
Escaping Dependency Hell: Finding Build Dependency Errors
with the Unified Dependency Graph

Gang Fan
The Hong Kong University of Science

and Technology
Hong Kong, China
gfan@cse.ust.hk

Chengpeng Wang
The Hong Kong University of Science

and Technology
Hong Kong, China
cwangch@cse.ust.hk

Rongxin Wu
Department of Cyber Space Security,

Xiamen University
Xiamen, China

wurongxin@xmu.edu.cn

Xiao Xiao
Sourcebrella Inc.
Shenzhen, China
xx@sbrella.com

Qingkai Shi
The Hong Kong University of Science

and Technology
Hong Kong, China
qshiaa@cse.ust.hk

Charles Zhang
The Hong Kong University of Science

and Technology
Hong Kong, China
charlesz@cse.ust.hk

ABSTRACT

Modern software projects rely on build systems and build scripts
to assemble executable artifacts correctly and efficiently. However,
developing build scripts is error-prone. Dependency-related errors
in build scripts, mainly including missing dependencies and
redundant dependencies, are common in various kinds of software
projects. These errors lead to build failures, incorrect build results
or poor performance in incremental or parallel builds. To detect
such errors, various techniques are proposed and suffer from low
efficiency and high false positive problems, due to the deficiency
of the underlying dependency graphs. In this work, we design
a new dependency graph, the unified dependency graph (UDG),
which leverages both static and dynamic information to uniformly
encode the declared and actual dependencies between build targets
and files. The construction of UDG facilitates the efficient and
precise detection of dependency errors via simple graph traversals.
We implement the proposed approach as a tool, VeriBuild, and
evaluate it on forty-two well-maintained open-source projects.
The experimental results show that, without losing precision,
VeriBuild incurs 58.2× less overhead than the state-of-the-art
approach. By the time of writing, 398 detected dependency issues
have been confirmed by the developers.

CCS CONCEPTS

• Theory of computation→ Program verification; • Software

and its engineering → Software defect analysis; Software

maintenance tools; • Social and professional topics →
Software maintenance.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’20, July 18–22, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8008-9/20/07. . . $15.00
https://doi.org/10.1145/3395363.3397388

KEYWORDS

build maintenance, build tools, dependency verification

ACM Reference Format:

Gang Fan, Chengpeng Wang, Rongxin Wu, Xiao Xiao, Qingkai Shi,
and Charles Zhang. 2020. Escaping Dependency Hell: Finding Build
Dependency Errors with the Unified Dependency Graph. In Proceedings of
the 29th ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA ’20), July 18–22, 2020, Virtual Event, USA. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3395363.3397388

1 INTRODUCTION

In the development of modern software, nearly every large project
resorts to build systems (e.g., GNU Make, GNU Autotools, Bazel
and Ninja ) and the corresponding build scripts to automatically
transform the source code into the executable software. Build scripts
play a critical role in the build process, as they define the rules
on compiling source code, resolving the dependencies of build
targets, and packaging the binaries. However, developing build
scripts is non-trivial and error-prone. Bugs in builds scripts are
quite common, in both commercial and open-source projects. For
example, Hochstein and Jiao [15] found that 11%-47% of test failures
are build-related in scientific software. Seo et al. [34] also observed
similar build-failure ratios in C++ and Java projects of Google Inc.

Among various kinds of build errors, dependency-related errors
are the most common (accounting for 52.68%-64.71%) [34], and
can be summarized into two categories: missing dependencies
and redundant dependencies. Both are caused by inconsistency
between the declared dependency (i.e., the dependency declared
in the build scripts [17]1) and the actual dependency (i.e., the
dependency needed in the build time [17]2). A missing dependency
happens when a given actual dependency is not declared, which
leads to failures in the parallel build or an incorrect build results in
an incremental build [22]. A redundant dependency happens when
no actual dependency corresponds to a given declared dependency,
leading to a poor performance in the parallel or incremental builds.

1A target 𝑋 has a declared dependency on a target 𝑌 , iff rules in the build scripts
declare the dependence from 𝑋 to 𝑌 .

2A target 𝑋 is actually dependent on a target 𝑌 , iff 𝑌 must be present, built and
up-to-date in order for 𝑋 to be built correctly.

463

https://doi.org/10.1145/3395363.3397388
https://doi.org/10.1145/3395363.3397388


ISSTA ’20, July 18–22, 2020, Virtual Event, USA Gang Fan, Chengpeng Wang, Rongxin Wu, Xiao Xiao, Qingkai Shi, and Charles Zhang

Detecting dependency-related errors is tedious and time-
consuming [32]. Various techniques have been proposed to tackle
different types of dependency-related errors. We classify these
techniques into three categories based on how of dependency
graphs represent the build targets and their dependencies.

The first category constructs the static dependency graph
via statically analyzing the build scripts and the executed shell
commands [1, 36, 37]. Since the static dependency graph is
unsound by including only the explicitly declared dependencies, it
is infeasible to detect both the missing and redundant dependencies
due to the lack of actual dependencies. Therefore, this category of
techniques can only detect bad smells in build definitions (e.g., the
cyclic dependency issue).

The second category constructs the dynamic dependence graph
via monitoring and capturing the actual dependency in build
processes [22]. Note that, using only the dynamic dependence
graph, it is still infeasible to detect the missing and redundant
dependencies, due to the lack of declared dependencies for
comparison. Therefore, Licker and Rice [22] proposed a build
fuzzing technique, MkCheck, to infer the declared dependencies in
the build scripts by triggering incremental builds. Specifically, by
updating an input file of a project and triggering the incremental
build, only those targets which have direct or transitive declared
dependencies on this input file will be rebuilt. Therefore, by
updating every input file one at a time to trigger incremental builds,
MkCheck can eventually infer all the declared dependencies in the
build scripts. Not surprisingly, this approach is not efficient for a
large project with many source files and complex dependencies. For
instance, it takes MkCheck 51.6 hours to complete all the possible
incremental builds to infer the declared dependencies for OpenCV,
a project with 3,746 source files in total, in our experiment.

The third category [6] leverages both the static and dynamic
dependency graphs and cross-references them to discover the
inconsistencies, essentially following the definitions of missing
dependencies and redundant dependencies. Despite its potential
to improve the efficiency, the unsoundness of the conventional
static dependency graph is its Achillie’s heel. Specifically, the static
dependency graph lacks the implicitly declared dependencies, which
are the dependencies between targets and those output files of
its prerequisites that are not specified as targets. Common root
causes of this implicity include the incorrect or the insufficient
output files specified in the build scripts (see Section 5.3.3) and
temporary files used during a build. To resolve the unsoundness
of the static dependency graph, a tool used in the state-of-the-art
technique [6], MAKAO [2], tries to extract the implicitly declared
dependencies by parsing the command lines and discovering the
files with certain extensions (e.g., “.c”). However, this approach
cannot fully resolve the unsoundness. Typical examples are those
binary files generated during runtime (files without extension) [2].
Moreover, build scripts may include some commands whose syntax
would not be known in advance, and thus it would be impossible to
devise an omnipotent parser to extract input and output files from
commands. This unsoundness issue would lead to a large number
of false positives when detecting inconsistencies [6]. Besides, due
to the different granularities in the static and dynamic dependency
graphs adopted in the existing work [6], it is difficult to remedy

the unsoundness issue of the static information via the dynamic
information.

Our idea is also to leverage both static and dynamic dependency
information but in a novel way: instead of cross-referencing two
graphs, we construct a unified dependency graph (UDG) such that,
for each build target, we are able to, via simple graph traversals,
both infer the implicitly declared dependencies and compute the
actual dependencies happening at runtime. Any difference in the
results of these two traversals signifies potential inconsistencies
and generates bug reports. Note that, UDG is novel such that both
the declared and actual dependencies are fused in an uniform
representation. This makes it feasible to infer the implicitly declared
dependencies of a target via monitoring file I/O operations of
its prerequisite targets during an actual build. As such, we can
guarantee the soundness of the declared dependencies. Building
UDG is also non-trivial. We propose a novel build instrumentation
approach (See Section 3.1.2) to constructing the actual dependencies
with respect to each build target, and encode them with the static
dependency graph.

Note that, the design of UDG is not restricted to a certain build
system. To demonstrate its generality, we have constructed UDGs
for different build systems includingmake-based systems (e.g., GNU
Make and CMake) and Ninja.

To evaluate the effectiveness of our proposed technique, we
implemented a tool, VeriBuild, and applied it to forty-two
well maintained open-source projects. The experimental results
demonstrated that VeriBuild has a good performance in efficiency
and precision. In the forty-two mature open source projects,
VeriBuild found 2,498 dependency issues with a low overhead. Of
all the detected issues, 2,217 are classified as true issues. By the
time of writing, 398 of 703 submitted issues had been confirmed by
the original developers.

In this paper, we make the following contributions:
• We present the design and the implementation of VeriBuild,
a novel approach to detecting inconsistencies in the build
systems. VeriBuild is more precise and more powerful than
the state-of-the-art approaches.

• We propose a new dependency representation, namely
the unified dependency graph(UDG), which faithfully
encodes the actual and the declared dependencies between
input/output files and each target. Based on the UDG, we
can find build dependency-related errors by graph traversal
on the UDG.

• We select four typical dependency-related errors and
implement four checkers in VeriBuild. The experimental
results show that VeriBuild achieves a high precision with
an acceptable time cost. Our approach is more scalable
compared with the state-of-the-art techniques.

The paper is organized as follows. We first present some
motivating examples in Section II. Section III illustrates our
approach. The implementation details and the evaluation are
presented in Section IV and Section V respectively. Section VI
discusses some related works and Section VII concludes this paper.

464



Escaping Dependency Hell: Finding Build Dependency Errors with the Unified Dependency Graph ISSTA ’20, July 18–22, 2020, Virtual Event, USA

1 # Makefile
2 check: test -file test -static test -dynamic
3 ./build/test -file
4 ./build/test -static
5 ./build/test -dynamic
6
7 test -file: test -file.c test -dynamic test -static
8 cc test -file.c mpc.c -lm -o build/test -file
9
10 test -static: test -static.c libmpc.a
11 cc test -static.c -lm -lmpc -static -o build/test -static
12
13 test -dynamic: test -dynamic.c libmpc.so
14 cc test -dynamic.c -lm -lmpc -o build/test -dynamic

Figure 1: An Example Makefile from MPC

2 PRELIMINARIES

2.1 Build Systems and Scripts

Modern software projects consist of a large body of source files,
libraries and resources. To build or test a software, developers write
build scripts (e.g., Makefiles) to instruct a build tool (e.g., GNU
Make [10], NMake [31], BuildCop [9]) to execute build commands
in the order specified in the scripts. Among all the build tools, GNU
Make is one of the most widely used build systems [30] and has
influenced the design of all its successors. However, GNU Make is
more prone to errors than others, which has led to the invention of
many tools (e.g., Autotools [8], CMake [27]) that help generate
Makefiles automatically. Our research and implementation focus
on detecting issues in projects managed by GNU Make. However,
the method we proposed in this paper can also be applied to other
build systems. We refer to GNU Make as Make for simplicity.

Consider a running Makefile build script example shown in
Figure 1 simplified from an open-source project MPC3. It contains
four dependency rules for four targets: check, test-file, test-static,
and test-dynamic. Each rule specifies the target (e.g., test-file), the
prerequisites for building this target (e.g., test.c, test-dynamic and
test-static) and the recipe, which is a series of shell commands to
build this target (e.g., “cc test.c mpc.c -lm -o build/test-file"). Based on
the rule, the target has the declared dependency on its prerequisite.

Most build tools, including GNU Make, Bazel and Ninja,
support advanced features such as the incremental build and the
parallel build for accelerating the build process. In an incremental
build, previous build results are reused and only a subset of targets
are rebuilt. For example, if test-file.c in Figure 1 is modified, only
test-file and check will be rebuilt. Other targets including test-static,
test-dynamic will not be built. In a parallel build, the build system
analyzes the build scripts first to decide which targets can be built
simultaneously and distributes tasks to different CPU cores to
achieve shorter wall-clock build time. For instance, commands for
building the targets, test-static and test-dynamic, can be executed
in parallel since they are independent of each other.

2.2 Missing and Redundant Dependencies

Build scripts are error-prone. Wrong dependencies can lead to
broken incremental and parallel builds, or even to incorrect and
unreproducible builds. Two most common dependency-related
errors in build scripts are Missing Dependency and Redundant

Dependency .

3https://github.com/orangeduck/mpc

1 #include "ptest.h"
2
3 void suite_core(void);
4 void suite_regex(void);
5 void suite_grammar(void);
6 void suite_combinators(void);
7
8 int main(int argc , char** argv) { ...

Figure 2: Content of test-file.c

2.2.1 Missing Dependency (MD). An MD is a dependency for
building a target that is not specified in the script. MDs are
the most common errors in build scripts. They could lead to an
incorrect dependency graph being constructed and can corrupt an
incremental build and parallel build.

In Figure 1, executing the recipe for test-file will read the source
file mpc.c. However, mpc.c is not specified as a dependency of test-
file in the build script. Ifmpc.c is modified, the build system will not
rebuild test-file in an incremental build, which leads to incorrect
build results. Another common case of MD is related to header files
inclusion. Figure 2 shows the content of test-file.c where ptest.h
is included as a header. The compilation of test-file.c implicitly
depends on the file ptest.h. However, this implicit dependency is
not specified in the build script.

2.2.2 Redundant Dependency (RD). An RD is a redundant
prerequisite specified for a target which the build does not depend
on. Similar to an MD, an RD can also mislead the construction of
the dependence graph used in a build system. For example, the
target test-file in Figure 1 has two RDs: test-dynamic and test-static.
However, the build of test-file does not rely on any outputs of
test-dynamic or test-static. RDs can cause unnecessary targets to
be built in an incremental build. If libmpc.so is modified, the build
system will mistakenly decide test-file should be rebuilt, which
is clearly unnecessary. RDs could also reduce the parallelism of
a parallel build. In this example, a build system should be able
to build the three targets test-file, test-static and test-dynamic in
parallel since they do not depend on each other. Due to the RDs,
the build system will mistakenly decide that the target test-file
should be built after the target test-dynamic and test-static are built,
even when there are spare CPU cores.

2.3 Building Declared and Actual Dependencies

In VeriBuild, we propose a new type of dependency graph, namely
unified dependecy graph (UDG), which uniformly encodes the
actual and the declared dependencies in terms of build targets
and files. Figure 3 shows the UDG of the example build script in
the Figure 1.

The subgraph which consists of the static dependency edges
and the static spawn edges in Figure 3 is the conventional static
dependency graph. Specifically, a static dependency edge represents
the dependency between targets, and a static spawn edge represents
the case in which a build target is defined as a file. As discussed in
Section 1, the implicitly declared dependencies could be missed by
statically parsing the build scripts. For example, the target check
depends on the target test-staticwhich could generate the output file
build/test-static, and thus check has implicitly declared dependency
on build/test-static. Although the shell script in check is a typical
compiling command and not difficult to parse in this case, it still

465



ISSTA ’20, July 18–22, 2020, Virtual Event, USA Gang Fan, Chengpeng Wang, Rongxin Wu, Xiao Xiao, Qingkai Shi, and Charles Zhang

Target
check

Target
test-file

Target
test-dynamic

Target
test-static

Recipe
cc test-dynamic.c -lm -
lmpc -o build/test-
dynamic 

Recipe

./build/test-file

./build/test-static

./build/test-dynamic

Recipe

cc test-file.c mpc.c –lm
–o build/test-file

Recipe
cc test-static.c -lm -
lmpc -static -o 
build/test-static 

Target
libmpc.a

Target
test-file.c

Target
test-dynamic.c

Target
test-static.c

File
test-file.c

File
test-static.c

File
libmpc.a

File
test-dynamic.c

Target
libmpc.so

File
libmpc.so

File
ptest.h

File
build/test-static

File
build/test-file

File
build/test-dyanmic

File
mpc.c

Static Spawn Edge (SSE)

Dynamic Spawn Edge (DSE)

Static Dependency Edge (SDE)

Dynamic Access Edge (DAE)

Figure 3: A UDG for the Example Build Script Shown in Figure 1

requires certain engineering effort to customize a parser for this
command and is hard to generalize to arbitrary commands. To
avoid the parsing trouble, we leverage the build instrumentation
(See Section 3.1.2) to capture the output files of each build target
(i.e., dynamic spawn edges) in the build time, which can guarantee
the soundness of the implicitly declared dependencies. Therefore, a
sound static dependency graph includes the static dependency
edges, the static spawn edges, and the dynamic spawn edges in
UDG.

The subgraphwhich consists of the dynamic access edges and the
dynamic spawn edges represents the dynamic dependency graph
in terms of build targets and files. Specifically, a dynamic access
edge represents an actual dependency between a target and one
of its input files, while a dynamic spawn edge represents an actual
dependency between a target and one of its output files. Both types
of edges are built via our proposed build instrumentation approach
(See Section 3.1.2).

2.4 Detecting MDs and RDs

With the construction of UDG, we can readily convert the problem
of detecting the two common dependency-related build errors, i.e.,
MDs and RDs, into the graph traversal problem.

Take Figure 3 as an example. To detect the MD issues for the
build target test-file (missing the declared dependency on ptest.h
andmpc.c), we first traverse from test-file along with the edges of
the sound static dependency graph to discovers the set of files on
which test-file has declared dependencies, including only test-file.c.
Then, we traverse along with edges of the dynamic dependen-
cy graph to discover the set of files on which test-file has actual
dependencies, including test-file.c, ptest.h, and mpc.c. From the
inconsistency between the two sets of files, we can easily discover
that ptest.h and mpc.c are the missing dependencies for test-file.

Detecting the RD issues for the build target test-file follows
a similar process. First, we discover the actual dependency files
for test-file, including test-file.c, ptest.h, and mpc.c. Then, to verify
whether test-static is an redundant declared dependency for test-
file, we traverse from test-static to discover the set of the files on
which test-static has declared dependencies, including test-static.c

and libmpc.a, which do not correspond to the actual dependency
files of test-file. Based on the definition of the RD issue, we confirm
test-static is a redundant declared dependency for test-file.

The above running examples demonstrate the basic idea of using
the UDG to detect theMD and the RD issues. In Section 3, we explain
the technical details of the approach, as well as its extensibility to
other dependency-related errors.

3 APPROACH

We propose a unified approach to analyzing build scripts, which
analyzes the static dependency information specified in the build
scripts together with the dynamic dependency information to
obtain a sound profile of the dependency relations, encoded by a
novel data structure, the UDG. The graphical representation of
dependency information enables us to analyze build dependencies
with graph traversals.

In this section, we first formally define the UDG (Section 3.1),
followed with a unified construction method. The construction
method consists of two steps: Script Parsing, parsing and evaluating
the build scripts to infer the static dependency graph (Section 3.1.1),
and Build Instrumentation, instrumenting the build process to infer
actual dependencies (Section 3.1.2). Detecting MDs and RDs can
be modeled as graph queries on the UDG (Section 3.2). In order
to demonstrate the extensibility of our approach, we also discuss
two analyses for detecting File-Target Inconsistencies and File Race
Conditions (Section 3.3).

3.1 Unified Dependency Graph

We first define the Unified Dependency Graph (UDG) as follows:

Definition 1. Unified Dependency Graph (UDG) UDG =

(𝑉 , 𝐸), where 𝑉 is the set of nodes and 𝐸 is the set of edges.
𝑽 = 𝑽𝑻 ⊔ 𝑽𝑭 : 𝑉𝑇 and 𝑉𝐹 are two disjoint subsets, where

• t ∈ 𝑉𝑇 is a target node that represents a target in the build
scripts. Each target node is bound with a recipe. A recipe is
a list of commands to build the target.

• f ∈ 𝑉𝐹 is a file node that represents a file.

466



Escaping Dependency Hell: Finding Build Dependency Errors with the Unified Dependency Graph ISSTA ’20, July 18–22, 2020, Virtual Event, USA

𝑬 = 𝑬𝑺𝑫 ⊔ 𝑬𝑺𝑺 ⊔ 𝑬𝑫𝑨 ⊔ 𝑬𝑫𝑺 : 𝐸 consists of four disjoint subsets,
each of which contains a specific kind of edges defined as follows.

• 𝑒𝑆𝐸 ∈ 𝐸𝑆𝐸 ⊆ 𝑉𝑇 × 𝑉𝑇 is a Static Dependency (SD) edge

from a target node to another (e.g., all the thick solid straight
edges in Figure 3), which represents the dependency relation
between the two targets specified in the build scripts.

• 𝑒𝑆𝑆 ∈ 𝐸𝑆𝑆 ⊆ 𝑉𝑇 × 𝑉𝐹 is a Static Spawn (SS) edge from
a target node to a file node (e.g., all the thin solid straight
edges in Figure 3), which represents the output file for target
is statically available before a build.

• 𝑒𝐷𝐴 ∈ 𝐸𝐷𝐴 ⊆ 𝑉𝑇 × 𝑉𝐹 is a Dynamic Access (DA) edge

from a target node to a file node (e.g., all the dashed curved
edges in Figure 3), which represents that the file is accessed
when building the target.

• 𝑒𝐷𝑆 ∈ 𝐸𝐷𝑆 ⊆ 𝑉𝑇 ×𝑉𝐹 is aDynamic Spawn (DS) edge from
a target to a file node (e.g., all the solid curved edges in Figure
3), which means that building the target will output the file.

The DA edges represent the actual dependencies, and the
SS/DA/DS edges represent the declared dependencies. Provided
with a clean build, we can construct the UDG for a project with
the following method consists of two phases: Script Parsing and
Build Instrumentation.

3.1.1 Script Parsing. We parse and evaluate the build scripts to
construct the static dependency graph of a UDG. Parsing user-
written build scripts such as Makefiles can be difficult, due to the
intensive usages of macros and variables, as well as explicit and
implicit pattern rules embedded in build tools. Instead, we parse
the build scripts after the build tool has evaluated them (e.g., after
macros are expanded and implicit rules are applied). In which, all
the rules are specified in the standard form with macros being
expanded and evaluated, and all the pattern rules being applied as
well. For each of the targets listed in the build scripts, we create one
corresponding node. The commands for building a target are kept
in the recipe of the target node. For each dependency rule specified
in the build scripts, we create SD edges from the target node to
all of its dependencies. For each target node with an empty recipe,
we check whether its default output file (the file with the same
name as the target name) exists in the file system. If the output
file exists, we create an SS edge from the target node to a file node
representing this file. After script parsing, all the target nodes, SD
edges, and SS edges are constructed. File nodes representing the
inputs of this build (e.g., source code files and configurations) have
been created as well. The resulting graph faithfully describes the
static dependencies specified in the build scripts.

3.1.2 Build Instrumentation. The purpose of build instrumentation
is to obtain the actual input (DA edges) and output files (DS edges)
for building a target. There are existing tools based on system
call tracing (e.g., strace in Linux) and file change monitoring (e.g.,
fswatch in Linux) that can inspect actual file operations for a build.
However, the resulting file operations are based on processes (strace)
or paths (fswatch), and cannot easily be correlated to build targets.
Thus, instead of monitoring file operations of a build, we perform a
build instrumentation, which initiated the build of each target and
captures file operations separately.

Based on the static dependency graph obtained in the script
parsing phase, we follow the topological order of this graph to
build all the targets by executing their recipes. We fork a new
process for the execution of each recipe, and capture file-related
system calls performed by the forked process and its sub-processes.
For each file read operation, we create a DA edge from the target
node to the file node. For each file write or create operation, we
create a DS edge from the target node to the file node. After build
instrumentation, we are able to get the complete UDG.

3.2 Dependency Analyses on the UDG

The UDG encodes both the actual dependencies (DA edges) and
the declared dependencies (SD/SS/DS edges). It is non-trivial for
existing approaches to obtain the files made available when building
a target. With the UDG, this problem can be solved by traversing
the graph from the target node along with declared dependency
edges. All of the reachable files are available at the time of build. This
uniformmodeling of the declared and the actual dependencies eases
the analyses of dependencies. In this subsection, we discuss how
to detect MDs and RDs with the UDG. We also discuss two more
analyses to demonstrate the broad applicability of the approach
(Section 3.3).

3.2.1 Detection of Missing Dependencies(MDs). An MD occurs
when a target depends on a file that is not declared in the build
scripts (transitively). Detecting an MD for a target can be modeled
as a graph query on the UDG:

Problem 1. For target node 𝑡 , if a file node 𝑓 is reachable from 𝑡

through the DA edges but not through the declared dependency edges
(SD edges, SS edges, DS edges), 𝑓 is an MD of 𝑡 .

To detect MDs for a target, we first analyze its declared
dependencies. Algorithm 1 shows two procedures for querying
available files for a target: AvFnBefore and AvFnAfter, for
querying the files available before and after building a target. In
this algorithm, 𝑡 .𝑠𝑢𝑐𝑐𝑠 (𝑒𝑑𝑔𝑒 = 𝐸𝑑𝑔𝑒𝑇𝑦𝑝𝑒 (𝑠)) denotes querying
𝑡 ’s direct successors reachable with edges of specific EdgeType(s)
on the UDG. The resulting file set for each target is cached for
optimization purposes.

Algorithm 1 Available file nodes before and after building a target

procedure AvFnBefore(𝑡 : Target Node)
𝑃𝑡 := t.succs(𝑒𝑑𝑔𝑒 = 𝑆𝐷)
𝑆𝑡 := t.succs(𝑒𝑑𝑔𝑒 = 𝑆𝑆)
𝐹𝑡 :=

⋃
𝑝∈𝑃𝑡 AvFnAfter(𝑝)

return 𝑆𝑡 ∪ 𝐹𝑡

procedure AvFnAfter(𝑡 : Target Node)
𝑆𝑡 :=AvFnBefore(𝑡 )

⋃
𝑡 .succs(𝑒𝑑𝑔𝑒 = 𝐷𝑆)

return 𝑆𝑡

Algorithm 2 shows how to detect all the MDs for a target, we
compare the set of files accessed during its build (𝐷𝑡 ) to the available
file set (𝑆𝑡 ). All files in 𝐷𝑡 \ 𝑆𝑡 are MDs to this target.

3.2.2 Detection of Redundant Dependencies(RDs). An RD is a
declared dependency of a target, which does not occur in the actual
build time. Since the build scripts are written in a way where only

467



ISSTA ’20, July 18–22, 2020, Virtual Event, USA Gang Fan, Chengpeng Wang, Rongxin Wu, Xiao Xiao, Qingkai Shi, and Charles Zhang

Algorithm 2Missing Dependency Detection
Input: UDG, target node t
Output: the𝑀𝐷 set of t
1: 𝑆𝑡 = AvFnBefore(t)
2: 𝐷𝑡 = t.succs(𝑒𝑑𝑔𝑒 = 𝐷𝐴)
3: 𝑀𝐷 = 𝐷𝑡 \ 𝑆𝑡
4: return𝑀𝐷

one level of dependencies are specified. We only detect RDs in
the direct dependencies of a target. The detection of RDs can be
modeled as a graph problem on the UDG:

Problem 2. If 𝑡2 is a direct dependency of 𝑡1, for every file node 𝑓
that 𝑡1 can reach through both declared dependency edges and actual
dependency edges, if we can always find a declared dependency path
to f that does not pass through 𝑡2, then 𝑡2 is an RD to 𝑡1.

To decide whether 𝑝 is an RD for target 𝑡 , we remove 𝑝

from 𝑡 ’s declared dependencies and check whether the declared
dependencies in the remaining graph still cover the same actual
dependencies when building 𝑡 . Algorithm 3 shows the details of
the detection. Since the available file nodes of different direct
dependencies of a target may overlap, we use a map𝑀 at line 3 to
record, for each file node, the number of direct dependencies it is
available in. Line 9 to 12 perform the RD detection by checking
whether removing a dependency may reduce the number of
elements in 𝑀 . The underlying problem of RD detection is set-
cover [42], which is one of the NP-Complete problems. However,
the size of a UDG is relatively small in practice. In the evaluation,
the algorithm for detecting RDs always terminates in seconds.

Algorithm 3 Redundant Dependency Detection
Input: UDG, Target Node t
Output: the RD set of t: 𝑅𝐷
1: 𝐷𝑡 := 𝑡 .succs(𝑒𝑑𝑔𝑒 = 𝐷𝐴)
2: 𝑃𝑡 := 𝑡 .succs(𝑒𝑑𝑔𝑒 = 𝑆𝐷)
3: 𝑀 := 𝑀𝑎𝑝 (𝐹𝑖𝑙𝑒𝑁𝑜𝑑𝑒 → 𝐼𝑛𝑡)
4: 𝑅𝐷 := ∅
5: for 𝑝 ∈ 𝑃𝑡 do

6: for 𝑓 ∈AvFnAfter(𝑝) do
7: if 𝑓 ∈ 𝐷𝑡 then

8: 𝑀 [𝑓 ] = 𝑀 [𝑓 ] + 1
9: for 𝑝 ∈ 𝑃𝑡 do

10: for 𝑓 ∈AvFnAfter(𝑝) do
11: if 𝑓 ∈ 𝐷𝑡 and𝑀 [𝑓 ] == 1 then
12: 𝑅𝐷 = 𝑅𝐷 ∪ {𝑝}
13: return 𝑅𝐷

3.3 More Analyses on the UDG

With the static and dynamic dependency information encoded in
the UDG, we can perform various analyses for other dependency-
related errors. We present two analyses for detecting File-Target

Inconsistencies and File Race Conditions, respectively, in the
build scripts.

3.3.1 Detection of File-Target Inconsistencies(FTIs). In most build
systems, a target name does not have to be the same as its output file
name. For example, many Makefiles have target names such as “all”,
“clean” and “test”, however, they do not actually output such files.
However, some build systems (e.g., Make) rely on the target name
to be the output file name to compute dependencies for incremental
build and parallel build. For example, in Figure 1, building target
test-file will output a file “build/test-file” instead of “test-file” that is
assumed by Make. When building “test-file” incrementally, Make
will search for file “test-file” to decide whether the target test-file
has been built. Since file “test-file” does not actually exist, Make will
mistakenly decide that it has to be rebuilt. Moreover, the rebuild of
test-file will cause all targets that depend on it to be rebuilt, which
dooms the purpose of incremental build. We denote such an issue
as a File-Target Inconsistency (FTI).

To detect FTIs, we compare the target names with their
corresponding output file names. With the UDG, we could easily
obtain all the actual output files for a target by traversing along
the DS edges. With this method, we can detect that the output file
name for target “test-dynamic” is “build/test-dynamic”. We report
it as an FTI issue and suggest the developers to use the filename
directly to achieve a better performance.

3.3.2 Detection of File Race Conditions(FRCs). Two processes in a
parallel build may access the same file for building different targets.
If one of the two accesses is a write, a File Race Condition (FRC)
might occur. An FRC may cause a parallel build to fail, damage the
build artifacts, and results in flaky builds [20].

To detect FRCs for a file, we first identify all the targets that access
it and then apply a May-Happen-in-Parallel(MHP) analysis [3, 28]
to decide whether those targets may execute in parallel. For a file
node, we first check whether it could be accessed by more than one
target node. We collect all its predecessors through the DS edges
and all predecessors through the DA edges. For any two targets
that access this file node, if one is a write access, we check whether
there is a path which consists of only SD edges from one to another.
If there are no such edges, no order is specified for those two targets
in the build scripts, and thus, they may be built in parallel, which
could trigger the FRC.

4 IMPLEMENTATION

We implement the approach as a tool, VeriBuild, for analyzing
projects maintained with Make or Ninja. We also implement
the algorithms for detecting four kinds of dependency issues
as “checkers” of VeriBuild. Figure 4 shows the architecture of
VeriBuild. We first infer a dependency graph of all build targets
by parsing the build scripts. Second, we instrument a customized
builder to build each target according to the static dependency
graph in the topological sorting order. When executing the recipe
of a target, we trace the system calls to collect the files which are
read, written, created, or deleted. After the UDG is constructed, we
run the algorithms described in Section 3 to detect dependency
issues.

For inferring the static dependency information, we customize a
version of Make to export its dependency information together
with the recipe information, and use the exporting feature
supported by Ninja. This exporting feature is commonly supported

468



Escaping Dependency Hell: Finding Build Dependency Errors with the Unified Dependency Graph ISSTA ’20, July 18–22, 2020, Virtual Event, USA

Bug Localization

Build 
Scripts

Script Parsing

Build 
Instrumentation Error Detection

Script
Parser

System Call 
Tracing

Build 
Target T

Error 
Checkers

Trace 
Recovery

Incorrect Build Rules

Rule 
Evaluation 

Graph

Static Dependency Graph Dynamic Dependency Graph

Figure 4: Architecture of VeriBuild

by many build tools. For example, Make can output its build profile
with the option -profile, SCons has a similar option –tree=all and
Bazel even provides a query interface for retrieving such build
information [19]. Similar to MkFault [4], the customized Make
also exports the evaluation graph to records the evaluation traces
for variables. The evaluation trace is used for assisting developers
in localizing the build rules for fixing the detected dependency
issues. The discussion of bug localization is beyond the scope of
this paper.

To construct the DS/DA edges for a UDG, we need to inspect
file operations when executing a recipe. We use ptrace, a system
call in Unix and Unix-like operating systems that allow one
process to inspect and manipulate the internal state of another
process. In order to correctly map the dynamic system call traces
to corresponding targets, we execute the recipes of targets as
described in Section 3.1.2. We fork a new process for executing
each recipe and monitor the file-related system calls invoked by the
forked process and all of its sub-processes. To be more specific, we
capture and inspect system calls such as read, write, open, unlink,
execve and so on.

Using ptrace incurs overhead for the processes being traced.
Our tool slows down the build by a factor of two. Since we only
build the project once for analyzing it, we believe this slowdown is
acceptable in practice. An alternative approach would be hooking
into the dynamic loading system (e.g., similar to the ltrace tool
in Linux [21]), which can inspect library calls of dynamic linked
libraries and binaries with less overhead. However, this method
does not work with the static-linked libraries and binaries.

Note that, our technique has two requirements for build systems.
First, the build scripts follow the "target-prerequisite-recipe" model
to define the dependencies among build targets. Second, the build
systems invoke separate processes for build tasks. Therefore, our
technique can be used in the many build systems, including Make,
Ninja, SCons, and Bazel. Our technique could not be applied to
Java build systems such as Maven and Ant since they do not satisfy
the above requirements. Specifically, Maven and Ant invoke the
compiler as a library function call instead of creating a separate
process. This makes us unable to extract the actual dependencies
by inspecting system calls.

5 EVALUATION

5.1 Experimental Setup

We test VeriBuild on forty-two benchmark projects. We compare
our approach to MkCheck [22], since it is the state-of-the-art

technique for incorrect build rule detection. To evaluate the
performance of VeriBuild, we design the following research
questions:

• RQ1: How effectively does VeriBuild detect MDs and RDs,
compared with MkCheck?

• RQ2: How efficiently does VeriBuild detect MDs and RDs,
compared with MkCheck?

• RQ3: How well does VeriBuild perform in detecting other
build issues that MkCheck cannot support?

For RQ1 and RQ2, we run both VeriBuild and MkCheck on forty-
two benchmark projects. For each test, we enable only the checkers
for detecting MDs and RDs that both tools support. In order to
evaluate the effectiveness and practicability of our approach, we
manually inspect and classify the results and also seek confirmation
from the developers. In order to evaluate the efficiency of our
approach, we compare the overall time cost and the overhead of
both tools. For RQ3, we perform the detection of FTIs and FRCs on
all the benchmark projects to demonstrate the extensibility of our
approach. We manually inspect the reports and perform additional
tests to check their validity.

All the experiments are performed on a computer running
Ubuntu-16.04 with an Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz
forty-core processor, and 256GB physical memory.

5.2 Subjects

We set up a benchmark set consisting of forty-two projects that are
maintained with Make (28), CMake (12), or Ninja(2), including
well-known open-source projects as well as several personal
projects evaluated in [22]. Table 1 shows the basic information
of these projects. The number of files in those projects ranges
from three to over forty thousand. Most of the subjects, such as
Python, LLVM, and Redis, are well-maintained in terms of build
scripts. For better presentation, we divide the subjects into three
categories based on the number of source files: small-sized projects
that include less than 100 source files, medium-sized projects that
include 100∼1,000 files, and large-sized projects that include more
than 1,000 files.

5.3 Results

5.3.1 Effectiveness. To evaluate the effectiveness of our approach,
we classify each bug report into two categories: True Positive
(TP) and False Positive (FP). In terms of FPs, we refer to those
reports that are unlikely to be fixed by developers. They are due

469



ISSTA ’20, July 18–22, 2020, Virtual Event, USA Gang Fan, Chengpeng Wang, Rongxin Wu, Xiao Xiao, Qingkai Shi, and Charles Zhang

to developers’ intention, dynamic features in the build scripts, or
abnormal usages of the build system. To mark a report as a TP
or an FP, we employ a three-phased procedure. First, we submit
the report to its developers and mark the report as a TP or an
FP once the developers confirm or deny it. Second, for an MD
report that has not received a response from developers and for
the projects with an overwhelming number of reports, we apply an
automatic validator to reproduce the reported issue. We mark it as
a TP if it is successfully reproduced and an FP otherwise. Third, for
RD reports that can not be automatically validated, we manually
label it accordingly. As it would be subjective in the last phase, to
mitigate this issue, two authors of this paper individually perform
checks on the results, and we only consider those reports as TPs
if the two authors can reach a consensus. We also present the
confirmation results in addition to the TPs and RDs in Table 1 for
further inspections.

Moreover, we compare our approachwithMkCheck, the state-of-
the-art approach [22]. Note that, MkCheck and VeriBuild report
MDs and RDs using different dependency relations. MkCheck
describes MD or RD issues by using the dependencies between
input/output files, while VeriBuild describes them by using
the dependencies between targets. To ease the presentation, we
denote an MD/RD edge as a missing/redundant dependency edge
between targets. To ensure a fair comparison, we normalize the
reports generated by MkCheck and VeriBuild using the same
representation using MD/RD edges. For MkCheck, we try the
best to map each file in a bug report into its corresponding target
and then collect all the edges between the discovered targets. For
VeriBuild, although we aggregate multiple MD/RD edges starting
from the same target into one bug report, we can still recover their
original MD/RD edges. In this way, we are able to compare the
performance of two tools. Of all the forty-two projects, MkCheck
is able to complete analyzing of 38 projects. Thus, we compare the
two approaches with these projects only.

Table 1 shows the results: VeriBuild detects 2,051 MDs and 437
RDs in forty-two subjects, of which 2,217 reports are classified as
TPs. VeriBuild manages to detect issues in most of those subjects
(39/42). To further evaluate its effectiveness, we seek confirmation
from the original developers of those projects. However, due to
the heavy workload of reporting and communicating, we only
submit reports for those projects with less than one hundred reports
(except for Python, developers of which are responsive and help
us confirm more than one hundred reports). Moreover, to avoid
flooding developers with too many bug reports, we manually pre-
screen the bug reports and only submit the severe ones. In total, we
submit 703 reports to their developers. By the time of writing, 398 of
them are confirmed by the developers, and the rest are unconfirmed.

Compare to MkCheck, VeriBuild surpasses it in terms of the
number of the MD edges and the RD edges in 25 and 22 projects,
respectively. The reason why VeriBuild can detect more RD/MD
issues in these projects is that MkCheck only fuzzes files with some
certain extensions and would inevitably miss some true cases for
those files with unexpected extensions. We observed that MkCheck
reports more MD edges in eight projects, and more RD edges in two
projects, compared with VeriBuild. We investigated these reports
and found that most of them are redundant. For example, if an
MD edge 𝑇1 → 𝑇2 (𝑇1 depends on 𝑇2) is discovered by MkCheck,

Table 1: Classification of Detected Dependency Issues

# MDs # RDs # Total # Confirm # MD Edges # RD Edges

TP/ALL TP/ALL TP/ALL AC/SUMB VB/MC/ = VB/MC/ =
LLVM 29/89 0/67 29/156 0/0 n/a n/a
OpenCV 40/68 0/16 40/84 0/40 n/a n/a
Python 153/158 146/153 299/311 138/138 4419/706/679 5406/5399/5079
PHP 383/383 0/34 383/417 0/0 22694/1/0 78/1/1
GMP 512/519 1/1 513/520 0/0 631/329/0 1/0/0
OpenSSL 346/347 0/1 346/348 0/0 10865/0/0 222/0/0
Capstone 47/47 51/58 98/105 98/98 198/5659/138 621/523/523
httpd 1/1 0/0 1/1 0/1 1/2/0 0/122/0
Redis 4/11 4/4 8/15 0/4 160/0/0 9/0/0
Bash 63/65 34/51 97/116 48/48 513/1482/278 378/142/45
Cppcheck 39/41 13/13 52/54 36/36 53/0/0 42/18/18
ck 12/12 1/1 13/13 0/13 181/180/180 3/0/0
tig 0/0 0/0 0/0 0/0 0/0/0 2/0/0
lighttpd 0/1 0/0 0/1 0/0 104/69785/0 0/0/0
Tmux 2/2 0/0 2/2 0/2 2/0/0 0/0/0
neven 85/85 0/0 85/85 0/85 1453/1459/1453 0/0/0
GNU Aspell 0/0 1/1 1/1 1/1 0/12/0 1/0/0
LAME 0/0 1/1 1/1 0/1 0/3/0 2/0/0
cJSON 1/1 0/0 1/1 0/1 159/0/0 58/0/0
zlib 5/6 0/0 5/6 0/5 96/2/2 0/0/0
lec 2/2 0/0 2/2 0/2 2/0/0 0/0/0
clib 44/44 0/3 44/47 44/44 178/147/147 6/6/6
8cc 16/16 1/1 17/17 0/17 16/0/0 1/0/0
fastText 11/11 4/4 15/15 0/15 11/0/0 4/0/0
gravity 23/23 0/0 23/23 0/23 262/0/0 0/0/0
x86-thing 17/17 0/0 17/17 0/17 76/76/76 0/0/0
grbl 16/16 0/0 16/16 0/16 20/20/20 0/0/0
Bftpd 13/14 12/14 25/28 25/25 14/0/0 111/97/97
gwion-util 1/1 0/0 1/1 1/1 18/0/0 10/0/0
cctz 0/0 0/0 0/0 0/0 0/0/0 0/0/0
fzy 6/6 0/0 6/6 0/6 17/17/17 0/0/0
libco 20/20 0/0 20/20 0/20 32/63/23 0/0/0
mpc 13/13 12/13 25/26 0/12 18/0/0 14/0/0
namespaced_parse 3/3 0/0 3/3 0/3 10/4/3 7/0/0
kleaver 7/7 0/0 7/7 0/7 11/2/0 0/0/0
agt-proof-of-stake 4/4 0/0 4/4 0/4 n/a n/a
greatest 7/8 0/0 7/8 7/7 8/1/1 1/0/0
Stack-RNN 2/2 0/0 2/2 0/2 14/0/0 0/0/0
CacheSimulator 2/2 0/0 2/2 0/2 3/2/2 0/0/0
conceptnet-5.5-paper 1/1 0/0 1/1 0/1 n/a n/a
http-parser 4/4 1/1 5/5 0/5 4/0/0 1/0/0
Generic-C-Project 1/1 0/0 1/1 0/1 4/1/1 2/0/0
Total 1935/2051 282/437 2217/2488 398/703

TP = True Positive  AC = Accepted  SUMB=Submitted  n/a = not available  VB = Veribuild  MC=MkCheck

Project

all of the targets which depend on 𝑇1 will be reported as missing
dependency on 𝑇2 correspondingly, which lead to a significant
larger number of redundant reports. In summary, other than the
implementation issues, VeriBuild and MkCheck achieve similar
performance, in terms of the effectiveness. To further understand
the effectiveness of VeriBuild, we investigate some true and false
MD/RD cases.

True MDs. Many MDs are cases of missing source files. They
have various causes such as unsynchronized build scripts and
source files, misuses of the implicit rules in Makefile, and clerical
errors. Figure 6 shows an MD report we generated for agt-proof-of-
stake4, which uses Ninja to maintain its build. Two prerequisites
of target report.pdf are missing: cite.bib and llncs2e/llncs.cls. The
incremental build of report.pdf will be incorrect if any one of these
two files is changed. Many other MD reports are the cases in which
C/C++ header files are missing. Specifically, in order to decide the
right files that a compilation may access, the headers directly and
indirectly included in the source file should be carefully considered
for the declared dependencies. Figure 5 shows anMDwe reported in
fastText5, a library for text classification and representation learning
from Facebook. Line 47 in Makefile specifies the dependencies
of model.o. However, it misses the header file utils.h included in
model.cc and all the headers included inmodel.h. Oneway to prevent
these problems is to use the Auto-Dependency Generation [25]

4https://github.com/lucaspena/agt-proof-of-stake
5https://github.com/facebookresearch/fastText

470



Escaping Dependency Hell: Finding Build Dependency Errors with the Unified Dependency Graph ISSTA ’20, July 18–22, 2020, Virtual Event, USA

46 # Makefile
47 model.o: src/model.cc src/model.h src/args.h
48 $(CXX) $(CXXFLAGS) -c src/model.cc
49

8 /* model.cc */
9 #include "model.h"
10 #include "loss.h"
11 #include "utils.h"
12
13 #include <assert.h>
14 #include <algorithm >
15 #include <stdexcept >
16
17 namespace fasttext {
18
19 Model::State::State (...)
20 : lossValue_ (0.0),
21 nexamples_ (0),
22

8 /* model.h */
9 #pragma once
10
11 #include <memory >
12 #include <random >
13 #include <utility >
14 #include <vector >
15
16 #include "matrix.h"
17 #include "real.h"
18 #include "utils.h"
19 #include "vector.h"
20
21 namespace fasttext {
22

Figure 5: An Example MD from fastText

28 # build.ninja
29 build stage -1.out : maude stage -1. maude
30
31 build report.pdf : pandoc report.md | template.latex
32 flags = --template template.latex --pdf -engine=xelatex $
33 --filter pandoc -citeproc --bibliography=cite.bib
34

Figure 6: An Example MD from agt-proof-of-stake

mechanism provided by some compilers, and another way is to use
VeriBuild to periodically check the build scripts.

False MDs. False MDs are mainly caused by non-deterministic
features in Make. For example, Make supports the use of conditional
branches in a recipe. The execution of a recipe may take different
branches across different builds, and all are considered valid.
However, our approach assumes that every file access leads to
unconditional dependency, and thus reports false positive in such
cases. Figure 8 shows such an example: at line 947, the recipe will
continue no matter the folder tests exists or not (it will be created
in this case). One possible solution to reduce those false MDs is to
do heavier static analysis on the build scripts and try to enumerate
all its possible behaviors.

True RDs. In order to fix missing dependencies, developers
may specify too many extra dependencies. Since correctly
handling the C/C++ header dependencies is difficult, many projects
specify all headers as the dependencies for all objects. Figure 7
shows such an example extracted from Python. It specifies all
headers (PYTHON_HEADERS) as the dependencies of all objects
(LIBRARY_OBJS and MODOBJS), which results in hundreds of RDs
being reported (Table 1). Similar to the MDs, the header problems
could also be solved with Auto-Dependency Generation or a tool
such as VeriBuild. Other RDs are just the simple mistakes made
by developers, such as the RD in Figure 1.

False RDs. When a dependency is identified as an RD of a
target by VeriBuild, it means the build of that target indeed
does access any file that exclusively provided by this dependency.
However, some of them are unlikely to be fixed by developers due
to various reasons. For these RDs, we mark them as False RDs in
Table 1. For example, Figure 8 shows the content of Makefile.in
in Bash. VeriBuild reports Makefile and config.h are two RDs of
the target bashbug, since they are not accessed by any process

431 # Makefile.pre.in
432 LIBRARY_OBJS= \
433 $(LIBRARY_OBJS_OMIT_FROZEN) \
434 Python/frozen.o
435

962 PYTHON_HEADERS= \
963 $(srcdir)/Include/Python.h \
964 $(srcdir)/Include/abstract.h \
965 $(srcdir)/Include/asdl.h \
966 $(srcdir)/Include/ast.h \
967 ...
968

1095 $(LIBRARY_OBJS) $(MODOBJS) Programs/python.o: $(
PYTHON_HEADERS)

1096

Figure 7: An Example RD from Python

594 # Makefile.in
595 bashbug: $(SDIR)/bashbug.sh config.h Makefile $(VERSPROG)
596 @sed -e "s%! PATCHLEVEL !%$(PatchLevel)%" \
597 $(SDIR)/bashbug.sh > $@
598 @chmod a+rx bashbug
599

945 # Makefile.in
946 test tests check: force $(Program) $(TESTS_SUPPORT)
947 @-test -d tests || mkdir tests
948 @cp $(TESTS_SUPPORT) tests
949 @( cd $(srcdir)/tests && \
950 PATH=$(BUILD_DIR)/tests:$$PATH THIS_SH=$(THIS_SH) $(SHELL) $

{TESTSCRIPT} )
951

Figure 8: An Example RD from Bash

when building the target bashbug. However, they should not be
removed from the rule because it is the developers’ intention to
rebuild bashbug if these two files are modified. The file config.h is
generated automatically when the project is re-configured, and its
change is a flag to tell the whole project to rebuild.

Another category of false RDs are order-only prerequisites.
Developers specify the build rules to enforce the build order of
different targets, instead of the input-output dependencies. For
example, in Figure 8, at line 946 in Makefile.in, the developer
specifies force as the dependency of test, tests and check. The build
of the three targets does not rely on any output from building force,
but the developer intends to build them only after the build of
force. To be more efficient, one can specify such dependencies as
order-only prerequisites [26] supported by Make, and VeriBuild
can utilize this information to filter out false RDs caused by
order-only prerequisites.
Answer to RQ1 VeriBuild manages to detect 2,051 MDs and 437
RDs in forty-two real open-source projects, of which 2,217 are true
bugs reports and 398 reports have been confirmed by the developers,
which demonstrates its effectiveness.

5.3.2 Efficiency. To evaluate the efficiency, we compare VeriBuild
with MkCheck, in terms of the time cost. Although the prior
study [22] does not report the time cost of MkCheck, we directly
run their tool on all the subjects in our experiment and record
the execution time. MkCheck requires that a target name being
specified for constructing the dependency graph. Thus, we run both
tools for only the default targets in the build scripts.

471



ISSTA ’20, July 18–22, 2020, Virtual Event, USA Gang Fan, Chengpeng Wang, Rongxin Wu, Xiao Xiao, Qingkai Shi, and Charles Zhang

Table 2: Performance Data for VeriBuild and MkCheck

Dep

Graph

Build Fuzz

Race

Detection

Overhead Total

Script

Parsing

Build

INSTR

MD/RD

Detection

Overhead Total Overhead Total

Generic-C-Project 15 3 0.11 0.25 6.47 6.37 118.0X 13.09 0.12 0.46 0.03 4.5X 0.61 26.1X 21.6X
http-parser 6,347 6 33.09 33.84 138.86 167.77 9.3X 340.47 0.04 35.10 0.03 0.1X 35.17 147.5X 9.7X
conceptnet-5.5-paper 3,041 6 1.26 n/a n/a n/a n/a n/a 0.12 1.68 0.03 0.5X 1.83 n/a n/a
CacheSimulator 953 10 0.32 0.71 15.61 2.68 58.4X 19.00 0.04 0.92 0.02 2.1X 0.98 28.3X 19.4X
Stack-RNN 1,746 10 15.53 8.18 191.22 15.68 12.8X 215.08 0.02 16.02 0.06 0.0X 16.11 346.5X 13.4X
greatest 1,581 11 0.61 1.21 16.70 11.09 46.5X 29.00 0.03 1.59 0.03 1.7X 1.66 27.2X 17.5X
agt-proof-of-stake 3,687 12 14.81 n/a n/a n/a n/a n/a 0.15 15.70 0.05 0.1X 15.90 n/a n/a
kleaver 734 14 0.72 1.72 35.86 0.97 52.5X 38.55 0.21 2.38 0.04 2.6X 2.63 19.8X 14.7X
namespaced_parser 599 15 0.62 0.53 8.89 14.96 38.3X 24.38 0.04 0.69 0.02 0.2X 0.75 188.0X 32.7X
mpc 4,566 16 21.22 24.83 444.39 91.91 25.4X 561.13 0.03 26.79 0.07 0.3X 26.89 95.2X 20.9X
fzy 3,798 30 0.81 1.85 28.96 16.41 57.3X 47.22 0.03 1.87 0.04 1.4X 1.95 40.8X 24.3X
libco 3,727 31 3.44 7.06 52.49 34.05 26.2X 93.60 0.05 8.05 0.15 1.4X 8.25 18.7X 11.3X
cctz 7,782 33 14.83 21.46 184.58 64.81 17.3X 270.85 0.10 23.66 0.24 0.6X 24.00 27.9X 11.3X
gwion-util 1,238 34 0.67 1.65 64.68 19.69 127.4X 86.02 0.09 2.10 0.07 2.4X 2.26 53.7X 38.1X
Bftpd 5,003 37 1.91 3.17 90.20 26.42 61.7X 119.79 0.03 4.06 0.09 1.2X 4.18 51.9X 28.7X
grbl 4,514 51 1.21 2.63 108.09 38.11 122.0X 148.83 0.64 3.38 0.09 2.4X 4.11 50.9X 36.2X
x86-thing 2,903 55 0.08 0.24 99.77 56.03 1,949.5X 156.04 0.08 0.11 0.02 1.7X 0.21 1,171.4X 732.1X
gravity 17,817 56 9.60 13.27 275.97 58.82 35.3X 348.06 0.13 15.48 0.17 0.6X 15.77 54.8X 22.1X
fastText 6,749 68 18.74 23.16 249.43 70.15 17.3X 342.74 0.19 26.18 0.21 0.4X 26.59 41.3X 12.9X
8cc 10,165 82 1.21 2.38 126.71 31.91 132.1X 161.00 0.04 3.32 0.25 2.0X 3.61 66.6X 44.6X
clib 14,843 105 2.24 5.38 204.99 102.77 138.8X 313.14 0.08 7.27 0.19 2.4X 7.54 58.7X 41.5X
lec 4,397 106 14.41 24.66 192.59 19.52 15.4X 236.77 0.47 28.67 0.03 1.0X 29.17 15.1X 8.1X
zlib 28,998 106 7.27 10.23 110.52 84.31 27.2X 205.06 0.07 12.03 0.19 0.7X 12.29 39.4X 16.7X
cJSON 19,437 107 0.51 0.38 11.89 8.75 40.2X 21.02 0.08 1.15 0.03 1.5X 1.26 27.3X 16.7X
LAME 47,124 146 8.60 18.70 429.36 224.72 77.2X 672.78 0.81 28.23 0.44 2.4X 29.48 31.8X 22.8X
GNU Aspell 30,821 184 45.04 66.72 2,760.43 532.27 73.6X 3,359.42 0.97 80.96 1.13 0.8X 83.05 87.2X 40.5X
neven 22,743 186 7.92 10.79 377.87 182.07 71.1X 570.73 0.15 12.66 0.44 0.7X 13.24 105.7X 43.1X
Tmux 52,244 206 24.71 44.71 678.33 333.32 41.8X 1,056.36 0.44 63.38 1.70 1.7X 65.52 25.3X 16.1X
lighttpd 61,072 232 33.09 61.90 1,440.96 483.14 59.0X 1,986.00 3.12 83.29 2.13 1.7X 88.55 35.2X 22.4X
tig 43,394 238 8.42 16.34 752.33 103.89 102.6X 872.56 0.18 20.46 0.54 1.5X 21.17 67.8X 41.2X
ck 31,743 244 1.53 2.84 480.65 28.60 333.7X 512.09 0.40 3.36 0.03 1.5X 3.79 225.4X 134.9X
Cppcheck 182,121 399 148.61 182.06 3,614.48 437.18 27.5X 4,233.72 0.09 209.75 1.14 0.4X 210.98 65.5X 20.1X
Bash 126,820 442 41.53 63.57 2,100.20 485.56 62.8X 2,649.33 0.48 89.56 1.32 1.2X 91.36 52.3X 29.0X
Redis 111,435 457 20.10 27.92 1,440.26 152.70 79.6X 1,620.88 0.43 40.12 0.09 1.0X 40.64 77.9X 39.9X
httpd 199,327 502 113.54 243.03 1,388.86 1,562.61 27.1X 3,194.50 2.26 398.03 0.36 2.5X 400.66 10.7X 8.0X
Capstone 161,930 604 36.92 51.51 1,734.99 296.26 55.4X 2,082.76 0.44 71.06 0.49 1.0X 72.00 58.3X 28.9X
OpenSSL 580,653 1,767 290.03 n/a n/a n/a n/a n/a 3.68 340.06 18.81 0.3X 362.54 n/a n/a
GMP 258,875 1,878 87.35 179.13 4,057.00 6,159.08 118.0X 10,395.21 2.72 220.76 10.82 1.7X 234.30 70.1X 44.4X
PHP 766,944 2,077 521.51 764.33 6,293.62 1,615.85 15.6X 8,673.80 5.78 812.63 7.42 0.6X 825.82 26.8X 10.5X
Python 1,053,963 2,645 161.87 197.48 29,432.70 1,077.04 188.7X 30,707.22 0.88 264.71 3.26 0.7X 268.84 285.5X 114.2X
OpenCV 1,670,991 3,746 2,694.86 3,140.96 185,822.75 4,193.23 70.7X 193,156.94 4.13 3744.65 45.54 0.4X 3,794.32 173.2X 50.9X
LLVM 5,670,236 41,788 19,113.58 n/a n/a n/a n/a n/a 9.77 21,576.22 435.45 0.2X 22,021.44 n/a n/a

Sum: 23,508.35 >5,260.78 >245,463.66 >18,810.70 56.2X >269,535.13 39.37 28,281.17 533.16 0.8X 28,853.69

n/a = data unavailable due to the failure of MkCheck. % 2.0% 91.1% 7.0% % 0.1% 98.0% 1.8% Average: 58.2X 26.5X

(# Files > 1000)

Open Source

Projects

VeriBuild(sec) Speedup

Origin Project # Lines # Files

Clean

Build

(sec)

MkCheck(sec)

 (#Files < 100)

Open Source

Projects

(100 < # Files <

1000)

Open Source

Projects

Table 2 shows the evaluation results. Overall, VeriBuild is one
or two orders of magnitude faster than MkCheck for almost all
subjects. Especially for the large subjects, VeriBuild achieves
speedups from 10×(PHP) to 114×(Python). The time cost of
MkCheck in checking large projects such as OpenCV (193,157s)
is high, which hinders its wide adoption. Note that, VeriBuild
achieves such a high performance but does not sacrifice the
effectiveness (see Section 5.3.1).

To understand the performance bottleneck of each tool,
we further investigate the time cost of each step for both
tools. MkCheck includes three steps, i.e., Dependency Graph
Construction, Build Fuzz, and Race Detection. VeriBuild includes
three steps, i.e., Script Parsing, Build Instrumentation, and MD/RD
Detection. The results show that both tools incur some overhead
for inspecting the system calls for a build (MkCheck-build v.s.
build, VeriBuild-build v.s. build) and the overheads are in the
same level (MkCheck 59%, VeriBuild 108%), since both tools use
the ptrace system call to monitor files operations of a clean build.
VeriBuild incurs slightly higher overhead since it also parses and
analyzes the build scripts in this stage.

The testing time of MkCheck is dominated by the build fuzzing
time (91.1%). As we have discussed in Section 2, the primary purpose
of build fuzzing is to obtain static dependency information. As a
comparison, VeriBuild parses and evaluates build scripts to obtain
the static dependency information, and it costs only 39.37 seconds in
total, which is 0.016% (39.37/245,463.66) of the build fuzzing time of
MkCheck. The analysis time cost is relatively trivial for VeriBuild.

For analyzing all projects, VeriBuild spends only 533.16 seconds
in total for analyzing both MDs and RDs.
Answer to RQ2 In this experiment, VeriBuild is 26.5X faster
than MkCheck, on average. Moreover, VeriBuild only incurs
<90% runtime overhead compared with the native clean build (i.e.,
without instrumentation) on average.

5.3.3 Extensibility. To demonstrate that our approach has better
extensibility than the fuzzing testing for detecting build-related
issues, we have implemented two checkers to check FTIs and FRCs.
With the UDG being constructed, the effort for implementing the
two checkers are rather trivial. Both checkers are written with less
than 60 lines of Python code and have taken less than one hour for
one of our authors for the implementation, which demonstrates
great extensibility of applying our approach to new build-related
problems.We run the two checkers on the forty-two benchmarkswe
used in RQ1 and RQ2. In total, we detected six FTIs in two projects
and eight FRCs in one project. The detailed results can be found
on the project’s website. Here we only discuss two representative
cases.

File-Target Inconsistency(FTI). Figure 1 shows a FTI we
detect in MPC. The target names “test-file”, “test-static” and “test-
dynamic” are inconsistent with the files these targets actually
output. Due to these three FTIs, the build system will mistakenly
rebuild these three targets even for an incremental build. After
correcting these FTIs in the Makefile, the build time for the
incremental build is reduced from 21 seconds to 0.03 seconds.

472



Escaping Dependency Hell: Finding Build Dependency Errors with the Unified Dependency Graph ISSTA ’20, July 18–22, 2020, Virtual Event, USA

41 # Makefile
42 PROGS = colib example_poll example_echosvr example_echocli

...
43
44 all:$(PROGS)
45
46 libcolib.a: $(COLIB_OBJS)
47 $(ARSTATICLIB)
48 libcolib.so: $(COLIB_OBJS)
49 $(BUILDSHARELIB)
50
51 example_echosvr:example_echosvr.o
52 gcc -o example_echosvr example_echosvr.o -g -L./lib -lcolib

-lpthread
53 example_echocli:example_echocli.o
54 gcc -o example_echocli example_echocli.o -g -L./lib -lcolib

-lpthread
55

Figure 9: An Example FRC from libco

File Race Condition(FRC). Figure 9 shows an FRC example
in libco, including the report and the corresponding Makefile. For
this case, a file race can occur for building target “all”: the sub-
targets libcolib.a and example_closure could have data race on file
“libcolib.a”. We expand the macros in build commands (Line 52
and 54) for better illustration. When building example_closure, the
compiler gcc will access and read libcolib.a (option -lcolib instructs
the compiler to link libcolib.a with example_echosvr.o). libcolib.a is
created when building libcolib.a and there is clearly no dependen-
cy specified for these two targets. We test this FRC by building
libco with different settings: the build fails for 4/100 times with
four concurrent jobs and fails 100/100 times with more than five
concurrent jobs.
Answer to RQ3 We are able to apply the VeriBuild approach
to two practical dependency-related build errors that existing
approaches do not support, with less than two hundred lines of
code, which, to some extent, demonstrates the good extensibility
of VeriBuild.

6 RELATEDWORK

Bug detection in build scripts. Gunter [12] used a Petri
net to check the correctness and detect possible optimization
opportunities in Makefiles. Tamrawi et al. [37] proposed SYMake
which uses symbolic dependency graphs to automatically detect
bad smells, such as cyclic dependencies and duplicate prerequisites,
in the build scripts. Xia et al. [43] and Zhou et al. [44] adopted data
mining techniques to predict missing dependencies. All the above
approaches only analyze the information statically available in the
build scripts. Therefore, they are unable to detect many dependency
issues due to the lack of the actual dependency information.

Another line of research studies is to use dynamic techniques
to verify dependencies. Licker and Rice [22] proposed a fuzzing
technique to detect dependency issues. It constructs a file-level
dependency graph by tracing system calls of a clean build and tests
the correctness of build scripts by triggering an incremental build
for each file. As discussed in Section 2, build fuzzing is impractical
for medium and large projects due to its overwhelming number
of incremental builds. Several modern build systems such as
Fabricate [38] and Memoize [29] can automatically avoid missing
dependencies by monitoring the building process at runtime. Such
a monitoring-based approach inevitably slows down the building

process. Bazel [18] is a build system that creates an isolated
environment for each build task. so that it can avoid writing
unexpected results to the file system. ElectricAccelerator [7]
automatically corrects the order of build steps at runtime, rather
than detecting RDs and MDs for developers to diagnose. Tup [35],
IBM ClearCase [16] and VESTA [41] verify dependency issues
at runtime. These techniques require that the dependency issues
should be triggered first, otherwise, they are unable to detect them.
Different from that, our approach can detect dependency issues
even before their occurrences.

Using actual dependency information together with the static
dependency information in the build scripts has been proven to
be effective. Bezemer et al. [6] proposed a tool to detect so-called
unspecified dependencies in Make-related build systems. However,
unspecified dependencies are not necessarily missing dependencies.
Their approach reports 1.2 million unspecified dependencies in
four projects, most of which are merely implicit dependencies
intentionally omitted by the developers. Our approach also analyzes
both the static and the dynamic dependencies but is different
from theirs in three aspects: first, our approach performs a more
fine-grained analysis that analyzes build targets rather than files;
second, the UDG used in our approach encodes implicitly declared
dependencies, which are missing from their approach; third, the
missing and the redundant dependencies detected by our approach
could be directly derived from the unspecified dependencies found
by their approach.
Build error localization. There are also many research studies
proposed for localizing build errors [4, 5, 24, 33, 40] and automatical-
ly fixing them [14, 23]. We believe that their techniques are
complementary to ours and have the potential for greater
effectiveness if combined with VeriBuild.
Build maintenance. A massive research effort has been devoted
to improving the maintainability of build systems [2, 11, 13, 37, 39].
Formiga [13] supports simple renaming and removal of the build
targets. SYMake [37] focuses on the renaming and extraction of
the build targets. Makao [2] uses an aspect-oriented approach
to support adding new commands and dependencies. Vakilian
et al. [39] developed tools for decomposing build specifications.
CloudMake [11] from Microsoft leverages system call tracing for
migrating build systems.

7 CONCLUSION

In this work, we have discussed the limitations of existing
approaches to incorrect build rule detection. With the insight that
existing approaches do not make good use of available static and
dynamic dependency information, we have presented a unified
approach, which has been demonstrated to be faster, more precise
and have better bug-detection capability than the state-of-the-art.
We believe that VeriBuild is promising in industry settings.

ACKNOWLEDGMENTS

Rongxin Wu is the corresponding author. We thank anonymous
reviewers for their constructive comments. This work is funded
by Hong Kong GRF16230716, GRF16206517, ITS/215/16FP,
ITS/440/18FP grants, and the National Natural Science Foundation
of China (Grant No. 61902329).

473



ISSTA ’20, July 18–22, 2020, Virtual Event, USA Gang Fan, Chengpeng Wang, Rongxin Wu, Xiao Xiao, Qingkai Shi, and Charles Zhang

REFERENCES

[1] Bram Adams, Kris De Schutter, Herman Tromp, and Wolfgang De Meuter. 2008.
The evolution of the Linux build system. Electronic Communications of the EASST
(2008). https://doi.org/10.14279/tuj.eceasst.8.115.119

[2] Bram Adams, Herman Tromp, Kris De Schutter, and Wolfgang De Meuter.
2007. Design recovery and maintenance of build systems. In IEEE International
Conference on Software Maintenance (ICSM). https://doi.org/10.1109/ICSM.2007.
4362624

[3] Shivali Agarwal, Rajkishore Barik, Vivek Sarkar, and Rudrapatna K.
Shyamasundar. 2007. May-happen-in-parallel analysis of X10 programs. In
Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPOPP). https://doi.org/10.1145/1229428.1229471

[4] Jafar Al-Kofahi, Hung Viet Nguyen, and Tien N. Nguyen. 2014. Fault localization
for make-based build crashes. In Proceedings - 30th International Conference on
Software Maintenance and Evolution (ICSME). https://doi.org/10.1109/ICSME.
2014.87

[5] Jafar Al-Kofahi, Hung Viet Nguyen, and Tien N. Nguyen. 2014. Fault localization
for build code errors in makefiles. In 36th International Conference on Software
Engineering, ICSE Companion 2014 - Proceedings. https://doi.org/10.1145/2591062.
2591135

[6] Cor Paul Bezemer, Shane McIntosh, Bram Adams, Daniel M. German, and
Ahmed E. Hassan. 2017. An empirical study of unspecified dependencies in
make-based build systems. Empirical Software Engineering (2017). https:
//doi.org/10.1007/s10664-017-9510-8

[7] Electric Cloud. 2020. ElectricAccelerator EMake: Speeds Up Builds and Tests.
https://electric-cloud.com/plugins/directory/p/emake/ [Online; accessed 25-Aug-
2019].

[8] Automake Contributors. 2012. GNU Autotools. https://www.gnu.org/software/
automake [Online; accessed 25-Aug-2019].

[9] Drake. 2020. Build Cop. https://drake.mit.edu/buildcop.html [Online; accessed
25-May-2020].

[10] Stuart I. Feldman. 1979. Make — a program for maintaining computer programs.
Software: Practice and Experience (1979). https://doi.org/10.1002/spe.4380090402

[11] Milos Gligoric, Wolfram Schulte, Chandra Prasad, Danny van Velzen, Iman
Narasamdya, and Benjamin Livshits. 2014. Automated migration of build scripts
using dynamic analysis and search-based refactoring. ACM SIGPLAN Notices
(2014). https://doi.org/10.1145/2714064.2660239

[12] Carl A. Gunter. 1996. Abstracting dependencies between software configuration
items. In Proceedings of the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (FSE). https://doi.org/10.1145/250707.239129

[13] Ryan Hardt and Ethan V. Munson. 2013. Ant build maintenance with formiga. In
2013 1st InternationalWorkshop on Release Engineering, RELENG 2013 - Proceedings.
https://doi.org/10.1109/RELENG.2013.6607690

[14] Foyzul Hassan and Xiaoyin Wang. 2018. HireBuild: An automatic approach to
history-driven repair of build scripts. In Proceedings of the 40th International
Conference on Software Engineering (ICSE). IEEE/ACM. https://doi.org/10.1145/
3180155.3180181

[15] Lorin Hochstein and Yang Jiao. 2011. The cost of the build tax in scientific
software. In International Symposium on Empirical Software Engineering and
Measurement (ESEM).

[16] International Business Machines Corporation (IBM). 2020. IBM Rational
Clearcase. https://www.ibm.com/us-en/marketplace/rational-clearcase [Online;
accessed 25-Aug-2019].

[17] Google Inc. 2019. Actual and declared dependencies. https://docs.bazel.build/
versions/master/build-ref.html#actual_and_declared_dependencies [Online;
accessed 25-Aug-2019].

[18] Google Inc. 2019. Bazel - a fast, scalable, multi-language and extensible build
system. https://bazel.build/ [Online; accessed 25-May-2020].

[19] Google Inc. 2019. Bazel Query. https://docs.bazel.build/versions/master/query-
how-to.htmle [Online; accessed 25-Aug-2019].

[20] Lim James. 2019. Combating Flaky Builds. https://medium.com/@jimjh/
combating-flaky-builds-f8aaa9ccd29a [Online; accessed 25-Aug-2019].

[21] Petr Machata Juan Cespedes. 2019. ltrace. http://man7.org/linux/man-
pages/man1/ltrace.1.html [Online; accessed 25-May-2020].

[22] Nándor Licker and Andrew Rice. 2019. Detecting incorrect build rules. In
Proceedings of the 41st International Conference on Software Engineering (ICSE).
IEEE, 1234–1244. https://doi.org/10.1109/ICSE.2019.00125

[23] Yiling Lou, Junjie Chen, Lingming Zhang, Dan Hao, and Lu Zhang. 2019. History-
driven build failure fixing: How far are we?. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA).
https://doi.org/10.1145/3293882.3330578

[24] Christian Macho, Shane McIntosh, and Martin Pinzger. 2018. Automatical-
ly repairing dependency-related build breakage. In 25th IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER). https:
//doi.org/10.1109/SANER.2018.8330201

[25] GNU Make Manual. 2019. Auto-Dependency Generation. ftp://ftp.gnu.org/old-
gnu/Manuals/make-3.77/html_node/make_43.html [Online; accessed 25-Aug-
2019].

[26] GNU Make Manual. 2019. Prerequisite Types. https://www.gnu.org/software/
make/manual/html_node/Prerequisite-Types.html [Online; accessed 25-Aug-
2019].

[27] Ken Martin and Bill Hoffman. 2010. Mastering CMake: a cross-platform build
system. Kitware.

[28] FriedemannMattern. 1989. Virtual Time and Global States of Distributed Systems.
Event London (1989). https://doi.org/10.1.1.47.7435

[29] Bill McCloskey. 2019. memoize. https://github.com/kgaughan/memoize.py
[Online; accessed 25-May-2020].

[30] Shane McIntosh, Bram Adams, Meiyappan Nagappan, and Ahmed E. Hassan.
2014. Mining co-change information to understand when build changes are
necessary. In Proceedings - 30th International Conference on Software Maintenance
and Evolution (ICSME). https://doi.org/10.1109/ICSME.2014.46

[31] Microsoft. 2020. NMAKE Reference. https://docs.microsoft.com/en-us/cpp/
build/reference/nmake-reference?view=vs-2019 [Online; accessed 25-May-2020].

[32] Eric S Raymond. 2003. The art of Unix programming. Addison-Wesley
Professional.

[33] Zhilei Ren, He Jiang, Jifeng Xuan, and Zijiang Yang. 2018. Automated Localization
for Unreproducible Builds. In Proceedings of the 40th International Conference on
Software Engineering (ICSE) (Gothenburg, Sweden). Association for Computing
Machinery, New York, NY, USA, 71–81. https://doi.org/10.1145/3180155.3180224

[34] Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Edward Aftandilian, and
Robert Bowdidge. 2014. Programmers’ build errors: A case study (at google).
In Proceedings - International Conference on Software Engineering (ICSE). https:
//doi.org/10.1145/2568225.2568255

[35] Mike Shal. 2009. Build system rules and algorithms. Published online (2009).
Retrieved July 18 (2009), 2013. http://gittup.org/tup/build_system_rules_and_
algorithms.pdf

[36] Ahmed Tamrawi, Hoan Anh Nguyen, Hung Viet Nguyen, and Tien N. Nguyen.
2012. Build Code Analysis with Symbolic Evaluation. In Proceedings of the 34th
International Conference on Software Engineering (ICSE) (Zurich, Switzerland).
IEEE Press, 650–660.

[37] Ahmed Tamrawi, Hoan Anh Nguyen, Hung Viet Nguyen, and Tien N Nguyen.
2012. SYMake: a build code analysis and refactoring tool for makefiles. In
Proceedings of the 27th IEEE/ACM International Conference on Automated Software
Engineering (ASE). ACM, 366–369.

[38] Brush Technology. 2019. fabricate. https://github.com/brushtechnology/fabricate
[Online; accessed 25-May-2020].

[39] Mohsen Vakilian, Raluca Sauciuc, J. David Morgenthaler, and Vahab Mirrokni.
2015. Automated Decomposition of Build Targets. In Proceedings of the 37th
International Conference on Software Engineering - Volume 1 (ICSE) (Florence,
Italy). IEEE Press, 123–133.

[40] Carmine Vassallo, Sebastian Proksch, Timothy Zemp, and Harald C. Gall. 2018.
Un-breakMy Build: Assisting Developers with Build Repair Hints. 2018 IEEE/ACM
26th International Conference on Program Comprehension (ICPC) (2018), 41–4110.

[41] VestaSys. 2020. Vesta Configuration Management System. http://www.vestasys.
org/ [Online; accessed 25-May-2020].

[42] Wikipedia contributors. 2020. List of NP-complete problems. https://en.wikipedia.
org/w/index.php?title=List_of_NP-complete_problems&oldid=957698266
[Online; accessed 25-May-2020].

[43] Xin Xia, David Lo, Xinyu Wang, and Bo Zhou. 2014. Build system analysis with
link prediction. In Proceedings of the ACM Symposium on Applied Computing
(SAC). https://doi.org/10.1145/2554850.2555134

[44] Bo Zhou, Xin Xia, David Lo, and Xinyu Wang. 2014. Build predictor: More
accurate missed dependency prediction in build configuration files. In Proceedings
- International Computer Software and Applications Conference (COMPSAC).
https://doi.org/10.1109/COMPSAC.2014.12

474

https://doi.org/10.14279/tuj.eceasst.8.115.119
https://doi.org/10.1109/ICSM.2007.4362624
https://doi.org/10.1109/ICSM.2007.4362624
https://doi.org/10.1145/1229428.1229471
https://doi.org/10.1109/ICSME.2014.87
https://doi.org/10.1109/ICSME.2014.87
https://doi.org/10.1145/2591062.2591135
https://doi.org/10.1145/2591062.2591135
https://doi.org/10.1007/s10664-017-9510-8
https://doi.org/10.1007/s10664-017-9510-8
https://electric-cloud.com/plugins/directory/p/emake/
https://www.gnu.org/software/automake
https://www.gnu.org/software/automake
https://drake.mit.edu/buildcop.html
https://doi.org/10.1002/spe.4380090402
https://doi.org/10.1145/2714064.2660239
https://doi.org/10.1145/250707.239129
https://doi.org/10.1109/RELENG.2013.6607690
https://doi.org/10.1145/3180155.3180181
https://doi.org/10.1145/3180155.3180181
https://www.ibm.com/us-en/marketplace/rational-clearcase
https://docs.bazel.build/versions/master/build-ref.html#actual_and_declared_dependencies
https://docs.bazel.build/versions/master/build-ref.html#actual_and_declared_dependencies
https://bazel.build/
https://docs.bazel.build/versions/master/query-how-to.htmle
https://docs.bazel.build/versions/master/query-how-to.htmle
https://medium.com/@jimjh/combating-flaky-builds-f8aaa9ccd29a
https://medium.com/@jimjh/combating-flaky-builds-f8aaa9ccd29a
http://man7.org/linux/man-pages/man1/ltrace.1.html
http://man7.org/linux/man-pages/man1/ltrace.1.html
https://doi.org/10.1109/ICSE.2019.00125
https://doi.org/10.1145/3293882.3330578
https://doi.org/10.1109/SANER.2018.8330201
https://doi.org/10.1109/SANER.2018.8330201
ftp://ftp.gnu.org/old-gnu/Manuals/make-3.77/html_node/make_43.html
ftp://ftp.gnu.org/old-gnu/Manuals/make-3.77/html_node/make_43.html
https://www.gnu.org/software/make/manual/html_node/Prerequisite-Types.html
https://www.gnu.org/software/make/manual/html_node/Prerequisite-Types.html
https://doi.org/10.1.1.47.7435
https://github.com/kgaughan/memoize.py
https://doi.org/10.1109/ICSME.2014.46
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=vs-2019
https://doi.org/10.1145/3180155.3180224
https://doi.org/10.1145/2568225.2568255
https://doi.org/10.1145/2568225.2568255
http://gittup.org/tup/build_system_rules_and_algorithms.pdf
http://gittup.org/tup/build_system_rules_and_algorithms.pdf
https://github.com/brushtechnology/fabricate
http://www.vestasys.org/
http://www.vestasys.org/
https://en.wikipedia.org/w/index.php?title=List_of_NP-complete_problems&oldid=957698266
https://en.wikipedia.org/w/index.php?title=List_of_NP-complete_problems&oldid=957698266
https://doi.org/10.1145/2554850.2555134
https://doi.org/10.1109/COMPSAC.2014.12

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Build Systems and Scripts
	2.2 Missing and Redundant Dependencies
	2.3 Building Declared and Actual Dependencies 
	2.4 Detecting MDs and RDs

	3 Approach
	3.1 Unified Dependency Graph
	3.2 Dependency Analyses on the UDG
	3.3 More Analyses on the UDG

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Subjects
	5.3 Results

	6 Related Work
	7 Conclusion
	References

