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Abstract
Linux utilizes interfaces as communication protocols across
different subsystems while ensuring manageability. These
interfaces standardize interactions between various subsys-
tems; however, the absence of complete calling contexts can
result in the mishandling of data from other entities, i.e.,
interaction data, thus incurring vulnerabilities. Even worse,
the effectiveness of static bug detectors could be severely
hindered due to the lack of interface specifications. Previ-
ous solutions, seeking to automate the inference of interface
specifications, are tailored to a subset of the interaction data
behavior and, hence are deficient in generalizability.
This research presents Seal, a framework that leverages

security patches to achieve the automatic inference of diverse
interface specifications. Those specifications, formulated as
value-flow properties, could adeptly characterize interaction
data behaviors for individual interfaces and the synergistic
relationships among multiple interfaces. Technically, Seal
assesses the impact of code changes in program dependen-
cies, abstracts specifications from changed value-flow paths,
and detects bugs via reachability analysis. Experiments show
Seal attains a precision of 71.9% and the specifications could
accommodate various bug types. We utilized Seal to identify
167 unseen bugs in Linux, hidden for an average of 7.7 years.
So far, 95 of them are confirmed by Linux maintainers, 56 of
which fixed by our patches.
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1 Introduction
The monolithic kernel of Linux integrates numerous sub-
systems, e.g., drivers, network protocols, and file systems,
that are developed by a global community to deliver vari-
ous services to the user space. To ensure developers from
different parties can efficiently collaborate on such a vast
codebase, the kernel uses interfaces to specify the functions
available for interactions. First, one form of interfaces, i.e.,
APIs, encapsulates frequently utilized functionalities. Second,
Linux incorporates another form of interfaces, i.e., function
pointers, to manage common operations among subsystems.
For instance, in Fig. 1, prepare_map invokes the function
pointer buf_prepare at line 8 without the need to under-
stand its implementation buffer_prepare at line 20 where
the API dma_alloc_coherent is used for allocating DMA
memory regions at line 27.
Such programming idioms standardize and expedite the

parallel development of the Linux core and various subsys-
tems. However, it’s difficult for developers when using or
implementing interfaces to fully obey latent data interaction
rules. For instance, developers could forget to verify the null-
ness of incoming parameters or to convey erroneous error
codes. Since in the real-world Linux development, only type
safety is strictly assured, these latent data interaction proto-
cols often result in system crashes and exploitable vulnera-
bilities. In Fig. 1, the type signature of buffer_prepare is
guaranteed to conform to the declaration of buf_prepare,
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Desired specifications in nature language:
p S1: (Satisfied in line 9) Return value of 

function pointer buf_prepare should be 
checked to perceive errors 

p S2: (Satisfied in line 28) Return value of API 
dma_alloc_coherent should be checked to 
verify the success of memory allocations

p S3: (Violated) Return value of buf_prepare
should reflect all possible internal errors

Insufficient Linux documentation

Satisfy S1

Satisfy S2

Violate S3

Figure 1. Examples of two forms of interfaces: the API dma_alloc_coherent (line 27), and the function pointer buf_prepare
(line 18). Incorrect error code in line 18 violates the desired specification S3, causing an NPD bug.

whereas the behaviors of interaction data, vb and the re-
turn value of buffer_prepare, cannot be automatically
understood by computers. Subsequently, the erroneous error
code at line 23 causes the caller, prepare_mmap, to inadver-
tently access the corrupted memory region and trigger a
Null Pointer Dereference (NPD) bug.

Ideally, we expect that the anticipated behaviors of inter-
action data are thoroughly documented as specifications [79,
97] to guide developers and static analyzers, examplified by
rules S1 to S3 in Fig. 1. Unfortunately, in practice, interface
specifications are often documented poorly. In lines 1-5 of
Fig. 1, the Linux documentation only explains the functional-
ity of buf_prepare [14], omitting how to process internal
errors, e.g., API failure in line 28 [9]. On the other hand,
manually summarizing interface specifications is extremely
challenging even for kernel experts since the specifications
require multiple parties to determine, not to mention the
excessive number of interfaces and diverse behaviors of the
interaction data. An example is whether a user input should
be checked uniformly or per implementation of interface
fb_check_var has been constantly controversial [1].
We can opt to automatically infer specifications [47, 48,

51, 53, 82, 91]. However, these approaches fail to generate
comprehensive and precise specifications for a large number
of interfaces. Specifically, one line of work [31, 33, 39, 53, 82]
observes that certain code patterns in the codebase would re-
veal specifications. However, these patterns are often empir-
ically determined, overfitting code samples under inspection
and failing to adapt to other scenarios. Another line [16, 34,
40, 46, 48, 51, 91, 95] cross-checks multiple functional-similar
codes and picks out the majority as specifications. Likewise,
the comparison metrics are tailored to certain behaviors
and by nature probabilistic, degrading the effectiveness. Our
experiments show that CRIX [51], which cross-checks the
conditional statements in the peer slices of critical variables
to identify missing-check bugs, only detects one of the bugs
found by us. Existing attempts [47] have also employed se-
curity patches to infer API post-handling specifications, but
the form to represent specifications, 4-tuples, suffers from
limited expressiveness.
This paper determined to unleash the potential of secu-

rity patches to infer specifications with much more diversity.
Security patches [77] serve as strong proof of specification

violations and the changes from buggy code to patched one
shed light on the correct way to manipulate interaction data.
However, the inference process is non-trivial due to the chal-
lenges from three aspects. First, the behaviors of interaction
data to be constrained are irregular, and in a more compli-
cated case, multiple interfaces may interact synergistically,
thus the specifications must be adequately expressive to cap-
ture these varied behaviors. Second, security patches can
introduce flexible and occasionally subtle syntactic changes
when fixing different bugs, making impact analysis and root
cause understanding difficult. Third, the scalability problem
would arise once employing highly precise static analysis on
the large Linux codebase.
Our Approach.We introduce Seal to incrementally in-

fer diverse specifications for Linux interfaces with security
patches. Our insight is that, by formalizing specifications as
value-flow properties [61], we could harness their descriptive
power to characterize complex relationships among inter-
action data. Years of static analysis research [61, 62, 68, 69]
has demonstrated that value-flow properties are capable of
inspecting a very broad category of vulnerabilities. The in-
ferred properties that focus on values and uses of critical
variables are sufficiently abstract. We utilize them to identify
violations inside other implementations and usages of the
same interface, which are expected to adhere to the same
latent rules of manipulating interaction data. For instance,
the patch in Fig. 3 fixes the NPD in Fig. 1 by conveying the
return value in line 23, from which we could learn the reach-
ability relation between the error code and the return value
of interface is vital. Other implementations of the function
pointer buf_prepare that invoke dma_alloc_coherent
should obey the specification as well.
Technically, Seal leverages field-, flow-, context-, and

path-sensitive analysis to build program dependence graphs
as the central data structure for specification inference and
violation detection. Our prototype gathers the changed value-
flow paths inter-procedurally based on the data-, control-,
and flow-dependence changes of interaction data, and uti-
lizes them as resources to abstract value-flow properties.
Notably, our framework could also be easily extended to
incorporate more program properties to achieve a more pro-
found analysis of code changes. Afterward, the specifications
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are utilized for bug detection by searching for realizable
value-flow paths in other code regions.

We evaluated our prototype on Linux v6.2 with 12,571
security patches and obtained inspiring results. Seal suc-
cessfully uncovers 167 Linux bugs, 95 bugs were confirmed
by maintainers, and 56 of them were fixed by our patches.
Remarkably, our found bugs are long-latent, hiding for an
average of 7.7 years, and can inflict various security im-
pacts. Besides, our bug detection achieves a precision of
71.9%, outperforming existing patch-based and deviation-
based approaches [47, 51]. We believe that other systems
that extensively use interfaces could also benefit from Seal.
In summary, the main contributions of this paper are:
• We propose an expressive formulation for interface spec-
ifications, enabling the description of complex behaviors
of interaction data.
• We implement an extensive framework, Seal, that takes
security patches as inputs to infer interface specifications.
• We conduct a systematic evaluation to demonstrate that
our approach can achieve high versatility and pinpoint
numbers of previously unknown bugs in Linux.

2 Background
This section explains interface specifications and the conse-
quences of violations (§ 2.1). We emphasize the challenges
in obtaining interface specifications thereafter (§ 2.2).

2.1 Interface Specifications
Linux integrates two forms of interfaces, i.e., function point-
ers and APIs, to effectively manage multiple subsystems
without increasing development and maintenance expenses.
Initially, the developers of Linux core designed and pre-
pared interfaces, which were then increasingly implemented
and utilized by subsystem developers. During collaborations
among various entities, extensive data are exchanged be-
tween invokers and implementers of interfaces. In this paper,
we term the variables and memory regions that are defined
and initialized by one party but also visible and used by
another as interaction data.
Crucially, interaction data comes with inherent require-

ments that must be adhered to during manipulation. How-
ever, when only local contextual information is available,
these rules may become obscure, leading to inadvertent mis-
handling of interaction data and resulting in vulnerabilities.
Interface specifications emerge to clarify the proper usage of
interaction data when invoking or implementing interfaces.
Specifications for Invoking APIs. Linux encapsulates

commonly used functionalities into APIs to avoid code dupli-
cation. For instance, platform driver developers could invoke
API platform_device_register [13] to register current
devices. The interaction data associated with APIs include 1)
parameters to be passed, 2) return values that typically indi-
cate the execution results, and 3) side effects that necessitate

subsequent operations [38, 47, 91]. Interface specifications
explain the pre- and post-conditions when invoking APIs, de-
tailing the acceptable values for parameters, the meanings of
return values [41], the coherence among multiple APIs, and
necessary post operations to perform. Violating these rules
would inflict high severe vulnerabilities. For example, with-
out noticing APIs freeing the passing parameters, subsequent
access to the parameter would lead to use-after-free [86]. Fail-
ing to use paired deallocation APIs for cleaning up allocated
variables can result in memory leaks [33, 38, 56, 70].

Specifications for Implementing Function Pointers.
Linux abstracts common operations among a set of subsys-
tems into function pointers using these instead of specific
implementations to enhance compatibility and extensibil-
ity. Subsystem developers are responsible for implementing
function pointers to handle unique features. Still for platform
drivers, the structure struct platform_driver specifies
a set of function pointers to be implemented [13], such as
probe for platform device insertion. The interaction data
for function pointers subsume 1) incoming arguments, 2)
return values, and 3) accessible global variables [57]. When
implementing function pointers, the specifications explain
which checks should be performed on incoming arguments
and global variables, as well as expected return values to
synchronize the internal status. Likewise, violating these
specifications can lead to a range of consequences. First, ar-
guments and global variables could come from user space or
hardware and thus can carry malicious data [55, 94]. With-
out sufficient checks, missing-check bugs [19, 51, 55] could
occur. Second, prior efforts have discussed that incorrect
error codes would hide internal errors from the kernel and
cause bugs like memory corruptions [31, 39, 73].

2.2 Lack of Specifications
In practice, interface specifications could be defined as type
signatures, annotations [8], and documentation [10–12] to
guide programmers. For instance, in the Linux kernel, speci-
fications can be enforced through assertions using macros
such as BUG_ON or WARN_ON [6]. These specifications are
designed to regulate interaction data from various aspects,
including acceptable types, runtime values validated at com-
pilation time, and complicated data usages that require so-
phisticated static analyzers [2, 19, 31, 62, 78, 85].

Unfortunately, specifications are often lacking. In practice,
Linux documentation often focuses on explaining interface
functionalities but tends to ignore the rules of interaction
data manipulation. Furthermore, manually enumerating ade-
quate specifications is extremely challenging even for kernel
experts, due to the vast interface spaces and irregular inter-
action data behavior.
Large Interface Space. First, the massive codebase of

Linux involves numerous subsystems, each developing its
own interfaces for specialized purposes. As a result, man-
ual summarization requires extensive domain knowledge



EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Chen et al.

and significant developers to be involved. Specifically, kernel
APIs provide functionalities ranging from memory manage-
ment [33, 53], reference counting [38], to locking [23, 45],
etc. For function pointers, Linux v6.2 contains 82,549 indirect
calls, taking charge of functionalities such as initialization,
handling interrupts and system calls, etc. The existing effort,
Archerfish [90], highlights the challenges in documenting
numerous interrupt handlers in Linux and resorts to large
language models (LLMs) to model their semantics.

Irregular Behaviors. Second, interaction data behaviors
are diverse and irregular. As we delineated in § 2.1, the be-
haviors encompass valid values, conditions for uses, and
appropriate actions for error handling, among others. Later,
we will discuss how previous works often summarize speci-
fications for only a subset of behaviors, thereby providing
limited generalizability. More importantly, multiple inter-
faces would synergistically communicate with each other. A
representative example is function pointer implementations
often invoke APIs to achieve functionality. Consequently,
the specifications should be determined collaboratively.

Remark. In summary, comprehensively summarizing in-
terface specifications is extremely labor-intensive. Worse
yet, interface behaviors could be “unstable”, and specifica-
tions could be proactively changing through commits and
discussions. This makes manual settlement of these pieces
of knowledge fall through. Thus, an automatic approach
to liberate human labor is urgently demanded.

3 Overview
This section begins by discussing cutting-edge techniques
and their shortcomings (§ 3.1). On that basis, we summarize
challenges to infer specifications from patches (§ 3.2) and
state the insight of our patch-based solution (§ 3.3).

3.1 Limitations of Existing Efforts
To address the inadequacies of interface specifications and
reduce human interventions, recent years have witnessed
three lines of solutions. They typically leverage two kinds
of inputs, i.e., codebases, and security patches, aiming to
automatically summarize interface specifications, however,
in limited scopes. As a result, none of these methods could
generate comprehensive and precise specifications for vari-
ous interfaces. We discuss the designs and shortcomings of
these categories, followed by our choices below.

Pattern-based Approach. The first category [31, 33, 39–
41, 53, 82] observes that certain code patterns would re-
veal the semantics and correct usages of interfaces. They
manually summarize code patterns as templates and match
them inside the codebase for specifications. For instance,
Goshawk [53] noticed that custom memory management
functionsmust eventually invoke primitive functions. Apex [40]

studied the characteristics of error paths to collect error spec-
ifications. K-MELD [33] exploited the pairwise relationships
between specialized allocation/deallocationAPIs.While these
efforts achieve high precision, the code patterns cannot be
migrated since the code patterns are empirically determined
and tend to overfit manually reviewed code samples.
Deviation-based Approach. The second category [16,

34, 48, 51, 57, 91] holds the common belief that for one inter-
face, the majority of usages are correct, while deviations are
potentially buggy. These methods often propose a clustering
metric to group comparable codes and employs a similar-
ity algorithm to identify their commonalities. For instance,
APISan [91] represents API usages as symbolic traces and sta-
tistically counts the majority by occurrence. Juxta [57] sym-
bolically compares multiple implementations of VFS entry
functions in file systems to derive latent high-level semantic
rules. Although these approaches significantly advance the
scope of supported interfaces, they suffer from low precision
and recall. First, the underlying assumption that the major-
ity of usages are correct does not always hold, let alone the
inaccuracies introduced by the probabilistic clustering and
similarity algorithms. Second, these clustering and similarity
algorithms are tailored to certain behaviors thus cannot be
easily adapted to other contexts.

Patch-basedApproach. Patch-based solutions infer spec-
ifications from the additions and deletions of code in security
patches [72]. The code differences illuminate how bugs are
manifested and more crucially, reveal the correct usages. For
instance, APHP [47] models API post-handling specifications
as a four-tuple, i.e., <target API, post-operation, critical vari-
able, path condition>, and extracts these components from
code differences and patch descriptions. The inferred speci-
fications are reliable as patches provide strong evidence of
specification violations. However, this proposed specifica-
tion form, by definition, is limited to describing only one
type of interaction data behavior.
Our Choice. In summary, existing techniques have not

sufficiently addressed the versatility required to describe
complex interaction data behaviors. This work aims to bridge
this gap by comprehensively characterizing the correct be-
haviors of interaction data while maintaining reasonable
recall, precision, and scalability. We have chosen to use secu-
rity patches as inputs for deriving specifications, recognizing
their potential to elucidate proper interaction data usage
across a broad spectrum of interfaces.

3.2 Problem Challenges
While security patches are valuable for mining interface
specifications, the inference process is non-trivial due to
the challenges from restricted patch information and the
intractable specification design.

Empirical Study. To characterize patches that fix mishan-
dling of interaction data, we conducted an empirical study
by constructing a dataset of 158 historical Linux patches [3].
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The dataset forms 32 groups, where bugs in each group orig-
inate from the same mishandling error when implementing
or using the same interface. Inspired by change impact anal-
ysis [15], we adopt slicing techniques [65], complemented
with manual inspection to locate bug traces for study.

C1. Restrictive Patch Information. First, we noticed
that security patches could make subtle code changes, i.e.,
less than 10 lines in extreme cases, to fix violations. This
localized perspective impedes a thorough and precise un-
derstanding of bug behavior, thereby complicating the infer-
ence of specifications. Our study indicates that only 34.8%
of bug traces are confined within patched functions. For in-
stance, the patch in Fig. 3 simply corrects the return value
of buffer_prepare, yet identifying the root cause, the fail-
ure of dma_alloc_coherent, is crucial. Furthermore, the
liberal use of pointers results in indirect data flows that are
often overlooked in the absence of precise alias analysis [43].
Therefore, analysis with high sensitivity is required to locate
statements affected by code changes to avoid false nega-
tives. Meanwhile, the analysis should not involve too many
irrelevant statements that hurt precision.

C2. Intractable Specification Design. Second, the spec-
ifications must be expressive yet sufficiently abstract to ac-
commodate various bug types and code customizations. Our
dataset contains 11 bug types, including memory corruption
bugs, taint-style bugs, etc, and covering all interaction data
mishandling errors detailed in § 2.1, underlining the need
for versatile specifications. We have also evaluated APHP on
our dataset and found only 7 groups of bugs (19.6%) could
be reported due to the restrictive specification form for API
post-handlings. Besides, although bugs in each group share
the same mishandling error, their bug traces are dispersed
across various functions, involve numerous intermediate
statements, and are sparsely located. Consequently, the spec-
ifications must exclude program elements particular to input
patches to be general enough.

3.3 Insight of Seal
Seal deduces interface specifications from security patches
and conducts violation detection to identify bugs. Specifi-
cally, we advocate reflecting code changes to differences in
value-flow paths and abstracting value-flow properties [61]
from them to compose interface specifications. The design
conquers the aforementioned challenges from two aspects.

First, value-flow paths describe how the value of one vari-
able flows along statements. These paths could carry out
rich information, e.g., path conditions, and control flow rela-
tionships. We can comprehensively perceive changes in the
dependencies of interaction data through value-flow path
changes, paving the way to extract interface specifications.
For instance, path additions or removals often imply correct
values of interaction data or necessary post-operations.

Second, value-flow properties feature our specifications
high degree of versatility and abstraction. These properties

Specification 𝑆 := 𝑖 [𝑎𝑟𝑔𝑖∗ → 𝑟𝑒𝑡𝑖∗] 𝑞∗

Quantifier Constraint𝑄 := (∀ |∃ |�)𝑣 |𝑢 : 𝑟+

Path Relation 𝑅 := 𝑣
𝑐
↩→ 𝑢 | 𝑢1 ≺ 𝑢2 | 𝑟1 ∧ 𝑟2 | 𝑟1 ∨ 𝑟2 | ¬ 𝑟

Value𝑉 := 𝑎𝑟𝑔𝑖 | 𝑟𝑒𝑡 𝑓 | 𝑔 | 𝑙 | 𝑣.field

Use𝑈 := 𝑎𝑟𝑔𝑓 | 𝑟𝑒𝑡𝑖 | 𝑔 | deref | div | . . .
Condition𝐶 := 𝑒1 < 𝑒2 | 𝑒1 > 𝑒2 | 𝑒1 == 𝑒2

| 𝑐1 ∨ 𝑐2 | 𝑐1 ∧ 𝑐2 | ¬ 𝑐
Expression 𝐸 := 𝑒1 + 𝑒2 | 𝑒1 − 𝑒2 | ∗ 𝑣

| call 𝑓 (𝑣, . . . ) | 𝑣 | . . .
Argument 𝑎𝑟𝑔 ∈ 𝐴𝑟𝑔 Return 𝑟𝑒𝑡 ∈ 𝑅𝑒𝑡

Global 𝑔 ∈ 𝐺 Literal 𝑙 ∈ 𝐿

Function Pointer 𝑖 ∈ 𝐼 API 𝑓 ∈ 𝐹

Figure 2. Syntax of interface specification.

aggregate multiple value-flow paths and specify the predi-
cates concerning their existence and coherence, e.g. must ex-
ist. When evaluating value-flow properties, only the sources,
sinks, and predicates matter, while intermediate statements
propagated along the value-flow paths are disregarded. Prior
efforts in static analysis [25, 35, 69] have demonstrated value-
flow properties could underpin the detection of a wide range
of vulnerabilities, including memory safety bugs, resource
leaks, and taint-style bugs.

4 Interface Specification
Before delving into Seal, this section gives a formal defini-
tion of interface specifications designed based on value-flow
properties (§ 4.1), followed by three examples to demonstrate
the expressiveness of proposed formulation (§ 4.2).

4.1 Specification Formulation
We formalize the interface specification in Fig. 2, which es-
sentially describes the constraints over interaction data that
each implementation of a function pointer and/or API usage
needs to satisfy. The specifications intertwine two kinds of
interfaces. In what follows, we systematically elaborate on
our fundamental principles.

For an interface that declares a function pointer 𝑖 with ar-
guments 𝑎𝑟𝑔𝑖 and return values 𝑟𝑒𝑡𝑖 , its specification consists
of several constraints. Each quantifier constraint 𝑞 ∈ 𝑄 spec-
ifies the path relationships 𝑅 that should be obeyed among
multiple critical “interaction data” and their “uses”. A value
𝑣 ∈ 𝑉 represents regulated incoming data for an interface, in-
cluding function pointer arguments 𝑎𝑟𝑔𝑖 , APIs return values
𝑎𝑟𝑔𝑓 , global variables 𝑔, literals 𝑙 , and memory regions acces-
sible from these values 𝑣 .field [62, 67]. Meanwhile, a use
𝑢 ∈ 𝑈 abstracts away the propagation of value through inter-
mediate statements, focusing on ultimate usages, including
being used as outgoing data of interfaces or involved in sen-
sitive operations, e.g., 𝑑𝑒𝑟𝑒 𝑓 , 𝑑𝑖𝑣 . The outgoing data contains
variables passed to APIs as arguments 𝑎𝑟𝑔𝑓 , those returned
by interface 𝑟𝑒𝑡𝑖 , and those assigned to global variables 𝑔,
which would be subsequently used by other entities.



EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Chen et al.

1 struct vb2_ops cx23885_qops = {
2 /* Interface: function pointer */
3 .buf_prepare = buffer_prepare,
4 };
5 int buffer_prepare(struct vb2_buffer *vb) {
6 /* Incorrect error code leads to npd */
7 - cx23885_vbibuffer(&buf->risc);
8 + return cx23885_vbibuffer(&buf->risc);
9 }
10 int cx23885_vbibuffer(struct cx23885_riscmem *risc) {
11 /* Uniform API invocation */
12 risc->cpu = dma_alloc_coherent(...);
13 if (risc->cpu == NULL) return -ENOMEM;
14 }

Figure 3. A security patch that introduces a new value-flow
path from line 13 to line 8.
The path relation 𝑅 is defined as composite logical con-

structs that can be expressed through a combination of two
basic relations. First, the reachability relation 𝑣

𝑐
↩→ 𝑢 states

that a value 𝑣 reaches a use 𝑢 under a specific path condition
𝑐 ∈ 𝐶 , defined as a first-order logic formula involving values
𝑉 . Second, the order precedence relation 𝑢1 ≺ 𝑢2 constrains
the partial order of two use sites in the control flow, allowing
us to capture critical positional information. By combining
these basic relations using logical operators, i.e., ∧,∨,¬, we
can create highly expressive specifications that effectively
capture various anomalous behaviors within the interface.

4.2 Examples
We provide three concrete security patches as examples to
demonstrate the expressiveness of our specifications. The
value-flow path changes are also provided visually in Fig. 6.
Our core insight is the way value-flow path changes could
shed light on the form of specifications.
Example 4.1. Incorrect return value. Fig. 3 fixes the NPD
in Fig. 1 by correcting the return value at line 8.
Value-flow Changes. In Fig. 6(a), the code changes intro-
duce a new data flow edge, i.e., from the returns of func-
tion cx23885_vbibuffer@7/8 to the returns of function
buffer_prepare@8, making -ENOMEM reach the returns
of buffer_prepare across function boundaries. The new
reachability relation is held under the formula 𝜑1 over API
return values. We use Spec. 4.1 to describe such behavior:
Spec 4.1. ∀ 𝑣 : 𝑣

𝑐
↩→ 𝑢, where: (1) 𝑣 = -ENOMEM, (2) 𝑢 =

𝑟𝑒𝑡buf_prepare, and (3) 𝑐 = 𝑟𝑒𝑡dma_alloc_cohenrent == NULL.

Explanation. This specification exemplifies a typical reach-
ability relation between a value and its use. It indicates that
the failure of API dma_alloc_coherent should be propa-
gated back to the invoker of interface buf_prepare via error
code -ENOMEM. The absence of such a value-flow path implies
specification violations. The specification differs from the
value-flow changes in three aspects: 1) intermediate state-
ments specific to patched codes are omitted; 2) the use is
abstracted to 𝑟𝑒𝑡buf_prepare rather than the returns of specific
interface implementation; 3) quantifier is associated with reg-
ulated interaction data 𝑣 , while that for𝑢 is disregarded since
an interface only has a single return.

1 struct i2c_algorithm smbus_algorithm = {
2 /* Interface: function pointer */
3 .smbus_xfer = xfer_emulated,
4 };
5 int xfer_emulated(int size, union smbus_data *data) {
6 switch (size) {
7 case I2C_SMBUS_I2C_BLOCK_DATA:
8 + if (data->len <= MAX)
9 for (i = 1; i <= data->len; i++)
10 msg[0].buf[i] = data->block[i]; /* Out-of-bound bug */
11 }
12 }

Figure 4. A security patch that modifies the condition of the
value-flow path from line 5 to line 10.
1 struct platform_driver telem_driver = {
2 /* Interface: function pointer*/
3 .remove = telem_remove,
4 }
5 struct ida telem_ida;
6 int telem_remove(struct platform_device *pdev) {
7 - put_device(&pdev->dev);
8 /* Use-after-free bug */
9 ida_free(&telem_ida, MINOR(pdev->dev.devt));
10 + put_device(&pdev->dev); /* Uniform API invocation */

11 }

Figure 5. A security patch that alters the execution orders
of two use sites of pdev->dev.

Example 4.2. Missing checking on parameter. Fig. 4
showcases a security patch that fixes out-of-bound access in
line 10 by adding sanity checks on data->len.
Value-flow Changes. As illustrated in Fig. 6(b), the code
changes alter the condition that guards the path from param-
eter of xfer_emulated, i.e., data->block@5 to the deref-
erence site at line 10. A new logic formula 𝜑3 regarding
parameter data->len is added to the condition while the
path itself stays the same. The specification for it is listed:

Spec 4.2. ∀𝑣 : �𝑢 : 𝑣
𝑐
↩→ 𝑢, where: (1) 𝑣 = 𝑎𝑟𝑔smbus_xfer2 .block,

(2) 𝑢 = deref, and (3) 𝑐 = 𝑎𝑟𝑔smbus_xfer2 .len > MAX.

Explanation.Different from the first specification, this spec-
ification requests the absence of value-flow paths from the
block field of 𝑎𝑟𝑔2 of interface smbus_xfer to pointer deref-
erencewhen the len field of𝑎𝑟𝑔2 is larger than MAX. Likewise,
the specification abstracts variable data to 𝑎𝑟𝑔2 and attach
quantifier on 𝑣 and 𝑢. Besides, the specification does not
incorporate 𝜑2 and 𝜑4, but retains 𝜑3. Moreover, we negate
𝜑3, plus the non-existent quantifier �, to collaboratively rep-
resent the rejection of invalid value-flow paths.

Example 4.3. Incorrect interface usage order.We finally
give a security patch in Fig. 5 to explain how patches could
merely change the relative positions of statements in lines 7
and 9 to prevent use-after-free bug.
Value-flowChanges. In Fig. 6(c), the value-flow path that is
originally from pdev->dev@6 to put_device@7 now flows
to put_device@10, and notably, no extra path or path condi-
tion changes are discovered. To capture the impact of subtle
code change, a novel dimension, i.e., use site order Ω, is
incorporated. For the two use sites of the tracked variable
pdev->dev, the dereference site at line 9 was executed after
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Figure 6. The value-flow path changes induced code changes in three patch examples. Each node represents a variable/use site,
plus the line number. The solid edges imply the data dependence and the dashed arrow denotes the flow order edge. Removals
(additions) are annotated in red (green).

put_device in pre-patch code, but their orders are reversed
thereafter. The specification is listed below:
Spec 4.3. �𝑢1, 𝑢2 : (𝑣 ↩→ 𝑢1)∧(𝑣 ↩→ 𝑢2)∧(𝑢2 ≺ 𝑢1), where:
(1) 𝑣 = 𝑎𝑟𝑔remove1 .dev, (2)𝑢1 = deref, and (3)𝑢2 = 𝑎𝑟𝑔

put_device
1 .

Explanation. In contrast to earlier specifications that solely
encompass reachability relations, the order precedence re-
lation 𝑢2 ≺ 𝑢1 emphasizes the desired execution orders of
multiple use sites for the same critical interaction data. Specif-
ically, for 𝑎𝑟𝑔1 of interface remove, there must not exist a
dereference site 𝑢1 that occurs after the same variable is
passed to API put_device as the first argument. There is
no quantifier for 𝑣 since the argument for one interface could
be uniquely identified with an index.

5 Seal in a Nutshell
We have demonstrated the benefits of leveraging value-flow
properties. Next, we explain how Seal automates specifica-
tion inference and violation detection in a top-down manner.
Workflow of Seal. As shown in Fig. 7, the input of Seal is
the code changes in security patches, where patch descrip-
tions are excluded. Seal would first analyze data-, control-
and flow- dependence for pre- and post-patch codes to con-
struct the two versions of dependence graphs [62, 68, 89]
(stage ❶). Later, we discern graph differences in the granu-
larity of value-flow paths to perceive dependence changes in
three dimensions (stage ❷). Afterward, path changes are gen-
eralized to interface specifications (stage ❸). Finally, codes
that implement or use the same interface should conform
to the same constraint and thus are detection targets. We
perform flow-, context-, path-, and field-sensitive value-flow
path searching on bug regions to judge violations (stage ❹).
Running Example. We take the security patch in Fig. 5 as
a concrete example to detail our workflow.
Step 1: Slicing on PDG. Seal first flattens the pre-patch and
post-patch graph structures to paths by performing slicing
from interaction data, including parameter pdev, global vari-
able telem_ida, fields pdev->dev and pdev->dev.devt.
In pre-patch PDG, except for two paths from pdev->dev@6
to the API invocation site put_device@7 (#1a) and deref site
at line 9 (#2), another two paths from telem_ida (#3) and
pdev->dev.devt@6 (#4) to first and second argument of API

invocation site ida_free@9 are also collected. After apply-
ing the patch, Seal observes a new path from pdev->dev@6
to put_device@10 (#1b).
Step 2: Path Comparison. Seal compares collected paths
{#1a, #2, #3, #4} and {#1b, #2, #3, #4} in three aspects: pres-
ence in pre-/post- PDG, path conditions, and orders of compa-
rable use sites. The four paths are unchanged for the first two
dimensions, particularly for #1a and #1b, since the statements
inside paths are identical despite different line numbers, and
the path conditions are always true. For the last dimen-
sion, the use sites in paths #3 and #4 are not comparable
with those in paths #1a/#1b/#2 owing to different variables
being tracked. Specifically, the type of tracked variable in
#3 is integer, therefore, it is passed by value and cannot be
modified in API via reference. telem_ida in #4 is not alias
with pdev and we cannot assume one API could manipulate
arbitrary memory. As a result, the orders of use sites in #3
and #4 are unchanged. Instead, we notice that Ω(9) > Ω(7)
in pre-patch code, but Ω(9) < Ω(10), making paths #1a, #1b
and #2 the ingredient to mine specifications.
Step 3: Specification Abstraction. The paths #1a, #1b, and
#2 are abstracted in this step to produce specifications. First,
the variable pdev specific to telem_remove is mapped to
the domain of formulation 𝑎𝑟𝑔remove1 when forming basic
reachability relations 𝑣 ↩→ 𝑢1 and 𝑣 ↩→ 𝑢2 and order rela-
tion ≺. Since order relations between two use sites are only
meaningful when they use the same data, Seal applies a con-
junction of these three fundamental relations. Second, for
the quantifier, the removal of order relation𝑢2 ≺ 𝑢1 indicates
the quantifier of the above logical conjunction could only
be ∃ or �. Finally, ∃ is purged since no other invocations
to API put_device and dereference sites are found in the
patched code. We highlight that the “free” semantic of API
put_device is not needed in the inference process.
Step 4: Bug Detection. Finally, Seal applies the specifica-
tions to other implementations of interface remove. The
value and use components within the specification are first
instantiated inside code regions under inspection. If no corre-
sponding values or uses are found, Seal ceases the analysis
of the current implementation and switches to the next one.
Otherwise, Seal starts to check the reachability relation by
searching for value-flow paths between variables and use
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Figure 7. Workflow of Seal.

sites of interest. Once obtained, Seal turns to validate the
orders of use sites to determine the presence of violations.

Remark. Seal is agnostic to API semantics, thus choos-
ing to conservatively apply the above specification to other
implementations of function pointer remove rather than ar-
bitrary codes for the sake of precision and scalability. The
rationale is multiple implementations of the same function
pointer share the same context and their interaction data
is processed uniformly. For instance, put_device is de-
signed to decrement the refcount of incoming parameters,
and will release it if the refcount reaches zero. For inter-
face remove that is typically invoked when unloading a
device, the refcount of 𝑎𝑟𝑔remove1 .dev is presumably 1. How-
ever, put_device could be executed before the dereference
site in other places if the refcount is >1. Nevertheless, our
formulation could be flexibly adjusted by not specifying the
applicable function pointers if no relevant elements are in-
volved to increase recall. One example is that the return
values of API kmalloc should not be dereferenced when it
is NULL no matter the surrounding codes.

6 Technical Design
We start the technical details of Seal with our customized
program dependence graph (PDG) (§ 6.1). Then, we elabo-
rate on several critical technical choices when abstracting
specifications from changed value-flow paths (§ 6.2 and § 6.3)
and examining specifications for bug detection (§ 6.4).

6.1 PDG Construction
Def. 6.1 defines PDG that effectively captures data-, control-,
and flow dependencies between program elements, enabling
precise semantic understanding of security patches.

Definition 6.1 (Program Dependence Graph). For a pro-
gram, its PDG is a 4-tuple G := (V, E𝑑 , E𝑐 , E𝑜 ), where:
• V is the set of nodes. Each node 𝑣 ∈ V is a statement or,
equivalently, the variable defined by the statement.
• E𝑑 ⊆ V ×V is the set of data-dependence edges. Edge
(𝑣1, 𝑣2) ∈ E𝑑 means the value of 𝑣1 is propagated to 𝑣2 1)
directly via assignment, 2) indirectly via pointer derefer-
ences, 3) inter-procedurally via actual/formal parameters,
return values/receivers during function invocation.
• E𝑐 ⊆ V×V is the set of control-dependence edges. Edge
(𝑣1, 𝑣2) ∈ E𝑐 means that the execution of statement 𝑣2 is
determined by the outcome of 𝑣1.

• E𝑜 ⊆ V ×V is the set of control flow edges. Edge (𝑣1, 𝑣2)
∈ E𝑜 indicates that if a concrete execution goes through
both 𝑣1 and 𝑣2, 𝑣1 must be executed before 𝑣2.

Both graph differences and bug detection are conducted
in the unit of value-flow paths, defined in Def. 6.2. Each
value-flow path 𝑝 describes how a specific variable is prop-
agated and used, which is collected by slicing [80] on PDG
along data-dependence edges. We define 𝑣1 ⇝ 𝑣2 if a value-
flow path exists from 𝑣1 to 𝑣2. Moreover, each value-flow
path is accompanied by several critical information for us to
perceive its changes.
Definition 6.2 (Value-flow Path). Given a PDG G, a value-
flow path is defined as 𝑝 = (𝑣1, . . . , 𝑣𝑛), where (𝑣𝑖−1, 𝑣𝑖 ) ∈ E𝑑
for 2 ≤ 𝑖 ≤ 𝑛. For each 𝑝 , we have:
• 𝑣1 and 𝑣𝑛 represent the source and sink of 𝑝 .
• Ψ(𝑝) maps 𝑝 to logical formulas overV to denote that
the path occurs only when constraints are satisfied.
• Ω : V ↦→ N maps each statement in 𝑝 a partial order
where Ω(𝑠1) < Ω(𝑠2) means 𝑠1 is executed prior to 𝑠2.

Path condition Ψ(𝑝) is computed by recursively travers-
ing control and data dependence edges on PDG, following
existing quasi-path-sensitive analysis [62, 71]. Ω(𝑣) is cal-
culated by performing topological sorting over statements
following the control flow edges E𝑜 . In the following sec-
tions, the value-flow paths are inter-procedural by default.
We use Ψ− and Ψ+ to distinguish path conditions collected
in pre- and post-patch PDGs when necessary, so as Ω− and
Ω+. For simplification, we use 𝑣 to indicate a value on PDG
for shorthand and omit the statement defining the value.

6.2 PDG Differentiation
Taking security patches and pre-/post-patch PDGs as in-
puts, this phase computes PDG differences as changed inter-
procedural value-flow paths 𝑃𝑝𝑟𝑒 and 𝑃𝑝𝑜𝑠𝑡 , serving as the
ingredients for specification inference.
Specifically, this stage seeks to identify value-flow paths

associated with interaction data and whose data, control,
and flow dependencies are altered by patches. In essence, the
collection process is conducted via forward and backward
slicings from the slicing criterions. We search paths inter-
procedurally since interaction data could be propagated and
used across functions, as exemplified in § 3.2.
6.2.1 Slicing Criterion. Conceptually, we consider a PDG
node as the slicing criterion if either the node itself or one
of its incoming/outgoing dependence edge is changed. The
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set of criterions gradually expands as more PDG nodes with
changed dependencies are discovered during slicing.
• First, PDG nodes corresponding to changed source codes
are considered as slicing criterions since they would
change data dependence relationships. For example, line
8 in Fig. 4 introduces a new comparison statement, whose
value-flowpaths should be analyzed to figure outwhether
its value is determined by interaction data.
• Second, if the control dependence edge of a PDG node
is altered, the node is considered to be slicing criterion
since the path conditions of value-flow paths passing the
nodes are modified. Still in Fig. 4, the execution of the
array access statement in line 10 additionally depends on
the if-condition in line 8 after applying the patch.
• Finally, if the control flow dependence of a PDG node
is changed, the node would be sliced. For instance, the
flow dependences of nodes in line 8 of Fig. 5 are modified,
thus we collect their paths to analyze the order relations
with changed lines 7 and 10.

6.2.2 Slicing Termination. Once starting the forward
and backward traversal from picked slicing criterions, we
terminate it when encountering interaction data or leaf nodes
that have no further data-dependence edge. Eventually, the
sources of our collected paths are input data from interfaces
and sinks are output data or sensitive operations. These
sources and sinks are elements in our formulations and have
attributes for us to abstract specifications. Instead, if a path
ends in local variables that are irrelevant to interaction data,
we discard them. After gathering all changed paths, we cal-
culate their path conditions and record the orders of internal
use sites by referring to Def. 6.2. Likewise, path conditions
are additionally processed in the same principles to only re-
tain conditions over interaction data. Specifically, we validate
whether each variable in constraint Ψ depends on interaction
data by traversing along data dependence backward.

6.2.3 Performance Optimization via Memorization.
The above procedure would incur significant overhead due to
inter-procedural searching, let alone computing path condi-
tions. To address the problem, we determined to first perform
slicing within patched functions, and then memorize visited
value-flow paths as summaries to avoid redundant searching
when extending the paths into inter-procedural ones.

Specifically, we first terminates slicing when reaching
function boundaries, such as arguments, return values, or
function calls, although they are not interfaces, e.g., driver-
specific function cx23885_vbibuffer in Fig. 3. Later on,
starting from these boundaries, we recursively perform slic-
ing inside the callers and callees of the patched functions and
memorize slicings related to function arguments, and return
values to summaries. When the same function arguments
and return values are met in subsequent traversal, these sum-
maries could be directly concatenated to the current slicing.

Algorithm 1: Value-flow Path Classification.
1 Function Classify(𝑃𝑝𝑟𝑒 , 𝑃𝑝𝑜𝑠𝑡):
2 𝑃− ← 𝑃𝑝𝑟𝑒 \ 𝑃𝑝𝑜𝑠𝑡 ; 𝑃+ ← 𝑃𝑝𝑜𝑠𝑡 \ 𝑃𝑝𝑟𝑒 ;
3 𝑃Ψ ← ∅; 𝑃Ω ← ∅;
4 for 𝑝 ∈ 𝑃𝑝𝑟𝑒 ∪ 𝑃𝑝𝑜𝑠𝑡 do
5 if Ψ+ (𝑝 ) ≠ Ψ− (𝑝 ) then 𝑃Ψ ← 𝑃Ψ ∪ {𝑝 } ;
6 else 𝑃Ω ← 𝑃Ω ∪ {𝑝 } ;

6.3 Specification Extraction
A single value-flow path is meaningless, instead, change
matters to understand the correct ways to implement or
use interfaces. This stage classifies 𝑃𝑝𝑟𝑒 and 𝑃𝑝𝑜𝑠𝑡 , into four
categories and performs different deduction strategies on
each category to infer specifications.

6.3.1 PathClassification. Alg. 1 segregates 𝑃𝑝𝑟𝑒 and 𝑃𝑝𝑜𝑠𝑡
into four distinct sets to ascribe divergences. Two paths are
identical if they are in the same length, share identical nodes
and internal data dependence edges. The algorithm first per-
forms a minus operation on 𝑃𝑝𝑟𝑒 and 𝑃𝑝𝑜𝑠𝑡 to identify paths
that lack a counterpart in another PDG (line 2) and stores
them into 𝑃− and 𝑃+. For the remainings, we evaluate the
equivalences of path conditions collected in two versions of
PDGs (line 5) by examining the consistencies of invovling
variables and their satisfying sets. Finally, in case path con-
ditions are identical, the path differences lie in the orders of
internal use sites (line 6) and we put these paths into 𝑃Ω .

6.3.2 Specification Abstraction. We move forward to
process paths in four sets to deduce specifications𝑄 in Alg. 2.
At a high level, we use the relations among variables, i.e.,
𝑅V , as the intermediate structure to assist the transitions
from path differences to specifications 𝑄 . In essence, 𝑅V is
an instantiation of relation 𝑅 in Fig. 2 by replacing elements
in 𝑉 and𝑈 with variables in patched codes.
Alg. 2 collects reachability relation⇝ from every single

path, while the condition and order relation are collected by
concerning paths in 𝑃Ψ and 𝑃Ω . Specifically, in lines 3-6, for
each path 𝑝 in 𝑃− and 𝑃+, we extract its source 𝑣1, sink 𝑣𝑛
and path condition Ψ(𝑝) to form a reachability relation. The
reachability relations in 𝑃− are not expected, whereas the
converse is true for 𝑃+. Then, for each path 𝑝 in 𝑃Ψ, we use
delta constraints Ψ𝛿 (lines 7-9) to form reachability relation,
which calculates conditions that only appear in pre- or post-
patch PDGs. For instance, in Fig. 4, the condition on size is
removed when computing delta since it’s not changed, in-
stead, we retain the condition on data->len. Finally, in lines
11-13 and line 19, for paths in 𝑃Ω , we group their sink state-
ments into mappingM : V ↦→ 2V by source statement 𝑣1.
Given source 𝑣1,Mmaintains all use sites of 𝑣1 whose orders
are comparable. In lines 13-19, upon appending, we iterate
over statements 𝑠 ∈ M[𝑣1] and identify whether the relative
positions between current sink 𝑣𝑛 and 𝑠 are inconsistent in
pre-/post-patch PDGs. The order relations in pre-patch PDG
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Algorithm 2: Specification Deduction.
1 Function Deduction(𝑃−, 𝑃+, 𝑃Ψ, 𝑃Ω):
2 𝑅V ← ∅; 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑚𝑎𝑝 M;
3 for 𝑝 = {𝑣1, . . . , 𝑣𝑛 } ∈ 𝑃− do
4 𝑅V ← 𝑅V ∪ {¬ (𝑣1 ⇝ 𝑣𝑛 𝑢𝑛𝑑𝑒𝑟 Ψ− (𝑝 ) ) };
5 for 𝑝 = {𝑣1, . . . , 𝑣𝑛 } ∈ 𝑃+ do
6 𝑅V ← 𝑅V ∪ { (𝑣1 ⇝ 𝑣𝑛 𝑢𝑛𝑑𝑒𝑟 Ψ+ (𝑝 ) ) };
7 for 𝑝 = {𝑣1, . . . , 𝑣𝑛 } ∈ 𝑃Ψ do
8 Ψ𝛿 = Ψ− (𝑝 ) ∧ ¬ Ψ+ (𝑝 ) ;
9 𝑅V ← 𝑅V ∪ {¬ (𝑣1 ⇝ 𝑣𝑛 𝑢𝑛𝑑𝑒𝑟 Ψ𝛿 ) };

10 for 𝑝 = {𝑣1, . . . , 𝑣𝑛 } ∈ 𝑃Ω do
11 𝑟1 ← 𝑣1 ⇝ 𝑣𝑛 𝑢𝑛𝑑𝑒𝑟 Ψ(𝑝 ) ;
12 if 𝑣1 ∉ M then M[𝑣1 ] ← ∅;
13 for 𝑠 ∈ M[𝑣1 ] do
14 𝑟2 ← 𝑣1 ⇝ 𝑠 𝑢𝑛𝑑𝑒𝑟 Ψ(𝑝′ = {𝑣1, . . . , 𝑠 }) ;
15 if Ω+ (𝑠 ) > Ω+ (𝑣𝑛 ) ∧ Ω− (𝑠 ) < Ω− (𝑣𝑛 ) then
16 𝑅V ← 𝑅V ∪ {¬ (𝑟1 ∧ 𝑟2 ∧ (Ω (𝑠 ) < Ω (𝑣𝑛 ) ) };
17 if Ω+ (𝑠 ) < Ω+ (𝑣𝑛 ) ∧ Ω− (𝑠 ) > Ω− (𝑣𝑛 ) then
18 𝑅V ← 𝑅V ∪ {¬ (𝑟1 ∧ 𝑟2 ∧ (Ω (𝑣𝑛 ) < Ω (𝑠 ) ) };
19 M[𝑣1 ] ← M[𝑣1 ] ∪ {𝑣𝑛 };
20 𝑄 ← inferQuantifier(𝑅V ) ; ⊲ Explained in § 6.3.3

is not expected. We finally deduce specifications 𝑄 from 𝑅V

with subprocedure inferQuantifier (line 20).

6.3.3 Domain Mapping. 𝑅V collected in Alg. 2 contains
the reachability and order relations among variables in the
patched codes. To form specifications, we need to abstract
program variables in domainV to elements in formulations
and deduce the quantifiers for collected relations, which is
conducted by subprocedure inferQuantifier.
First, we use a mapping A : V ↦→ 𝑉 ∪ 𝑈 to abstract

program variablesV to 𝑉 and 𝑈 , thereby deriving 𝑅 from
𝑅V . The mapping is many-to-one, for instance, multiple
dereference sites in programs could be mapped to 𝑑𝑒𝑟𝑒 𝑓 .
For reachability relation, the source 𝑣1 is mapped to 𝑉 , indi-
cating regulated interaction data. The variables inside path
conditions Ψ are mapped to 𝑉 similarly to form condition
𝐶 . The sink 𝑣𝑛 is mapped to 𝑈 , representing the critical use
to check. The order relation between two statements inV
is kept when transforming them to 𝑈 , e.g., Ω(𝑠1) < Ω(𝑠2) is
preserved by 𝑢1 ≺ 𝑢2 where A[𝑠1] = 𝑢1 and A[𝑠2] = 𝑢2.
Second, the subprocedure infers quantifiers for relations

𝑅. Our insight is the way relations change implies the pos-
sible quantifiers. The relations in 𝑅V with ¬ are removed
when applying patches, whose corresponding quantifiers
could only be ∃ or �. Instead, the quantifiers for relations
in 𝑅V without the negation operator could be ∃ or ∀. These
quantifiers are further validated by examining the relations
among variables that could map to the same value𝑉 /use𝑈 in
patched code. Taking ¬(𝑣1 ⇝ 𝑣𝑛) ∈ 𝑅V as an example, after
abstraction, we obtainA(𝑣1) ↩→ A(𝑣𝑛) ∈ 𝑅 whose quantifier
is ∃ or �. Then, we validate whether the reachability relation
among other variables that also map to A(𝑣1) or A(𝑣𝑛) hold.
If not, we conclude the quantifier is �.

6.4 Path-Sensitive Bug Detection
Given the summarized specifications, the core of bug de-
tection is a graph reachability problem, whose goal is to
gather realizable value-flow paths in bug detection regions
and examine if they conform to specifications 𝑄 .

6.4.1 Path Searching. Specifically, we consider the bug
detection regions to be other implementations of the same
function pointer, determined via indirect call reasoning [22,
50], or other usages of the same API if no elements related
to function pointers are involved. For each region, we first
locate the set of sourcesV𝑠𝑟𝑐 and sinkV𝑠𝑖𝑛𝑘 statements, by
mapping 𝑉 and𝑈 to PDG nodesV , which is an inverse of
mappingA. IfV𝑠𝑟𝑐 orV𝑠𝑖𝑛𝑘 is empty, we cease bug detection.
Otherwise, for each source-sink pair, we perform depth-first
searching on PDGs in a flow-, context-, path-sensitive, inter-
procedural manner. During traversal, path conditions are
collected and evaluated simultaneously to pause infeasible
paths that involve contradictory conditions timely.
To save computation costs, we enforce the same memo-

rization strategies to cache intra-procedural value-flow paths
as summaries to avoid redundant searching. Unlike the slic-
ing to collect changed paths, the inter-procedural analysis
here is in a bottom-up fashion [63], where before analyzing a
function, all its callee functions are analyzed and their paths
are memorized as function summaries. The final value-flow
paths are obtained via summary inlining that stitches paths
and takes conjunction of path conditions.

6.4.2 Path Examination. We identify and report bugs if
the collected value-flow paths contravene any specified con-
straints. Initially, for each path 𝑝 , we assess the consistency
between Ψ(𝑝) and given condition 𝑐 ∈ 𝐶 . This is achieved by
first inversely mapping the interaction data within condition
𝑐 to variables in target regions using the inverse of mapping
A, followed by an evaluation of the satisfying sets. If not,
we further employ a relaxed strategy to accommodate code
differences by verifying whether critical interaction data in
condition 𝑐 is present in Ψ(𝑝). Subsequently, we evaluate the
consistency of order relations for use sites that are reachable
from the same source. Finally, we analyze the quantifiers
over all collected realizable value-flow paths.

7 Implementation
Seal is developed on top of LLVM [42], where the programs
are in SSA form [29]. The PDGs are constructed with sparse
value-flow analysis [62, 67] and logical satisfiability is deter-
mined by Z3 solver [30]. More details are provided below.
LLVM Bitcode Generation. Applying a security patch in-
volves two versions of codes. To facilitate extensive node
and edge comparisons, we link two versions of codes into a
single bitcode. Specifically, we rename global variables and
functions in pre-/post-patch codes to distinguish them and
prevent linkage errors. Besides, we enable the option “-g” to
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preserve line numbers of PDG nodes and utilize SIRO [93]
to overcome the IR version incompatibility between our im-
plementation and the compilation chain of Linux.
Demand-driven PDG Generation. The cost of PDG gen-
eration for the entire program is excessive, and such cost
is further amplified when calculating differences. Thus, we
choose to generate PDGs on demand for the sake of effi-
ciency. Specifically, in PDG differentiation, we only generate
PDGs for patch-related functions, which are analyzed by
performing lightweight call graph analysis to identify the
callers and callees of patched functions until we meet inter-
faces. Likewise, we solely generate PDGs for delineated bug
detection regions when checking violations.
Value-flow Analysis. Our value-flow analysis is context-,
field-, flow- and path-sensitive. We follow existing efforts [62,
89] to reason alias and assume APIs could read/write passing
pointer parameters and accessible fields. The structure fields
are distinguished by the bytes offsets from the base pointer.
Context-sensitivity is reached by applying CFL reachabil-
ity [24, 60] during PDG slicing, and by function cloning [81]
during bottom-up bug detection. Indirect calls are resolved
by type analysis [22] when determining bug detection re-
gions. Note that our slicing does not cross the boundary of
function pointers to ensure scalability.
Bug Report. Seal provides user-friendly bug reports to ease
the burden of bug confirmations and fixes. The bug reports
contain buggy value-flow paths with line numbers attached,
inferred specifications, and the original patch, which shed
light on the bug-fixing suggestions.

8 Evaluation
To quantify the effectiveness and efficiency of Seal, we pro-
pose the following four research questions:
• RQ1: How effective are inferred specifications in find-
ing previously unknown bugs in Linux (§ 8.1)?
• RQ2:What are the characteristics of interaction data
behaviors being regulated and their violations? (§ 8.2)?
• RQ3: How does Seal compare against patch-based and
deviation-based approaches (§ 8.3)?
• RQ4: How efficient does Seal in inferring specifica-
tions and detecting violations (§ 8.4)?

Dataset. Seal targets Linux v6.2 (commit c9c3395d), the
latest version at the time of the experiments. To collect inputs,
we enumerated the historical patches applied to Linux v6.2
and followed existing approaches [47] to search keywords
over patch descriptions to identify commits for bug fixes.
These keywords pertain to typical terms used to describe
15 bug types that Seal proficiently handles, such as “oob”
for out-of-bounds. Finally, in total of 12,571 security patches
were collected. The source code of Seal is available1.
Environment. All experiments are carried out on a single
64-bit server running Ubuntu 20.04 LTS and equippedwith 64
1
https://github.com/harperchen/SEAL.git

Table 1. 45 bug samples found by Seal. The S, C, A in column
Status represent Submitted, Confirmed, and Applied.

SubSystem (Location) Buggy function Type Status

drivers/media/usb rtl28xxu_i2c_xfer NPD A
drivers/media/usb gl861_i2c_master_xfer NPD A
drivers/media/usb dw2102_i2c_transfer NPD A
drivers/media/usb ce6230_i2c_master_xfer NPD A
drivers/video/fbdev tgafb_check_var DbZ A
drivers/video/fbdev nvidiafb_check_var DbZ A
drivers/video/fbdev au1200fb_fb_check_var DbZ A
drivers/staging ks_wlan_set_encode_ext OOB A
drivers/media/pci tw68_buf_prepare NPD A
drivers/media/pci buffer_prepare NPD A
drivers/i2c/busses xgene_slimpro_i2c_xfer OOB A
drivers/regulator stm32_adc_probe NPD C
drivers/firmware meson_sm_probe NPD A
drivers/dma mv_xor_probe NPD S
drivers/bus weim_parse_dt NPD S
drivers/video/fbdev au1200fb_drv_probe Wrong EC A
drivers/spi tegra_slink_probe Wrong EC S
drivers/sound/soc rt5665_i2c_probe MemLeak A
drivers/tty asc_init_port NPD C
drivers/spi tegra_sflash_probe Wrong EC S
drivers/mmc/host spmmc_drv_probe MemLeak A
drivers/net/wireless rtw89_debug_priv_send_h2c_set Wrong EC A
drivers/net/wireless rtw_debugfs_set_fix_rate Wrong EC A
drivers/net/wireless rtl_debugfs_set_write_reg Wrong EC A
drivers/media/usb opera1_read_mac_address Uninit Val A
drivers/media/usb su3000_read_mac_address Uninit Val S
drivers/usb gfs_bind Wrong EC A
drivers/media/i2c hi846_init_controls MemLeak A
drivers/platform vb2ops_venc_queue_setup OOB A
drivers/platform viacam_probe UAF A
drivers/media/pci netup_unidvb_initdev NPD A
drivers/md multipath_remove_disk OOB A
drivers/md raid1_remove_disk OOB A
drivers/ata ahci_platform_get_resources MemLeak S
drivers/iommu mtk_iommu_of_xlate MemLeak S
drivers/dma lpc18xx_dmamux_reserve MemLeak S
drivers/edac amd8131_probe MemLeak S
drivers/media/usb go7007_register_encoder NPD S
drivers/usb/dwc3 dwc3_imx8mp_probe MemLeak S
drivers/firewire fwnet_finish_incoming_packet UAF A
fs/ext4 ext4_parse_param NPD C
fs/quota dquot_init MemLeak S
net/sched tcf_gate_cleanup NPD S
net/hsr prp_get_untagged_frame NPD S
core/mm shmem_parse_one NPD S

Note: the complete bug list is available at https://harperchen.github.io/bugs.html.

Intel(R) Xeon(R) Gold 6226R CPU cores running at 2.90GHz
and 252GB of memory.

8.1 Effectiveness of Seal
Confirmed and Fixed Bugs. Seal generated 232 bug re-
ports using inferred specifications. All bug reports are man-
ually validated using informative value-flow paths and origi-
nal patches, relieving us to investigate all reports in two days
and confirm 167 true bugs, achieving a precision of 71.9%.
We sampled 45 true bugs in Tab. 1 due to the space limits.
Among 167 true bugs, 146 of them are driver bugs, 7 for the
filesystem, 13 for the network, and 1 for the core subsystem.
We have actively reported bugs to kernel maintainers and
prepared patches for bug fixing. Upon acceptable, 95 bugs
and corresponding specifications were confirmed, and 56

https://github.com/harperchen/SEAL.git
https://harperchen.github.io/bugs.html
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Table 2. Bug types and root causes of reported bugs
Bug types Prop Causes CWE ID

NULL Ptr Deref (NPD) 31.0% ① - ④ CWE-478
Memory/Resource Leak 23.7% ③ CWE-401/402
Wrong Error Codes 19.8% ②, ③ CWE-393
Out of Bounds (OOB) 10.3% ① CWE-125/787
Use After Free/Double Free 9.2% ②, ④ CWE-415/416
Divide by Zero (DbZ) 4.3% ① CWE-369
Uninitialized Value 1.7% ② CWE-456/457

Note: ① incorrect/missing checks of interaction data, ② incorrect return values, ③
incorrect/missing error handling of APIs, ④ incorrect usage orders of APIs

bugs were fixed by our patches. Kernel maintainers quickly
reviewed, accepted, and applied our patch due to the clear
explanations and original patches as examples. In particular,
27 patches got a response within one day. So far, our patches
have been backported to stable versions, demonstrating the
effectiveness of Seal in enhancing Linux reliability.
Bug Types and Security Impacts. In Tab. 2, Seal discov-
ers a wide range of vulnerabilities, most of which belong
to the top 25 most dangerous software weaknesses [7], in-
cluding one assigned CVE-2023-2194. Specifically, 31.0% of
bugs are NULL pointer dereferences (NPD) that could crash
the system. Memory leaks (MemLeak) and uninitialized val-
ues (Uninit Val) can result in sensitive information exposure.
Wrong Error Code (Wrong EC) could hurt system reliabil-
ity. For exploitability, 33.1% of bugs reside in system call
handlers, which could be triggered via crafted system call
sequences. 5.3% are mistakes in interrupt handlers. All of
them are regarded as user-controllable entry points [48, 54].
Importantly, we have manually triggered one NPD bug by
slightly changing the PoC of CVE-2023-28328 [4].
Long Latency. We emphasize that bugs found by Seal are
long-latent, which have been hidden for an average of 7.7
years before being identified. As shown in Fig. 8(a), 29% of
bugs have a period of more than 10 years. Note that Linux
has been regularly scanned by commercial analyzers, such as
Coverity [2], Smatch [5], Syzkaller [74], etc. However, none
of our found bugs were detected by those industrial tools,
providing a strong evidence for the indispensability of Seal.

8.2 Specification Characteristics
Specification Statistics. Seal produced 12,322 relations
from security patches to regulate interaction data behaviors.
Among them, 2,084 reachability relations were summarized
from removed value-flow paths 𝑃− , and 5,499 from added
ones 𝑃+ (defined in § 6.3). Additionally, 3,757 reachability
relations were abstracted from 𝑃Ψ whose changed conditions
matter when forming specifications. The remaining 982 order
relations came from 𝑃Ω , describing the control flow relation-
ships between use sites. Interestingly, the removed relations
are far fewer than the added ones, implying that developers
tend to forget to perform necessary operations on interac-
tion data. Similar tendencies are also observed in conditions:
critical checkings on interaction data are often missing. We

64%
25%

11%
1-2
3-5
>5

18%

19%

34%

29% Y≤2
2<Y≤5
5<Y≤10
Y>10

(b)(a)

Figure 8. (a) Latent years of reported bugs and (b) the distri-
butions of #violations for specifications (0 is excluded).
1 int wiz_probe(struct platform_device *pdev) {
2 serdes = of_get_child_by_name(pdev->dev.of_node, "serdes");
3 subnode = of_get_next_child(serdes, NULL);
4 ret = of_property_read_u32(subnode, "reg", ...);
5 if (ret) {
6 + of_node_put(subnode);
7 return ret;
8 }
9 }

Figure 9. A security patch that adds a API to fix reference
leak, from which Seal produce incorrect specifications.

deduced zero relation for 1,529 security patches since no
changed paths related to interaction data are observed.
Specification Correctness. We randomly sampled 1,000
specifications to evaluate the correctness, including 689, 256,
and 55 relations focusing on reachability, condition, and
order, respectively. Our manual inspection confirmed the
precision of specifications is 57.8%. The imprecision pre-
liminary originates from the restrictive information pro-
vided by code changes, leading to value-flow paths that
are irrelevant to fixed bugs being processed. Particularly,
when the values probably depend on multiple APIs or the
paths are conditioned by multiple APIs, we would conserva-
tively encompass all of them in specifications. A represen-
tative patch is given in Fig. 9. APIs of_get_next_child
and of_property_read_u32 are both suspected to require
paired API of_node_put according to the value-flow paths
of subnode, whereas only the first is correct. We envision
that incorporating more information, e.g., patch descriptions
or human intervention, would mitigate the imprecision.
Influence on Bug Detection Precision. All the mined
specifications are used to detect bugs. We clarify that in-
correct specifications do not hurt bug detection precision
harshly since the correct and incorrect specifications do not
equally contribute to violation detection. Specifically, we
found that out of 232 bug reports, 167 were due to violations
of correct specifications, while 53 resulted from false ones.
Considering specifications precision is sampled to be 57.8%,
we could derive that the probability of violating correct spec-
ifications is 2.4%, while the probability of violating incorrect
specifications is about 1%. Our manual inspection confirmed
that most of the incorrect specifications tend to summarize
ad-hoc and abnormal usages of infrequently used interaction
data, making it restrictive and cannot be extended.
Specifications and Bug Types. We categorized the root
causes of reported bugs into① to④ in Tab. 2, which illustrate
how different components of our specifications contribute
to bug detection. First, bugs with root cause ③ and ④ are
reported due to the absence of reachability relation. Second,
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Figure 10. Bug types supported by Seal and existing efforts.

bugs in ② occur since path conditions of searched paths do
not meet the required conditions. Finally, bugs associated
with ③ are identified due to inconsistent orders. In conclu-
sion, our specifications in Fig. 2 provide a uniform way to
describe a variety of interaction data mishandling patterns.
We further presented the distribution of #violations for spec-
ifications in Fig. 8(b). While the majority are violated once or
twice, 11% of specifications exhibit more than five violations,
underscoring the importance of interface specifications.

8.3 Comparison with Existing Tools
We also compared Seal with existing deviation-based and
patch-based work. The precision is measured by manually
reviewing bug reports. Since obtaining all bugs in Linux is
unrealizable, the false negatives are measured indisputably,
where all bugs found by three tools are ground truth. As we
discussed below and in Fig. 10, Seal outperforms existing
tools in precision and supported bug types.
Comparison with Patch-based Approaches. We selected
APHP [47] as the patch-based tool and performed compar-
isons on the same set of input patches. APHP is an intra-
procedural API post-handling bug detector, which only cov-
ers bugs caused by ③ in Tab. 2. The tool generated 28,479 bug
reports, 60 of which are confirmed to be true. The low pre-
cision primarily stems from incorrect specifications (90.8%)
which results from deficiencies in patch processing. Other
FPs are mainly caused by imprecise path-sensitive analysis,
unknown equivalent post-operations, and intra-procedural
design. APHP has a high reliance on patch patterns, once not
conformed, would generate incorrect specifications. For FNs,
APHP shares 25 memory leak bugs with Seal but misses oth-
ers, since it only summarizes post-handling specifications
and performs bug detection intra-procedurally. Therefore,
APHP would fail to process the patch exemplified in Fig. 3.
ComparisonwithDeviation-basedApproach.We choose
CRIX [51] that contrasts conditions of peer slices from the
same variables for missing-check bugs. CRIX reported 3,105
missing check bugs, whose reasons fall in ① and ③. We con-
firmed 44 TPs, including one bug found by Seal. The reasons
for high FPs are three-fold. First, imprecise data flow analysis
leads to incomparable slicings being cross-checked. Second,
coarse-grained condition modeling causes unaware identical
conditions. Finally, empirically determined security checks
result in incorrect specifications. The FNs are also attributed
to the first two reasons that cause significant slicings be-
ing excluded and uncaptured conditions equivalences. Seal
avoids these limitations by modeling conditions with logical
formulas and employing precise pointer analysis.

Analysis for Seal.We confirmed 167 TPs out of 232 reports.
The 65 FPs originate from four aspects. First, incorrect speci-
fications bring about 53 FPs. Second, we apply each specifi-
cation independently during bug detection, which overlooks
their equivalences, e.g., APIs kfree_sensitive and kfree.
Third, Seal examines specifications within each interface
individually and ceases bug detection when meeting indi-
rect calls, however, some necessary conditional checks may
be placed beyond the current interface. Finally, imprecise
indirect call reasoning causes spurious callees to be consid-
ered detection targets. For FNs, we missed 35 bugs of APHP
due to restrictive bug detection regions. Specifically, when
involving function pointer elements, the specifications are
only applied in other implementations of the same function
pointer. However, blindly detecting bugs in arbitrary con-
texts would burden the efficiency under inter-procedural
design. Seal failed to find 43 bug of CRIX since no corre-
sponding patches are available.

8.4 Efficiency of Seal
In the end, we evaluated the execution time of Seal. The
patch processing phase took 30h39m to handle 12,571 secu-
rity patches sequentially. Note that this is a one-time effort
and the summarized specifications can be reused for bug
detection. Each patch takes 8.78s approximately, including
generating PDGs for two versions of codes, computing graph
differences, and deriving specifications.

The bug detection consists of two phases: PDG generation
and path searching, which took 5h25m and 1h48m, respec-
tively. This phase searches for realizable value-flow paths
guided by summarized specifications and checks consistency.
Specifically, Seal only performs bug detections within de-
lineated code regions, thus avoiding analyzing large calling
depths. Notably, the scalability of our technique could be
further improved by searching paths in parellel [71] or con-
sidering mutual synergy among specifications [61].

9 Discussion
PDG Choices and Applicable Bug Types. Seal excels
at memory-related, missing-check, taint-style, and API mis-
uses bugs, thanks to our general PDG. Other graphs, e.g.,
code property graph [87], are not precise enough to perceive
various dependence changes, failing to fulfill our needs. Nev-
ertheless, the general PDG could be enhanced to convey
additional information for more bug types. First, by combin-
ing numerical analysis [37], Seal can determine the three
dependencies among variables and their ranges to cope with
signedness bugs. Second, Seal does not support concurrency
bugs, e.g., data race, which could be addressed by incorpo-
rating auxiliary information, e.g., lock dependence, happens-
before relations [18, 23, 84], to enrich current PDG.
Limitation of Specification. The expressiveness of formu-
lation bounds the capability of Seal. The current formulation
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describes behaviors involving multiple APIs, such as invoca-
tion order, but does not support interactions across multiple
function pointers. For instance, some drivers design function
pointer init to merely allocate resources and return error
codes once failed. The upper layer would invoke another
interface fini to perform the cleanup. In that case, a correct
specification should not only claim how to return correct
error codes in init, but also necessary cleanup operations in
fini collaboratively. Instead, Seal produces specifications
for each interface independently, even if a patch corrects
multiple interfaces simultaneously. Although hurting preci-
sion, this design offers better generalizability and is easier to
reproduce with high scalability since the analysis would not
be bothered by deep calling context involving indirect calls.
Future Work of Seal. We believe the precision of Seal
could be further enhanced in three aspects. First, security
patches could become obsoleted during evolution, even er-
roneous during manual review. Moreover, prior efforts have
also identified the insufficient fix problem [83], where a bug
is fixed by a series of follow-up patches. Thus, the evalua-
tions or transformations of patches could offer Seal high-
quality inputs, thus are orthogonal to us. Second, we could
incorporate more human knowledge, such as large language
model (LLM), to process patch descriptions for precise local-
ization of patch-related value-flow paths. Finally, concern-
ing abstracting quantifier formulas from value-flow changes
(§ 6.3.3), it’s possible to deduce more precise quantifier con-
straints in high-order form or merge specifications with
domain knowledge instead of simply appending.
Suggestions for Kernel Developers.We provide several
suggestions gained from the journey of Seal for the Linux
community. First, when new APIs or function pointers are in-
troduced, designers are encouraged to clarify their function-
alities, appropriate usages, and potential risks of interaction
data. Second, for interfaces that lack explanations, kernel
maintainers could gradually supplement these specifications
when patches that fix the mishandling of interaction data are
observed. Specifically, the maintainer could build a dataset
of interface specifications, and once new patches are merged,
proactively run Seal to expand the dataset and detect the ex-
istence of other violations. Some specifications could also be
transformed into rigorous type constraints to be enforced at
compilation time. Finally, an inexperienced developer, once
confused with interfaces, is suggested to learn from other
implementations or usages to gain practical insights.

10 Related Work
Specification Inference. By summarizing program seman-
tics and behaviors as rules, specifications allow static ana-
lyzers to quickly grasp program attributes and reuse with-
out delving into the code, thereby scaling to the complex-
ity of modern software. Their forms range from pre/post

conditions of API usages [26, 53, 59, 82, 91] to various re-
lationships between program constructs to facilitate vari-
ous analysis, e.g., points-to analysis [20, 75], taint analy-
sis [26, 88], alias analysis [32, 76], and bug detection. Re-
cent decades have witnessed a large body of efforts to de-
rive specifications from implementations [17, 31, 39, 53],
usages [47, 59, 82], documentation [21, 52, 76, 97] and large
language model (LLM) [44, 49, 90]. Among them, the usages
employed for specification inference contain certain code
patterns [26, 53, 82, 91], dynamic execution traces [20, 27, 66],
the majority from cross-checking [16, 51, 91], etc.

The patch-based approaches [36, 47] we adopt essentially
leverage high-quality usage patterns, i.e., anti-examples and
fixes, to derive a more accurate specification. Moreover, in-
stead of generating specifications for limited behaviors, our
formulation based on value-flow properties (§ 4.1) offers high
versatility, as illustrated in § 8.2.
Linux Vulnerability Detection. Bug detection in Linux
has attracted great interest in recent years, mainly focusing
on conquering domain-specific natures and scalability issues.
Among them, dynamic fuzzing [28, 54, 58, 64, 74, 96] estab-
lishes various communication channels on top of potential
exploitable surfaces, to feed generated or mutated inputs for
kernel. For instance, Periscope [64] intercepts the page fault
handling mechanism of the Linux kernel to inject mutated
hardware data. Static solutions [18, 19, 39, 53, 55, 94] tend to
tailor general techniques for certain bug types in Linux, i.e.,
use-before-initialization [92], missing security or permission
check [51, 95], taint-style bugs [55], aiming for precise yet
scalable bug detection. Our work complements static kernel
bug detection by providing interface specifications to detail
correct usages of interaction data.

11 Conclusion
Linux interfaces ease the interactions of various subsystems,
but the incomplete calling contexts unexpectedly inflict mis-
handling of interaction data. This work presents Seal that
infers interface specifications in the form of value-flow prop-
erties from security patches. We benefit from the expres-
siveness of value-flow properties to describe the complex
behaviors of interaction data. Our approach found 167 un-
seen vulnerabilities in Linux with high precision. So far, 95
bugs have been confirmed by Linux maintainers with a re-
markably fast response time, demonstrating the capability
of Seal in mitigating the security risks of Linux.
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