part
Shadow
Memory (3)

8B 8B 8B 8B 8B 8B 8B 8B

An object sized at 68 bytes

Fig. 6. Shadow memory encoding for an object sized 68 bytes.
ł(�)ž represents an (�)-folded segment. ł4-partž represents a
partial segment with only the first 4 bytes addressable.

Though the encoding is much more complicated
than existing works [2, 9, 10, 36, 40, 42, 49, 50], updat-
ing the shadow memory with the new encoding does
not take extra computation. Technically, an allocated
object has at most one partial segment, and all remain-
ing segments within the allocated regions are folded.
More formally, there are 2� consecutive (�)-folded seg-
ments, e.g., there is one (0)-folded segment, two (1)-
folded segments, and four (2)-folded segments. The
relative positions of the folded segments follow a sim-
ple pattern illustrated in Figure 6. Based on this pattern,
GiantSan eiciently updates the shadow memory in
linear time, the same as existing works.

4.2 Region Checking

This section introduces how to use the new shadow
memory encoding to safeguard a memory region. A
memory region [�, �) is safe if all except the last seg-
ment within this region are łgoodž segments and the irst (� mod 8) bytes in the last segment are addressable.
GiantSan speeds up the łgoodž segment checking with folded segments. Speciically, GiantSan generates codes
to safeguard a memory region [�, �), denoted as CI(L, R), in two steps. Let � = ⌊ �8 ⌋, � = ⌊ �8 ⌋:

• The �-th, · · · , (� − 1)-th segments must all be łgoodž.
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(3) (3) (3) (2) (2) (2) (2) (1) (1)

at least (3)-folded

at least (3)-folded

(0)

(a) Checking 10 segments

(>t) ... ... ... ... ... ... ... ...

more than (t)-folded

...

(b) Case 1: one folded segment

(t) ... (t) ... ... ... ... ... ...

(t)-folded

(t)-folded

...

(c) Case 2: two folded segments

Fig. 7. Checking whether the �-th, � + 1-th, · · · , (� − 1)-th segments are all łgoodž based on folded segments. � = ⌊log2 (� − �)⌋.

Algorithm 1 CI(L, R).� is the shadow memory, and � is a multiple of 8 due to the 8-byte-alignment strategy.

1: uint8_t � =�[ �8 ] ⊲ � ≡ 0(mod8)

2: uintptr_t � = (� ≤ 64) ≪ (67 − �);
3: if � < � − � then ⊲ fast check
4: if � − � ≥ 8 then

5: if 2 ∗ � < � − � then ⊲ check folding degree
6: ReportError() ⊲ of the preix

7: end if

8: if �[⌊ �−�8 ⌋] ≠ � then ⊲ check folding degree
9: ReportError() ⊲ of the suix
10: end if

11: end if

12: if �[⌊ �−18 ⌋] > 72 − (�&7) then ⊲ check the partial
13: ReportError() ⊲ segment at the
14: end if ⊲ end
15: end if

• The irst (� mod 8) bytes in the � -th segment are addressable.

Arbitrary � consecutive łgoodž segments must be a union of two (⌊log2 � ⌋)-folded segments. As illustrated
in Figure 7a, if all 10 consecutive segments are łgoodž, the irst eight and the last eight łgoodž segments must be
at least (3)-folded. Therefore, we only need to check if the folding degrees of a preix and a suix in the segment
sequence are large enough. There are only two cases when all segments numbered from � to � − 1 are łgoodž
(� = ⌊log2 � − �⌋):

• All segments are folded into one, and at least one (� + 1)-folded segment exists, as illustrated in Figure 7b.
• All segments are divided into two (�)-folded segments, as illustrated in Figure 7c.

An important integer trick for eicient checking is that the number of addressable bytes recorded in the �-th
segment is (�[�] ≤ 64) ≪ (67 −�[�]), where ≪ is the left-shift arithmetic. The calculation result becomes 0 if
�[�] does not represent a folded segment (i.e.,�[�] > 64). The trick helps avoid calculating the expensive log2
function.
Algorithm 1 shows how to safeguard the interval [�, �). It contains two stages: the fast check (the case in

Figure 7b) and the slow check (the case in Figure 7c). The fast check is cheap and suices to safeguard most
memory regions, while the slow check handles the remaining rare cases.

• The fast check (Lines 1~3) inds a safe region [�, � + �) without non-addressable bytes based on the folded
segment recorded at�[ �8 ]. If [�, �) is within [�, � + �), [�, �) must be safe. According to the deinition
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of the folded segment, � covers > 50% of the addressable bytes following �; thus, � is large enough to
safeguard the majority of the regions.

• The slow check (Lines 4~14) 3 veriies three parts: whether non-addressable bytes exist in 1) the preix, 2)
the suix, and 3) the last segment of [�, �). The slow check handles the case illustrated in Figure 7c, which
is much more infrequent than the cases that are handled by the fast check.

This algorithm fully utilizes folded segments: folded segments summarize the majority (> 50%) of neighboring
bytes in arbitrary safe regions, and the fast check eiciently safeguards any region within an existing summary.
The region outside the fast check’s scope is split into (at most) two folded segments and handled by the slow
check, which is invoked only when the fast check fails. The slow check is also an O(1)-time algorithm with a
better time complexity than existing location-based methods. Therefore, this algorithm can check a region with
arbitrary size in constant time.

4.3 History Caching

History caching helps reduce metadata loadings on the same pointer. Intuitively, caching mainly speeds up
memory protection within loops (the number of accesses outside loops is relatively limited). Thus, to better
illustrate our method, we explain GiantSan’s caching solution with accesses in loops.

(2) (2) (2) (2) (1) (1) (0) 4-part
Shadow
Memory (3)

Start

(2)-folded (1)-folded (0)-folded

Fig. 8. Locating the bound with folded segments

The ideal values to be cached are the bounds of
pointers since memory accesses falling within the
bound do not need extra metadata. GiantSan can
locate the bound by skipping over folded segments,
as illustrated in Figure 8. The number of skipping is
at most ⌈log2

�
8 ⌉, where � is the size of the object, be-

cause the folding degree decreases by at least 1 after
one skip and the maximum folding degree is ⌈log2

�
8 ⌉.

Although the skipping is fast, it still takes time and is not a constant-time process. Therefore, GiantSan
employs on-demand skipping to save time. Whenever GiantSan conducts a pointer dereference check, GiantSan
caches the maximum valid address (called the quasi-bound) implied by the folded segment examined. In future
dereference, the bound checks can use the quasi-bound until the dereference goes beyond the quasi-bound.
GiantSan gets a new maximum valid address from the new folded segment visited, and reduces metadata
loadings with the quasi-bound.

Figure 10 demonstrates caching logic for the memory access at Line 10 in Figure 9a. GiantSan creates a local
variable, ub, as the quasi-bound for the bufer y. As illustrated in Figure 10, initially, the quasi-bound equals 0
because the size of the bufer is unknown. During the execution of the loop, GiantSan checks whether the ofset
j is beyond the quasi-bound (Line 4). If it goes beyond the bound, GiantSan checks � [ �] individually (Line 5)
and updates ub (Line 7). After the quasi-bound update, ub is closer to the actual bound of the region, and as
discussed above, the number of ub’s updating is at most ⌈log2

�
8 ⌉. Further memory accesses on � that fall within

the quasi-bound do not need additional metadata loadings and speed up the runtime checks.
GiantSan also detects underlow (Lines 9-11) and temporal errors (Line 14). Technically, GiantSan does

not create a quasi-lower bound because it is widely reported [25, 31] that the number of accesses with negative
ofsets is far less frequent than positive ofsets. Therefore, using a dedicated CI to check underlow results in
negligible cost. Moreover, the object pointed by � can be freed during the loop execution, and a inal check after
the loop can capture the deallocation [50].

3Codes at Lines 4, 12-14 are unnecessary if (� − �) mod 8 = 0 can be proved with static type information, e.g., reading an array of int64_t.
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1 void foo(int **p, int N) {

2
3 int *x = p[0];

4
5 int *y = p[1];

6 for (int i = 0; i < N; i++) {

7
8 int j = x[i];

9
10 y[j] = i;

11 }

12
13 memset(x, 0, N * sizeof(int ));

14 }

(a) Source Code

1 void foo(int **p, int N) {

2 CI(p, p + 4);

3 int *x = p[0];

4 CI(p, p + 8);

5 int *y = p[1];

6 for (int i = 0; i < N; i++) {

7 CI(x, x + 4 * i + 4);

8 int j = x[i];

9 CI(y, y + 4 * j + 4);

10 y[j] = i;

11 }

12 CI(x, x + 4 * N);

13 memset(x, 0, N * sizeof(int ));

14 }

(b) Check Instances (before merging)

1 void foo(int **p, int N) {

2 CI(p, p + 8);

3 int *x = p[0];

4 int *y = p[1];

5 CI(x, x + 4 * N);

6 for (int i = 0; i < N; i++) {

7
8 int j = x[i];

9 CI(y, y + 4 * j + 4) (cached );

10 y[j] = i;

11 }

12
13 memset(x, 0, N * sizeof(int ));

14 }

(c) Check Instances (ater merging and caching)

Fig. 9. Operation-level protection that significantly reduces runtime checks and metadata loadings

1 uintptr_t ub = 0;

2 for (int i = 0; i < N; i++) {

3 int j = x[i];

4 if (4 * j >= ub)) {

5 CI(y, y + 4 * j + 4);

6 v = m[(y + 4 * j) >> 3];

7 ub = 4 * j + (v <= 64) << (67 - v);

8 }

9 if (j < 0) {

10 CI(y + 4 * j, y);

11 }

12 y[j] = i;

13 }

14 CI(y, y + ub);

Fig. 10. uasi-bound instrumentation for y[j] in Figure 9a (Line 10) to reduce metadata loadings with caching.

4.4 The Construction of Operation-Level Protection

Due to the ability to handle arbitrary memory regions and history caching, GiantSan enables operation-level
protection, signiicantly reducing the number of runtime checks. Some kinds of operation-level memory protection
rely on program analysis (e.g., loop analysis). Lowering the abstraction level afects the performance gains from
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the operation-level protection. However, even without any analysis, operation-level protection will not be less
efective than instruction-level protection, because instruction-level protection operates at the lowest abstraction
level. Building check instances based on programs with high-level abstraction makesGiantSan faster by fostering
operation-level protection.

EP_EarlyAsPossible

EP_ModuleOptimizerEarly

EP_CGSCCOptimizerLate

EP_LateLoopOptimizations

EP_LoopOptimizerEnd

EP_ScalarOptimizerLate
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Fig. 11. The number of memory instructions at diferent stages in the optimization pipeline (based on the default extension
points provided by the LLVM project).

The key challenge in establishing operation-level protection is that it sometimes clashes with compiler
optimization. While the optimization pipeline in the compilation process can eiciently eliminate redundant
memory operations, thereby alleviating sanitization burdens, it concurrently lowers the program’s abstraction
level. Typically, a compiler operates through an optimization pipeline that sequentially invokes various passes
to reshape the program. Within this pipeline, the program’s intermediate representation undergoes alterations,
gradually converging toward machine code. For example, some passes unroll the loops to foster vectorization for
the SIMD instructions. This convergence is achieved by translating the code into instructions with lower levels
of abstraction.

Notice that we cannot simply instrument the program before the optimization pipeline because instrumentation
instructions have side efects and fail the optimization [48]. The failure of the optimization results in low-quality
binary and signiicantly increases the runtime overhead. Consequently, most existing sanitizers instrument the
programs at the late stage of the optimization pipeline (e.g., EP_OptimizerLast) to avoid the optimization’s failure.
However, as Figure 11 shows, instruction duplication is a common practice in compiler optimization, and the last
stage of the optimization pipeline does not contain the minimum number of memory instructions. It is essential
to consider the impact of compiler optimization for sanitization carefully.
GiantSan aims to collect the check instances at the early stage of the optimization without failing the

compilation optimization. We use pseudo instrumentation to separate the collection and instrumentation of
CIs. The CI information is collected before the optimization is executed and is recorded by a dedicated LLVM
intrinsic (called giantsan.marker). After the optimization, we materialize the intrinsic, i.e., replacing them with
actual instrumentation instructions.

The check instances that are generated by the pseudo instrumentation need to be removed or reined during
the optimization process. For example, dead code elimination removes memory operations with no side efects,
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IR+CI Stage 1 Protected
IRIR

Pseudo
Instrumentation

CI
Refinement

Stage 2 Stage N

CI
Refinement

CI
Refinement

Optimization Pipeline

CI
Refinement

Fig. 12. The workflow of the pseudo instrumentation and CI refinement.

and the corresponding pseudo instrumentation needs to be removed; otherwise, redundant sanitization will be
introduced. The following scenarios require the removal of the intrinsics during optimization.

• Memory Operation Removal: Optimizations such as dead code elimination remove redundant memory
operations. The corresponding protection should be removed.

• Memory Operation Merge: A series of instruction combination optimizations will combine memory opera-
tions that can be merged (e.g., operating on the same region of memory simultaneously). The corresponding
protection should also be merged.

Since it is impossible to know if the corresponding memory operation will be removed or merged when injecting
the pseudo instrumentation, we need a mechanism to reclaim the check instances during the optimization pipeline
once they are removed or merged.

Example 3. The unoptimized code in Figure 13a has two memory operations: the incrementing action inside
a bounded loop and a memset idioms. Before the optimization pipeline, we generate two check instances (Lines 6
and 12). At the end of the optimization, the loop generates many memory instructions through code duplication.
However, since the check instances are generated before the optimization is executed, they are not afected by the code
duplication. The memset idiom will be deleted after the function bar is inlined (because it can never be triggered),
and we need to delete the corresponding check instance accordingly.

Figure 12 shows the worklow of the pseudo instrumentation and CI reinement. At the early stage of the
compiler optimization pipeline, GiantSan adds CI as LLVM intrinsic to the IR of the code. GiantSan irst
scans all memory operations in the code to collect check instances, which might contain redundant ones. The
CI reinement stage will reine the check instances by removing the redundant check instances to simplify the
code. For example, if two check instances for diferent memory operations have identical operands, they are
considered redundant. The CI reinement is called multiple times because some analysis information is only
available at speciic stages. For example, the loop information on the LLVM SSA requires the canonical forms of
loops [33], which show up at the loop optimization stage. GiantSan calls the CI reinement at the pass extension
points provided by the LLVM projects (ModuleOptimizerEarly, CGSCCOptimizerLate, LateLoopOptimizations,
LoopOptimizerEnd, ScalarOptimizerLate, VectorizerStart, OptimizerLast). These extension points are designed
for customized transformation passes at diferent stages of the optimization pipeline.
During the compiler optimization pipeline, an associative CI removal component removes the CI when the

corresponding memory operations are removed or merged. Speciically, when memory loads/stores are detached
from the IR code, the corresponding CI is also removed. At the end of the IR optimization pipeline, the intrinsics
are materialized into actual instructions that protect the memory operations. We discuss the CI reinement and
the associative CI removal in the following.

4.4.1 CI Refinement. GiantSan irst scans all instructions and memory intrinsic functions that manipulate the
memory to generate the instruction-level checks. For example, there are ive diferent codes accessing memory in
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1 bool bar() {

2 return false;

3 }

4
5 void foo(int *p, int *q, bool cond , int n)

6 {

7 giantsan.marker(p, p + 4 * n);

8 for (int i = 0; i < n; i++) {

9 p[i]++;

10 if (cond) p[i]++;

11 }

12 if (bar()) {

13 giantsan.marker(q, q + 4 * n);

14 memset(q, 0, n * sizeof(int ));

15 }

16 }

(a) Code before optimization

1 bool bar() {

2 return false;

3 }

4
5 void foo(int *p, int *q, bool cond , int n)

6 {

7 giantsan.marker(p, p + 4 * n);

8 if (cond) {

9 for (int i = 0; i < n; i++)

10 p[i] += 2; // to be unrolled.

11 }

12 else {

13 for (int i = 0; i < n; i++)

14 p[i]++; // to be unrolled.

15 }

16 }

(b) Code ater optimization

Fig. 13. Example about generating the check instances before the optimization.

Figure 9a. reading p[0] (Line 4), reading p[1] (Line 5), reading x[i] (Line 7), writing into y[j] (Line 8), and memset
for x (Line 10). Figure 9b shows the checks generated in the irst stage. GiantSan later merges checks with CI
reinement; the inal result is shown in Figure 9c. After the merging, only 2 checks and � cached checks are
required, much fewer than the 2 + 3� checks in existing location-based methods.

Anchor-based Enhancement. Location-based methods insert redzones between objects to detect overlow. How-
ever, small redzones can be bypassed [19], while large redzones negatively impact memory performance. Our
solution is to set a small redzone between objects and select an anchor point. When safeguarding memory
accesses, GiantSan checks whether a redzone exists between the anchor point and the accessed location. For
most memory accesses, the base pointer of a bufer is chosen as the anchor point 4. This optimization eliminates
the trade-ofs on redzone sizes and protects memory eiciently and precisely.
Take the memory access y[j] at Line 10 in Figure 9a as an example. Existing location-based sanitizers only

check the region [� + 4 �, � + 4 � + 4) because they only protect the memory region at the instruction level. It
can result in a false negative if � is large enough to bypass the redzone within [�,� + 4 �) (if it exists). Existing
methods have to enlarge the redzone size to avoid this false negative. Instead, GiantSan uses the base pointer �
as the anchor point and checks the region [�,� + 4 � + 4) to ensure y[j] is indeed a valid location within the same
memory region as y. This method only requires a one-byte redzone, eliminating the need to use large redzones
and signiicantly increasing runtime eiciency.

Check-in-Loop Promotion. Memory accesses in loops can raise multiple checks during the execution (e.g., Line 7
and Line 9 in Figure 9b). GiantSan runs SCEV analysis [32] to identify bounded loops and reduce runtime checks.
For example, the � checks at Line 7 in Figure 9b are combined into one check �� (�, � + 4� ). For unbounded
loops, GiantSan employs the history caching discussed in Section 4.3.

Redundancy Elimination based on Alias. Existing eforts [9, 10, 28, 40, 50] demonstrate that sanitization tasks
could be removed or merged (e.g., � [0] and � [1] in Figure 9a) to reduce the number of memory region safeguarding

4Some programmers would purposely employ undeined behaviors, e.g., using an out-of-bound base pointer to simulate 1-based arrays,

which we consider as bugs by default. GiantSan can use the irst dereferenced address as the anchor point to turn of the warning for the

undeined behaviors.
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requests if the accessed pointers are must-aliased and have dominance/post-dominance relationship. GiantSan
adopts the LLVM’s intra-procedural must-alias analysis to detect aliased checks.

Loop Independent Promotion. When the parameters of a CI inside a loop do not change with the number of
loops, GiantSan moves the CI outside the loop. Note that a loop-independent variable is not the same as a loop
invariant; a CI checks the address of a pointer, while a loop invariant examines the data contained in that address.

CI(x, y)

CI(x, y)

CI(x, y)

Fig. 14. Full Dominance

Full Dominance Promotion. When all the successors
of a basic block contain the same CIs, they can be
merged and moved to that basic block. It aims to han-
dle complex dominance relationships. In alias-based
redundancy elimination, the condition for two CIs to
become redundant is the existence of dominance and
the post-dominance relationship between them, which
cannot handle the case in Figure 14 where two CIs are
not dominated nor post-dominated by each other but
can still be merged.

4.4.2 Intrinsics Property and Associative CI Removal.

The check instances generated by the pseudo instrumentation are represented by the LLVM intrinsic. The
inluence of LLVM Intrinics on the optimizers is mainly controlled through its memory property (no memory
access / read-only / write-only / only accesses memory that is not accessible by the module being compiled).
In order to minimize the impact on the optimizer, GiantSan sets the memory property of giantsan.marker to
łno memory accessž, eliminating any potential side efect on the optimization pipeline. However, this property
conlicts with dead code elimination. When the return value of the intrinsics has no users, they are recognized as
dead code and removed. The logical user of giantsan.marker is its corresponding memory instructions, i.e., the
intrinsics can only be removed when all their corresponding memory instructions have been removed, but these
memory instructions do not explicitly utilize the return value of giantsan.marker for their computation. From the
perspective of the SSA, the memory instructions are not the users of the giantsan.marker intrinsic.
We describe the implicit def-use relationship with pseudo operand. For each memory instruction, in addition

to the operands required for its own computation, GiantSan adds an additional pseudo operand, pointing to
the corresponding giantsan.marker. In all transformation passes involving dead code elimination, in addition
to marking dead/alive according to the SSA’s def-use chain, GiantSan also uses the pseudo operand to mark
whether a giantsan.marker is dead or alive. A giantsan.marker can only be marked as dead if all of its associated
memory instructions are dead. The same processing is also included in the passes associated with the instruction
combination. When memory instructions are combined, the corresponding pseudo operands are also combined.

4.5 Implementation

GiantSan is built upon the infrastructure of ASan [40] in the LLVM Project. There are two components in the
LLVM project related to memory sanitization: 1) a compilation pass that inserts runtime checks and 2) a library
providing the runtime environment. Speciically, GiantSan modiies the framework in two aspects: the shadow
memory poisoning to build folded segments and the detection logic to construct operation-level protection.
Shadow Poisoning. GiantSan changes the way ASan poisons the shadowmemory to build the folded segment
summary. Speciically, instead of only marking the allocated region addressable (e.g., illing the shadow memory
with zero values), GiantSan sets the folding degrees in the shadow locations of the allocated region. The
other operations, e.g., redzone setting and memory unpoisoning, remain unchanged. The instrumentation is
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implemented on top of the ASan instrumentation pass. The compilation front end controls the location of the
pass in the compilation pipeline. By default, this pass is placed at the end of the optimization pipeline.
Runtime Checking. GiantSan changes the logic of runtime checks, prompting the instruction-level pro-
tection to the operation-level protection. ASan adds runtime protection in two ways. First, ASan employs an
instrumentation pass to add runtime checks during the compilation; we modify this pass to replace ASan’s
runtime protection with GiantSan’s operation-level protection. Second, ASan provides a runtime guardian
function invoked before calling standard functions (e.g., strcpy). The guardian function checks contiguous regions
in linear time, and we modify its implementation into GiantSan’s constant time check.

Other implementation aspects of GiantSan, including shadow memory construction, shadow memory unpoi-
soning after object deallocation, redzone padding, and memory quarantine, are the same as the ones of ASan.
Notably, the multi-thread guarantee of GiantSan is the same as ASan, i.e., thread-local caches are utilized to
avoid locking on every call of the malloc and free functions. The collection of check instances with pseudo
instrumentation starts at EP_ModuleOptimizerEarly, the pass extension points provided by the LLVM project.

5 Evaluation

We experimentally evaluate GiantSan on four questions:

• RQ1: Can GiantSan reduce runtime overhead?

• RQ2: What are the impacts of each optimization techniques in GiantSan?

• RQ3: Does pseudo instrumentation cooperate well with compiler optimization?

• RQ4: Can GiantSan efectively detect real bugs?

We evaluate the speed of GiantSan on the latest version of the industry-standard benchmark suite, SPEC CPU
2017 [44] (RQ 1), and conduct an ablation study to evaluate the impact of diferent optimizations employed by
GiantSan with the same benchmark (RQ 2, RQ 3). We then use Juliet Test Suite [37], Magma Benchmark [22],
and the Linux Flaw Project [8], the widely used vulnerability databases, to evaluate GiantSan’s detection ability
(RQ 4).
Coniguration. GiantSan is built on the LLVM-12, and the experiments are conducted on a workstation
with Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz CPU, 128G memory (OS: ubuntu 18.04, Kernel version:
4.15.0-117-generic).

As for the sanitizer coniguration, we use the default settings listed in the ASan documentation [15] for all
ASan-based implementations: ASan [40], ASan-- [40], and our tool GiantSan, except setting halt_on_error=false
to prevent early termination of the evaluation due to the widely-reported memory errors existing in the SPEC
benchmark.

5.1 Performance Study

Setting. We use the latest version of the industry-standard CPU-intensive benchmark suite, SPEC CPU 2017 [44],
to evaluate the performance improvement of GiantSan thoroughly. This benchmark consists of two testing
modes: speed test and rate test. The speed test runs one copy of the target program to evaluate the execution
time under the intensive CPU computation environment. The rate test runs multiple concurrent programs
simultaneously to evaluate the throughput and performance in multi-threaded environments.
Not all programs in the benchmark are selected due to compilation issues (e.g., requiring Fortran instead of

C/C++). We test projects on which at least one sanitizer can work and choose the ref workloads for all projects.
We choose ASan [40] (the most widely adopted location-based sanitizers) and ASan-- [50] (the state-of-the-art

redundant check eliminating solution based on static analysis) as the baseline of location-based methods. We
plan to use BBC [2] as the baseline of rounded-up allocation size methods, but it is not publicly available. Instead,
we choose LFP [9, 10], an improved version of BBC with more variety of allocation sizes for object allocation.
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Table 2. Runtime Overhead (seconds). � is the ratio compared to the native execution (RE: Runtime Error, CE: Compile Error).
CacheOnly is the GiantSan version with history caching optimization and pseudo instrumentation, EliminationOnly is the
one with check elimination and pseudo instrumentation, and NoPseudo is the one without pseudo instrumentation. The
redzone sizes for location-based methods (GiantSan, ASan, and ASan--) are the default value (16 bytes).

Performance Study Ablation Study

Programs Native GiantSan R ASan R ASan-- R LFP R CacheOnly EliminationOnly NoPseudo

500.perlbench_r 358 704 196.65% 822 229.61% 780 217.88% CE - 218.16% 224.02% 200.56%
502.gcc_r 256 713 278.52% 847 330.86% 729 284.77% CE - 294.14% 287.89% 278.91%
505.mcf_r 399 505 126.57% 667 167.17% 551 138.10% 602 150.88% 148.37% 144.36% 127.82%
508.namd_r 295 310 105.08% 665 225.42% 479 162.37% 675 228.81% 189.83% 172.88% 107.46%
510.parest_r 430 577 134.19% 1314 305.58% 886 206.05% CE - 208.84% 169.77% 136.05%
511.povray_r 426 1060 248.83% 1604 376.53% 1235 289.91% 1227 288.03% 265.02% 285.21% 250.70%
519.lbm_r 275 283 102.91% 431 156.73% 347 126.18% 554 201.45% 126.55% 126.91% 101.09%
520.omnetpp_r 343 629 183.38% 1010 294.46% 872 254.23% 532 155.10% 230.03% 240.52% 196.79%
523.xalancbmk_r 408 553 135.54% 739 181.13% 600 147.06% 418 102.45% 147.30% 150.98% 137.25%
531.deepsjeng_r 289 396 137.02% 587 203.11% 442 152.94% 595 205.88% 158.82% 163.67% 141.18%
538.imagick_r 499 659 132.06% 930 186.37% 863 172.95% CE - 139.08% 139.28% 136.47%
541.leela_r 456 657 144.08% 933 204.61% 808 177.19% 906 198.68% 166.01% 169.74% 145.61%
557.xz_r 362 401 110.77% 554 153.04% 488 134.81% 574 158.56% 161.33% 131.49% 114.64%

600.perlbench_s 349 723 207.16% 1113 318.91% 806 230.95% CE - 229.51% 233.52% 206.88%
602.gcc_s 476 603 126.68% 1341 281.72% 729 153.15% RE - 136.34% 131.93% 126.89%
605.mcf_s 788 1032 130.96% 1276 161.93% 1205 152.92% 1113 141.24% 132.74% 134.39% 134.77%
619.lbm_s 551 566 102.72% 676 122.69% 608 110.34% 535 97.10% 131.76% 135.57% 105.63%
620.omnetpp_s 323 673 208.36% 1042 322.60% 871 269.66% 518 160.37% 242.41% 256.04% 212.38%
623.xalancbmk_s 396 528 133.33% 714 180.30% 618 156.06% 417 105.30% 150.25% 156.57% 135.35%
631.deepsjeng_s 347 496 142.94% 750 216.14% 540 155.62% 705 203.17% 172.33% 174.64% 143.52%
638.imagick_s 2119 2544 120.06% 3751 177.02% 4271 201.56% 3604 170.08% 126.52% 136.81% 124.35%
641.leela_s 452 653 144.47% 1041 230.31% 816 180.53% 904 200.00% 171.02% 172.35% 148.01%
644.nab_s 1198 1319 110.10% 1915 159.85% 1480 123.54% 1464 122.20% 137.56% 139.07% 113.11%
657.xz_s 871 1049 120.44% 1323 151.89% 1342 154.08% 1240 142.37% 157.52% 147.76% 119.98%

Geometric Means. 143.48% 212.58% 174.89% 161.76% 171.32% 170.17% 146.04%

Results. The overall performance is shown in Table 2. LFP fails to build four projects perlbench, gcc, parest,
and imagick. On average, GiantSan introduces 43.48% execution overhead on the native execution, with 61.37%,
41.94%, and 29.53% improvements over ASan, ASan--, and LFP, respectively. GiantSan outperforms ASan and
ASan-- on all projects and is only slower than LFP on 5 out of the 24 projects. The result shows GiantSan has
the best average performance, indicating the efectiveness of the new shadow encoding with the segment folding
algorithm.

5.2 Ablation Study

This section breaks down the contributions of the three optimizations introduced in Section 4.2, Section 4.3
and Section 4.4: large region checks help eliminate unnecessary checks, history caching reduces unnecessary
metadata loading, and the pseudo instrumentation collects check instances before the abstraction level is lowered.
Figure 15 demonstrates the ratio of optimized check codes in GiantSan by our optimizations. On average,

52.56% of the checks are optimized (30.76% eliminated and 21.80% cached). In the projects mcf, namd, and lbm,
more than 80% of the checks introduced by ASan are eliminated or cached. Most of the checks in these projects
are within simple loops and structure accesses with constant ofsets, which our optimizations can eiciently
handle. The remaining unoptimized codes include the ones that employ the fast check only and those that require
the full check (i.e., fast check + slow check). GiantSan can remove some slow checks because memory regions of
speciic constant sizes (e.g., a power of 2) do not require the slow check to tackle the corner cases outside the fast
check’s scope. The data shows that 49.22% of the remaining unoptimized tasks only use fast checks. The result
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Fig. 15. The proportion of memory instructions handled by diferent optimizations in GiantSan with ASan as the baseline.
The x-labels are the project IDs. Eliminated are codes removed due to the check merging, and Cached are the ones optimized
by the caching. FastOnly are the codes where the fast check sufices, and FullCheck are the ones that require both fast check
and slow check.

indicates that the optimizations signiicantly reduce runtime checks and metadata loadings to help GiantSan

gain high eiciency, and the fast check suices to cover the majority of protection tasks.
The ablation study column in Table 2 shows the runtime overhead of GiantSan without caching, check

elimination, or pseudo instrumentation, respectively. On average, compared to ASan, GiantSan-CacheOnly,
GiantSan-EliminationOnly, and GiantSan-NoPseudo show 36.64%, 37.67%, and 59.10% improvements, respec-
tively. Meanwhile, with either optimization enabled, GiantSan has comparable eiciency to ASan-- and LFP
with about 70% overhead, and combining both optimizations achieves the best performance among all test
conigurations. GiantSan is faster than ASan because it supports operation-level protection with constant time
region checks and history caching. Though ASan-- also uses static analysis to reduce redundant checks (it has
a similar eiciency with GiantSan-Elimination-Only), it does not support the history cache that can further
reduce runtime overhead. GiantSan is faster than LFP because LFP has to use extra instructions to simulate the
stack due to the incomplete stack protection caused by the high memory alignment requirement. This result
shows that both optimizations in GiantSan have signiicantly contributed to reducing the number of checks,
and the fast check covers most of the memory protection tasks, allowing us to achieve a notable performance
improvement.

5.3 The Impact of Pseudo Instrumentation

The motivation of pseudo instrumentation is to collect the information essential for operation-level sanitization
early in the compilation optimization pipeline, before the abstraction level is lowered, without failing the
compilation optimization. The LLVM framework provides compilation statistics (enabled by -stats option),
which outputs the number of instructions that were successfully analyzed, simpliied, or removed in speciic
transformation passes (e.g., the number of loops or memory instructions that were optimized). We demonstrate
these statistics to observe how instrumentation afects optimizers. Figure 16 shows a report of 11 statistics directly
related to performance. The results show that introducing pseudo-instrumentation has a negligible efect on the
statistics. Forcing early sanitization without pseudo instrumentation results in various performance degradations.
For example, early sanitization without pseudo instrumentation signiicantly lowers the number of vectorized
loops because all sanitizer instructions without pseudo instrumentation have side efects (e.g., they may cause
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Fig. 17. The number of check instances across various instrumentation stages.

ACM Trans. Comput. Syst.



1:22 • H. Ling et al.

1 void foo(int *p, int *q, bool cond , int n) {

2 if (cond) {

3 giantsan.marker(p, p + 4 * (n & 0x7FFFFFF8) + 4);

4 int i = 0;

5 for (i = 0; i != (n & 0x7FFFFFF8 ); i += 4) {

6 p[i] += 2; p[i + 1] += 2;

7 p[i + 2] += 2; p[i + 3] += 2;

8 }

9 for ( ; i < n; i++) {

10 giantsan.marker(p, p + 4 * i);

11 p[i] += 2;

12 }

13 }

14 else {

15 giantsan.marker(p, p + 4 * (n & 0x7FFFFFF8) + 4);

16 int i = 0;

17 for (i = 0; i != (n & 0x7FFFFFF8 ); i += 4) {

18 p[i]++; p[i + 1]++;

19 p[i + 2]++; p[i + 3]++;

20 }

21 for ( ; i < n; i++) {

22 giantsan.marker(p, p + 4 * i);

23 p[i]++;

24 }

25 }

26 }

Fig. 18. The number of checks increases if the pseudo instrumentation is performed ater loop vectorization. Ater loop
fission, the original single bounded loop is divided into a bounded loop and an unbounded loop. This new structure presents
challenges for SCEV analysis, resulting in redundant instance checks.

program interruptions). The results show that utilizing pseudo instrumentation to collect the check instances at
the early stage of the compiler optimization pipeline has negligible inluence on the optimization efect.
Instrumentation at diferent optimization stages results in diferent numbers of check instances. Figure 17

shows how the number of check instances changes when pseudo instrumentation is performed at diferent
stages. We can see that instrumenting at EP_ModuleOptimizerEarly has the minimum number of check instances.
Instrumenting at the last stage of the optimization pipeline introduces 7.29% more check instances compared
to instrumenting at EP_ModuleOptimizerEarly. The reason is that the abstraction level has been signiicantly
reduced, many memory operations have been duplicated, and only limited information can be used to infer the
operation-level protection. For example, Figure 18 shows the result if the pseudo instrumentation is injected after
loop vectorization for the code in Figure 13a. Compared to the early injected one (i.e., Figure 13b), Figure 18
introduces 4x more check instances because the SCEV analysis cannot handle the loop that has been issioned.

5.4 Detectability Study

On top of the performance improvement, we also evaluate the practicalness of GiantSan in detecting memory
errors.
Setting. We evaluate the bug detection ability on Juliet Test Suite (version 1.3) [37], Magma [22], and Linux
Flaw Project [8], which are error collections widely used to evaluate the efectiveness of software assurance tools.
Juliet Test Suite contains cases that wait for an external signal (e.g., sockets), and some test cases include a

randomized version (triggered with probability). We remove these cases to avoid ininitely waiting and non-
deterministic results. Linux Flaw Project contains CVEs related to real-world programs, and we pick the memory-
related ones, including 28 vulnerabilities from 8 programs written in C/C++. Magma [22] provides 58,969 test
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Table 3. Detection capability on the Juliet Test Suite. All test cases have two versions: buggy and non-buggy versions. All
tested tools have no false-positive issues under the C/C++ standard and pass all the non-buggy tests. Therefore, only the
results for the buggy versions are presented to illustrate the false-negative issue.

CWE ID & Type GiantSan ASan ASan-- LFP Total

121: Stack Bufer Overlow 1435 1435 1435 49 1439
122: Heap Bufer Overlow 1504 1504 1504 4 1504
124: Bufer Underwrite 767 767 767 767 767
126: Bufer Overread 441 441 441 352 449
127: Bufer Underread 916 916 916 916 916
416: Use After Free 393 393 393 393 393
476: NULL Pointer Dereference 288 288 288 288 288
761: Free Pointer Not at Start of Bufer 192 192 192 192 192

Total 5063 5063 5063 2088 5075

cases collected from its fuzzing campaign. We evaluate ASan, ASan-- and GiantSan on Magma to examine the
efectiveness of GiantSan’s anchor-based enhancement.
Results. Table 3 and Table 4 show the results on Juliet Test Suite and Linux Flaw Project, respectively.GiantSan,
ASan, and ASan-- have the same results in all cases, while LFP has a signiicant number of false negatives in
both benchmarks. LFP has many false negatives because it allocates objects with more spaces than the program
requires, similar to BBC [2] discussed in Section 2.1. The cases missed by GiantSan, ASan, and ASan-- are
potential overlow errors caused by uninitialized values. However, the uninitialized values loaded do not really
trigger an overlow; thus, these tools do not generate bug reports since no overlow occurs.
For the redzone setting test, we evaluate GiantSan, ASan, and ASan-- on Magma, and the result is listed

in Table 5. As we can see, GiantSan and ASan perform similarly in most projects. However, for large-scale
project PHP, GiantSan reports 463 more cases than ASan and ASan-- (redzone=16) and 57 more cases than ASan
and ASan-- (redzone=512). These false negatives are the POCs for CVE-2018-14883 and are caused by the small
redzone size. The result supports our conclusion in Section 4.4.1: insuicient redzone size leads to a false negative
because of redzone bypassing, and GiantSan solves this with anchor-based enhancement.

5.5 Limitation

Because GiantSan only provides a single-sided summary, i.e., it summarizes segments from lower addresses to
higher addresses, GiantSan may not efectively safeguard lower addresses given only higher addresses, causing
potential eiciency deterioration in reverse traversals with unbounded loops when anchor-based enhancement is
enabled.
To study this potential limitation, we conducted an additional study on Perlbench, which is a project in the

SPEC CPU 2017 we used in Section 5.1. It is a program interpreter that intensively iterates the input bufer and
contains diferent bufer iteration patterns, e.g., forward / reverse / random traversals. We evaluated the execution
time to complete a traversal of the input bufer to compare the performance of GiantSan’s history caching and
ASan in diferent bufer traversal patterns. Each run is repeated 100 times to reduce variations, and the geometric
mean is presented.
The results in Figure 19 show that GiantSan is 1.48x and 1.07x faster than ASan in random and forward

traversals, respectively. However, due to the extra instructions to perform anchor-enhanced checks, GiantSan is
1.39x slower than ASan in reverse traversals. The reason is that GiantSan has one-sided complexity guarantees
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Table 4. Detection capability for CVEs in Linux Flaw Project.

Program CVE ID GiantSan ASan ASan-- LFP

libzip CVE-2017-12858 ✓ ✓ ✓

autotrace
CVE-2017-9164 ✓ ✓ ✓ ✓

CVE-2017-9165 ✓ ✓ ✓

CVE-2017-9166∼9173 ✓ ✓ ✓ ✓

imageworsener CVE-2017-9204∼9207 ✓ ✓ ✓ ✓

lame CVE-2015-9101 ✓ ✓ ✓ ✓

zziplib CVE-2017-5976∼5977 ✓ ✓ ✓ ✓

libtif
CVE-2016-10270∼10271 ✓ ✓ ✓ ✓

CVE-2016-10095 ✓ ✓ ✓ ✓

potrace CVE-2017-7263 ✓ ✓ ✓ ✓

mp3gain
CVE-2017-14407∼14408 ✓ ✓ ✓ ✓

CVE-2017-14409 ✓ ✓ ✓

Table 5. Detection capability in real-world projects from Magma Test Suite. �� is short for redzone.

Project (LoC)
ASan--

(rz=16)

ASan--

(rz=512)

ASan

(rz=16)

ASan

(rz=512)

GiantSan

(rz=16)
Total

php (1.3M) 1556 1962 1556 1962 2019 3072
libpng (86K) 1881 1881 1881 1881 1881 1881
libtif (91K) 9858 9858 9858 9858 9858 9858
libxml2 (284K) 30566 30566 30566 30566 30566 30574
openssl (535K) 46 46 46 46 46 1509
sqlite3 (367K) 1528 1528 1528 1528 1528 1528
poppler (43K) 10201 10201 10201 10201 10201 10547

with history caching, i.e., quasi-bound converges to the upper bound of the allocated region in ⌈log2
�
8 ⌉ time;

however, it does not provide time guarantees for the lower bound. Therefore, GiantSan is able to save time by
predicting the addressability of higher addresses from lower addresses, but not vice versa.

The experimental data empirically evidence the performance diference of our approach in handling diferent
traversal patterns, which is consistent with our theoretical justiication. Fortunately, the number of reverse
traversals in real-world programs is relatively limited. For example, in the real-world programs collected by the
SPEC CPU 2017, only 0.39% of the bufer traversals are in reverse order. Past studies [16, 25] show that the impact
of underlow is comparatively less severe than overlow. Furthermore, the SCEV optimization could eliminate the
runtime checks by inferring the loop bounds, if possible.

For programs that heavily use reverse traversals, several alternatives can mitigate the eiciency deterioration.
One is to remove the anchor-based enhancement in underlow detection so that GiantSan’s detection degrades
to ASan’s mode (i.e., only checking the location of the access and ignoring the anchor); however, this would
eliminate the superiority of GiantSan over ASan w.r.t. underlow detection accuracy. The second solution is to
locate the lower bound before bufer reverse traversals by enumerating the folding degrees and checking whether
the corresponding folded segments exist.
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Fig. 19. The time cost of GiantSan and ASan in three bufer traversal paterns: Forward, Random, and Reverse. The baseline
Native is the execution time without sanitization.

Also, though GiantSan improves the eiciency of location-based methods, it still shares some common
limitations with existing works.
Sub-object Overlow Insensitivity: GiantSan detects memory accesses outside objects’ allocated regions but
cannot detect memory safety violations related to sub-objects, which is an open question in the existing literature.
The best practices in detecting sub-object overlow are pointer-based methods like Softbound+CETS [34, 35]
and EfctiveSan [11]. However, they all sufer from high runtime overhead and require precise type information,
which might not be always available in real-world programs.
Quarantine Bypassing: GiantSan detects temporal errors based on memory quarantine, but the memory
quarantine can be bypassed with a small probability. It is a common issue for memory quarantine-based solu-
tions [40, 49, 50]. In practice, the probability of bypassing the quarantine queue is low, and few related false
negative reports exist.

6 Related Work

Researchers have proposed various dynamic error detectors. We further discuss existing related works about
memory error detection.
Token Authentication. HWASAN [41] uses address tagging to replace the redzone with token authentication.
A random token is attached to pointers with the Top-Byte-Ignore hardware support, and the token is stored in
the shadow memory for memory regions. The token mismatch between pointers and memory regions results in
memory errors. IntegriTag [39] performs implicit probabilistic memory access checks with the Intel® TMEMK
memory encryption hardware feature, increasing the detection probability with more sparse bits compared
to HWASan. StickyTags [18] replaces random tagging with persistent memory tags to provide deterministic
protection, utilizing a size-class allocation strategy similar to LFP. Like GiantSan’s anchor-based enhancement,
these works mitigate the redzone dilemma. Speciically, HWASAN solves the problem that traditional location-
based methods are unable to distinguish between diferent allocated memory regions by assigning an 8-bit
identiier to each region. It propagates the identiier in a pointer-based manner and removes the need for redzones
with the token-matching model.

However, it does not improve the detection eiciency of the location-based methods, where a single check
only safeguards a small region (e.g., 16 bytes). Therefore, it sufers from the low protection density issue that
requires excessive runtime checks to safeguard a large region, decreasing its eiciency. This eiciency decreasing
issue is exactly GiantSan’s key motivation.
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Redzone Enhancement. Location-based solutions divide the memory into separated regions using redzones
to detect sophisticated bugs. Some methods that focus on redzone enhancement aim to reduce runtime overhead
with redzone poisoning or improve accuracy with adaptive redzone.

For example, in-band redzone methods [17, 20] ill the redzone with a random pattern and compare the loaded
data with that pattern. If they are diferent, the memory access is not in the redzone and is safe. These methods
reduce dedicated data structure inquiries (e.g., shadow memory), thus promoting memory locality. However,
this method protects only a small region with one check and faces the same low protection density issue as
other location-based methods. Similarly, it sufers from small redzone size, e.g., FloatZone [17] cannot detect
CVE-2017-7263 with 16-byte in-band redzones. These two issues are what GiantSan addresses.

Some approaches reduce the impact of redzone sizes with adaptive settings. LBC [20] selects diferent redzones
based on the allocated region sizes. FuZZan [23] switches between diferent data structures (e.g., shadow memory
and RB-tree) to decrease setup/inquiry costs for various inputs in a fuzzing scenario. MEDS [19] spreads the
objects evenly in the address space to increase the distance between objects as much as possible. To minimize
memory consumption, MEDS uses page aliasing to allow multiple virtual pages to share the same physical page,
reducing the physical memory usage.

GiantSan is compatible with all these redzone enhancement techniques because GiantSan does not impose
any extra requirements on redzone settings and the contents in the redzone areas. GiantSan only modiies the
shadow memory encoding for non-redzone areas and reduces the dependency on redzone size by modifying the
runtime check logic with the selected anchors.
Pointer Tracking. Pointer-based techniques provide a memory safety guarantee by tracking the lifetime of
pointers. As discussed in Section 2.1, pointer-based methods require the pointer type information to propagate tags
and avoid tag misuse. The complete memory safety guarantee in pointer-based methods requires instrumenting
the source codes of the whole runtime environment, which is expensive and unavailable and thus makes these
methods less portable.
Traditional pointer-based solutions [4, 34, 35] require extra instructions to propagate metadata (e.g., bound)

along pointer arithmetics; in contrast, location-based solutions only check pointer dereference operations, which
is much fewer than pointer arithmetics. The propagation is the primary source of the pointer-based solutions’
runtime overhead [43]. Pointer tagging is a popular solution to mitigate the overhead issue in propagation.
With the proliferation of large bit-width systems (e.g., 64-bit), a single pointer structure can now represent far
larger address space than a program needs, resulting in some upper spare bits in pointers. Consequently, many
pointer-based methods [16, 25, 26, 28, 47] propagate metadata with the upper spare bits so that the metadata
associated with pointers can be propagated automatically.

Though pointer tagging solves the eiciency problem of data propagation, it faces a new problem related to the
bit width: the upper spare bits are not enough to hold the metadata. One solution is reducing the address space.
For example, Delta Pointers [25] and SGXBound [26] use 32-bit address space in a 64-bit platform and record the
metadata with the other 32 bits. The narrowing down of the address space makes them less suitable for programs
with large memory footprints. Delta Pointers mitigate this issue by providing a trade-of between the maximum
object size and the address space size. Another solution [28] is to store the metadata in a key-value database,
and the pointer tag only serves as the key. Compared with the shadow memory inquiry used in location-based
solutions, the key-value store takes more time to retrieve the metadata.

GiantSan also sufers from a bit-width limitation, i.e., a single shadow byte can only hold 256 diferent states.
GiantSan solves this limitation with the on-demand inquiry. The segment folding technique in GiantSan can
be considered as a key-value store that takes logarithmic time to index an object’s bound. However, one of our
key observations is that the program does not always traverse the entire allocated region, and in most cases, we
only need to safeguard a subregion. This observation allows us to reduce runtime queries by looking up folding
degrees on demand.

ACM Trans. Comput. Syst.



GiantSan: Eficient Operation-Level Memory Sanitization with Segment Folding • 1:27

The spirit of on-demand inquiry is orthogonal to the pointer-based solutions and could mitigate the bit width
requirement faced by the pointer tagging technique. Integrating the on-demand inquiry spirit into pointer-based
solutions is a future research direction we are going to address.
Rounded-Up Bound. Works like LFP [9, 10], RedFat [12] and BBC [2] obtain the object bound by directly
fetching the bound from shadow memory. However, to enable compact shadow memory, they only support a
limited set of allocation sizes to reduce the bit width for recording the bound. As a result, they overapproximate
the object sizes required by the programs, leading to signiicant false negative issues.
BBC [2] uses the power-of-two strategy similar to GiantSan from a particular perspective. However, BBC

uses the power-of-two spirit to approximate the real object bound, while GiantSan uses the power-of-two spirit
to build precise summaries of addressable regions. Therefore, GiantSan is more precise than BBC. LFP enhances
BBC by introducing more variety of allocation sizes but still has numerous false negatives, as shown in our
experiments.

7 Conclusions

We present GiantSan, a location-based sanitizer optimizing runtime checks with segment folding. GiantSan
summarizes segments without non-addressable bytes to increase protection density. It largely reduces 61.37%
and 41.94% of the overhead introduced by ASan and ASan-- on the SPEC CPU 2017 benchmark, respectively.
Furthermore, the evaluation on the PHP project demonstrates that GiantSan can minimize the dependence on
the redzone, thus resulting in a more efective detection ability than ASan and ASan--.
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