
206 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 1, JANUARY 2025

PACKHUNTER: Recovering Missing Packages
for C/C++ Projects

Rongxin Wu , Zhiling Huang , Zige Tian , Chengpeng Wang , and Xiangyu Zhang , Member, IEEE

Abstract—The reproducibility of software artifacts is a critical
aspect of software development and application. However, current
research indicates that a notable proportion of C/C++ projects
encounter non-reproducibility issues stemming from build fail-
ures, primarily attributed to the absence of necessary packages.
This paper introduces PACKHUNTER, a novel technique that
automates the recovery of missing packages in C/C++ projects.
By identifying missing files during the project’s build process,
PACKHUNTER can determine potentially missing packages and
synthesize an installation script. Specifically, it simplifies C/C++
projects through program reduction to reduce build overhead and
simulates the presence of missing files via mock build to ensure a
successful build for probing missing files. Besides, PACKHUNTER
leverages a sophisticated design to eliminate packages that do not
contain the required missing files, effectively reducing the search
space. Furthermore, PACKHUNTER introduces a greedy strategy
to prioritize the packages, eventually recovering missing packages
with few times of package enumeration. We have implemented
PACKHUNTER as a tool and evaluated it on 30 real-world projects.
The results demonstrate that PACKHUNTER can recover missing
packages efficiently, achieving 26.59× speed up over the state-of-
the-art approach. The effectiveness of PACKHUNTER highlights
its potential to assist developers in building C/C++ artifacts and
promote software reproducibility.

Index Terms—Package management, build system mainte-
nance, and reproducibility.

I. INTRODUCTION

THE reproducibility of software artifacts is one of the fun-
damental challenges for both industrial and academia [1].

An essential initial step in reproducing C/C++ projects is ensur-
ing their buildability. However, a recent study [2] reports that
less than 11% (65 out of 592) of C/C++ open source projects

Received 12 June 2024; revised 12 November 2024; accepted 15 November
2024. Date of publication 27 November 2024; date of current version
10 January 2025. This work was supported in part by the Natural Science
Foundation of China under Grant 62272400 and in part by the Research Grants
from Huawei. Recommended for acceptance by K. Blincoe. (Corresponding
author: Chengpeng Wang.)

Rongxin Wu is with the School of Informatics and Xiamen Key Laboratory
of Intelligent Storage and Computing, Xiamen University, Xiamen 361102,
China (e-mail: wurongxin@xmu.edu.cn).

Zhiling Huang and Zige Tian are with the School of Informatics, Xiamen
University, Xiamen 361102, China (e-mail: huangzhiling@stu.xmu.edu.cn;
tianzige@stu.xmu.edu.cn).

Chengpeng Wang and Xiangyu Zhang are with Purdue University, West
Lafayette, IN 47907 USA (e-mail: wang6590@purdue.edu; xyzhang@cs.
purdue.edu).

Digital Object Identifier 10.1109/TSE.2024.3506629

using Make or CMake from GitHub repositories can be built
successfully. One primary cause of these build failures stems
from the absence of the required packages, accounting for over
50% of the cases [2], [3], [4]. In this work, we refer to this
problem as missing package errors.

The prevalence of missing package errors in C/C++ projects
can be largely attributed to the absence of a cohesive method for
managing package dependencies [5], [6]. Users resort to vari-
ous ways to manage package dependencies, including project
documents (e.g., readme.md), non-uniform scripts of package
installation (e.g., install.sh and prerequisite.sh),
and some package management tools (e.g., vcpkg [7] and
conan [8]). Due to the lack of a widely-used standard of
package management, developers would easily forget to specify
the required packages, thus leading to failures when building
in a new environment. When encountering missing package er-
rors, users have to exhaustively search the missing dependency
packages based on the error messages or report bugs to ask
for guidance from developers, which often involves laborious
manual effort when building real-world projects1. In this work,
we concentrate on an automatic recovery of the missing pack-
ages for a given C/C++ project. More concretely, we aim to
synthesize an installation script that can install all the missing
packages and eventually facilitate a successful build of the
project.

Unfortunately, it is a challenging task to solve the missing
package recovery problem. On one hand, extracting required
dependencies via statically analyzing build scripts [9], [10] is a
possible solution. However, due to the complicated and diverse
syntax of build commands, it is impossible to implement an
omnipotent parser to extract dependencies from build com-
mands precisely and completely, thus impeding the complete
retrieval of required packages. On the other hand, dynamically
capturing dependencies via monitoring the building process
is another possible solution [11], [12], [13]. However, when
encountering failures caused by missing packages, we must
pause the building process and resume it only after successfully
identifying and installing the necessary packages, which is
similar to a manual trial process. Thus, this approach necessi-
tates repetitive and iterative building, which is time-consuming
and leads to efficiency concerns. Moreover, both techniques
extract dependencies at the file level, requiring us to deduce

1A real-world project refers to a project that addresses practical, real-
life problems and is typically implemented outside of a purely academic or
theoretical context.

0098-5589 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on March 21,2025 at 17:05:54 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4648-3795
https://orcid.org/0009-0001-1596-246X
https://orcid.org/0009-0007-4564-7499
https://orcid.org/0000-0003-0617-5322
https://orcid.org/0000-0002-9544-2500
mailto:wurongxin@xmu.edu.cn
mailto:huangzhiling@stu.xmu.edu.cn
mailto:tianzige@stu.xmu.edu.cn
mailto:wang6590@purdue.edu
mailto:xyzhang@cs.purdue.edu
mailto:xyzhang@cs.purdue.edu

WU et al.: PACKHUNTER: RECOVERING MISSING PACKAGES FOR C/C++ PROJECTS 207

the required packages from files by searching a large package
repository (e.g., there are 66,475 packages in Ubuntu 22.04
repository [14]).

To efficiently recover missing packages, we propose a novel
approach called PACKHUNTER, which originates from three key
observations. First, only a small proportion of source code, such
as #include directives and #define directives, determines
the dependencies of the project. Hence, it is not mandatory
to perform a complete build for the dependency extraction.
Second, the absence of symbols revealed in missing package
errors, such as variables, functions, and header files, is primarily
caused by the absence of specific files that should be provided
by the required packages. These missing files can serve as
important indicators for localizing the missing packages in the
initial step. Moreover, not all the packages that include the
missing files are desired by the project. If the file offered by
a package does not offer any symbols used by the project, the
package can be safely disregarded and not installed. Third, only
when the missing files are covered by specific packages may the
missing package error be resolved. By building the project after
installing such packages, we can validate whether the packages
are the desired ones.

Based on the above insights, we introduce PACKHUNTER with
three stages. In the first stage, we employ the technique of
program reduction and mocking files to facilitate a successful
one-time build. During this stage, we collect all the missing files
that reveal the root causes of missing package errors. In the sec-
ond stage, we examine whether there exist the def-use relations
between the symbols defined in a package and the ones used
in the C/C++ project. This analysis enables us to effectively
filter out the irrelevant packages. In the last stage, we enumerate
the set of packages that covers the missing files and synthesize
an installation script. Particularly, we introduce a prioritized
enumeration where we maximize the number of missing files in
the package selection. Owing to our designs, PACKHUNTER hits
desired packages with few times of package enumeration in our
pruned search space, promoting the efficiency of the installation
script synthesis.

We have implemented our idea as a tool named PACKHUNTER

and evaluated it using 30 popular and widely-used C/C++ open-
source projects hosted in GitHub, which lack 4.67 packages on
average. It is shown that PACKHUNTER finishes the overall anal-
ysis with 141.69 seconds averagely, achieving 26.59× speed up
over the state-of-the-art approach. We also conduct an ablation
study to demonstrate the importance of our technique designs.
To sum up, the contribution of our work can be summarized
as follows.

• Our research represents the pioneering effort in addressing
the problem of missing package recovery specifically for
C/C++ projects. By focusing on this aspect, our work
contributes to enhancing the reproducibility of C/C++ soft-
ware artifacts.

• To efficiently synthesize an installation script, we propose
a novel approach called PACKHUNTER. This approach cap-
italizes on the identification of missing files to effectively
reduce and explore the search space for missing packages
during the synthesis process.

• We perform a comprehensive empirical evaluation to as-
sess the effectiveness of our technical designs, showing
the practical value of PACKHUNTER in promoting software
reproducibility in real-world scenarios.

II. PACKHUNTER IN A NUTSHELL

In this section, we first introduce the motivation of this work
(Section II-A), and then point out the technical challenges
(Section II-B). Finally, we explain the key idea of PACKHUNTER

(Section II-C).

A. Empirical Study

To investigate the pervasiveness of missing package errors,
we first collected 1,294 C/C++ projects from GitHub based on
the following selection criteria. First, it should have achieved
over 1,000 stars or forks which indicates its popularity. Sec-
ond, it relies on certain build systems (e.g., Make, CMake,
Autoconf, etc.) for building. Since it is non-trivial and time-
consuming to build such a large number of projects, we decided
to randomly select 80 of these projects to examine whether
they suffered from build failures and missing package errors. To
avoid introducing bias during the selection process, we labeled
each of the 1,294 projects with an integer from 1 to 1,294.
Using the sample function from Python random module [15],
we randomly selected 80 projects to form the experimental
subject set. It is worth noting that the sample function imple-
ments the Fisher-Yates shuffle algorithm [16], which ensures
that each project has an equal probability of being chosen for the
experimental subject set. Therefore, we did not introduce bias
in the process of constructing the experimental subject set, and
the experimental results can generally reflect the characteristics
of the real-world projects.

For each selected project, we manually examine its build
scripts and the instructions on how to build the project in the
project documentation. Then, we set up a clean docker whose
environment (e.g., OS kernel version, compiler, etc.) satisfies
the requirements specified in project documents and build the
project with the default configuration settings. If a project is
built with failures, with the hints from the error log messages,
we resort to the searching command of the system package man-
ager (e.g., “apt-file search” in Ubuntu), the help from
the project developers (e.g., submitting an issue report), and
the online Q&A websites (e.g., StackOverflow) to repair
the build failures manually. Based on the fixing solutions, we
categorize the root causes of build failures.

Our preliminary study, which is publicly available online
[17], shows that 58.75% (47 out of 80) projects suffer from
build failures. We further investigate the root causes of the build
failures and categorize them into four groups: missing package
error (30 out of 47), build script error (7 out of 47), source code
error (5 out of 47), and miscellaneous error (5 out of 47, which
refers to the errors that cannot fall into the other three categories,
such as incompatible compiler version and incorrect command
options.). These results are consistent with the findings in the
prior studies [2], [3], [4] that missing package error is the most
dominant reason for the build failures.

Authorized licensed use limited to: Purdue University. Downloaded on March 21,2025 at 17:05:54 UTC from IEEE Xplore. Restrictions apply.

208 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 1, JANUARY 2025

Fig. 1. The manual installation of missing packages.

To better understand the difficulties of resolving missing
package errors, we examine the number of the missing packages
that have been identified and installed during our manual repair
process, as shown in Fig. 1. Typically, the number of missing
packages that require to be installed is 4.67 on average, ranging
from 1 to 16. Resolving the missing package errors is non-
trivial. This is because, even with the hints from error log
messages, it still requires substantial effort to try numerous
potential packages. Fig. 2 provides an example simplified from
the build failure in the open source project guetzli [18]. The
error log message indicates that the header file “png.h” is re-
quired. By searching with the command “apt-file search
png.h”, there are four packages that have the potential to fix
the error, but only the package libpng-dev is the correct
one. Besides, if the name of a missing file is common, e.g.,
“version.h”, “config.h”, “types.h”, etc., there can be
hundreds of candidate packages containing the file with the
same name. Even worse, the exploration of the search space
expands exponentially when accounting for the permutations
of different packages, thereby exacerbating the encountered
challenges. In summary, manually recovering missing packages
is challenging and labor-intensive.

B. Problems of State-of-the-Art Approaches

The key to automatically recovering the missing packages is
to identify all the dependent packages required in the building
process. Despite the tremendous research progress in extracting
dependencies of C/C++ projects, existing methods are deficient
in recovering missing packages in the scenario of resolving
build failures.

One line of approaches, namely SCA (Software Composition
Analysis) [9], [10], statically analyzes build scripts to extract
third-party dependency libraries and is applicable to extracting
missing packages. However, such static approaches are afflicted
by two limitations. First, implementing a general parser to un-
derstand the syntax of build commands in various kinds of build
scripts associated with different build systems is non-trivial
and sometimes even impossible, thereby impeding the complete
retrieval of required packages. For example, in scenarios where
the build scripts incorporate commands with a syntax that is
not predefined, the parser encounters difficulty in extracting the
necessary dependencies from the commands. Second, in most
cases, the dependencies derived from the parsing outcomes of
SCA approaches primarily manifest at the file level, including
header files, static/dynamic libraries, etc. Consequently, we still
have to deduce the required packages from these files, thereby

encountering the challenge of the large search space, as dis-
cussed in Section II-A.

The other line of approaches, originally designed to detect
build script errors [11], [12], [13], can capture dependency
files via continuously monitoring the build process. Although
such approaches can mitigate the generalizability issue in the
static approaches, they suffer from low efficiency due to two
main reasons. First, the nature of build failures necessitates the
adoption of an iterative process: a build process halts whenever
a package required by a build command is absent, only to be
resumed upon the installation of the required package. Second,
since build monitoring exclusively captures dependencies at the
file level, it encounters the same challenge of inferring required
packages from these files discussed in Section II-A.

C. Key Idea

In this study, we also employ build monitoring to mitigate
the generalizability issue associated with the implementation
of build script parsers. To address the efficiency issues of build
monitoring described in Section II-B, we introduce two inno-
vative designs.

First, instead of using an actual build which involves an itera-
tively suspending and resuming the process, we devise a “mock
build” to accelerate the extraction of missing dependency files.
Our idea is inspired by a previous study that introduced the no-
tion of “virtual build” [13], which involves pruning the program
while retaining the original dependencies in a one-time build.
Although virtual build can accelerate the build process by skip-
ping the compilation of unnecessary source code, it still cannot
escape from the iterative suspending and resuming problem.
Therefore, on top of virtual build, we mock the missing depen-
dency files, such as the file png.h in Fig. 2, so as to make the
build proceed without the necessities of installing the required
packages. It is important to highlight that the virtual build serves
as the foundation of the mock build. Given that a virtual build
exclusively retains preprocessor directives, such as #include
directives and macro definitions, while excluding other program
constructs like function bodies and global variables, there is no
need for the mock files to furnish declarations or definitions for
any symbols, including variables and functions. Thus, empty
mocking files are adequate to ensure the successful completion
of the build process.

Second, to reduce the expansive search space associated
with inferring required packages from files, we propose a two-
stage analysis, comprising package filtering and prioritization,
to streamline the deduction of the required packages. Intuitively,
the required packages should contain the missing dependency
files and symbols. Thus, during the package filtering stage, we
utilize the missing files identified in the mock build process to
pinpoint a set of candidate packages that include these files.
Meanwhile, we compare symbols used in the project code with
those defined in the missing files provided by the candidate
packages, which facilitates filtering irrelevant packages. During
the package prioritization phase, we assign the packages cover-
ing more missing files with higher priorities, based on which we

Authorized licensed use limited to: Purdue University. Downloaded on March 21,2025 at 17:05:54 UTC from IEEE Xplore. Restrictions apply.

WU et al.: PACKHUNTER: RECOVERING MISSING PACKAGES FOR C/C++ PROJECTS 209

Fig. 2. A motivating example of recovering missing packages simplified from the open source project guetzli.

Fig. 3. The program syntax.

approach the task of selecting packages containing all missing
files. With the greedy strategy, we are more likely to reach a set
of packages that resolves the missing package errors with few
times of package enumeration.

Roadmap. In the upcoming sections, we will first formalize
the problem (Section III) and delve into the technical intricacies
of PACKHUNTER (Section IV). The implementation and evalua-
tion of PACKHUNTER will demonstrate the effectiveness of our
approach (Section IV-D and Section V).

III. PROBLEM FORMULATION

This section first formulates the program syntax (Sec-
tion III-A) and then introduces the missing package error
(Section III-B). Lastly, we offer the formal statement of the
missing package recovery problem (Section III-C).

A. Program Syntax

Following prior research [13], we formulate C/C++ projects
with the syntax shown in Fig. 3. In essence, a project encom-
passes header files, source files, and build scripts. Specifically,
both the header and source files may incorporate various pre-
processor directives, including those that involve the inclusion
of specific header files and the definition of macros. Function
signatures and definitions are presented in the header files and
source files, respectively. Notably, a function body can either be
empty or consist of multiple statements, such as assignments
and function calls. Without the loss of generality, we assume
that each function defined in the source file is declared in the

corresponding header file. Finally, a build script is a collection
of build target dependencies, each of which is associated with
a set of instructions as the recipe.

B. Missing Package Error

In our work, we target a prevalent class of build errors,
namely missing package errors. Formally, we formulate it
as follows.

Definition 1 (Missing Package Error): Let P be a C/C++
project. A missing package error inP is the absence of a specific
package required for the successful build of a specific target t
within P .

Basically, a missing package error is manifested as the lack of
preprocessor directives, functions, and files, which are expected
to be offered by the missing package. When a build process
yields a missing package error, its error message can indicate
the root cause, guiding the developers to localize the missing
package for a fix.

Example 1: As depicted in Fig. 2, an error is encountered
while building the target guetzli, indicating that the file
png.h is not found. Thus, the source files that include png.h
as a header file, such as guetzli.cc, cannot utilize the
symbols defined within that file. For instance, it becomes invalid
to invoke the function png_jmpbuf in the source file guet-
zli.cc at Line 61. This absence of the package providing
png.h leads to a missing package error.

As shown in Example 1, the essential cause of a missing
package error is the absence of a specific file. Specifically,
the symbols defined in the missing file, such as preprocessor
directives and functions, become inaccessible to the current
C/C++ project. Existing efforts have indicated that missing
package errors are widespread in real-world C/C++ projects. In
particular, it has been reported that over 50% of build failures of
C/C++ projects are caused by the missing packages [2], [3], [4].
The difficulty of identifying and installing missing packages
presents a major hurdle for programmers aiming to create an
executable artifact of their own systems.

C. Problem Statement

To mitigate the burden of programmers in building C/C++
projects, we target the problem of automatically recovering

Authorized licensed use limited to: Purdue University. Downloaded on March 21,2025 at 17:05:54 UTC from IEEE Xplore. Restrictions apply.

210 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 1, JANUARY 2025

Fig. 4. The workflow of PACKHUNTER.

missing packages in this paper. Before we state our problem
explicitly, we first introduce two important preliminaries,
namely package installation strategy and installation script.

Definition 2 (Package Installation Strategy): A package in-
stallation strategy I is a function that maps a package to its
installation commands. Particularly, dom(I) is named as the
package base, indicating a finite set of packages that can be
potentially used.

As defined in Definition 2, the package installation strategy
I is responsible for specifying a finite set of packages as the
package base, i.e., dom(I), along with providing guidance on
their installation. For instance, we can focus on packages that
are maintained by a Linux package manager, as the installa-
tion commands for such packages are readily available. With
the guidance of the package installation strategy, programmers
can localize missing packages and install them by executing
the corresponding installation commands. Essentially, program-
mers need to specify an installation script, which is defined as
follows, to recover missing packages.

Definition 3 (Installation Script): Given a C/C++ project P ,
an installation script fps is a sequence of commands installing
packages such that P can be successfully built after the execu-
tion of fps.

Example 2: Consider the missing package error in Fig. 2.
An installation script should contain the installation command
of the package libpng-dev. After running the installation
script, the missing package, i.e., libpng-dev, can supply the
missing file png.h, which resolves the missing package error
in the project.

As illustrated at the end of Section III-B, manually specifying
an installation script can be a labor-intensive task, particularly
when dealing with a large package base and multiple miss-
ing packages. To alleviate the laborious effort involved, we
formulate missing package recovery problem as follows and
attempt to propose an effective and efficient solution, which
would greatly reduce the burden on individuals engaged in the
development of C/C++ projects when confronted with missing
packages.

Given a C/C++ project P and a package installation strat-
egy I , synthesize an installation script fps automatically.

Solving the missing package recovery problem is non-trivial.
The challenges mainly arise from two aspects. First, extract-
ing dependency files via monitoring the repetitive and iterative

building process, i.e., pausing the build for a failure and resum-
ing it upon a trial of package installation, is time-consuming,
leading to efficiency concerns. Second, deducing missing pack-
ages from dependency files requires to search from a large
package repository and the large space of candidate packages
would exacerbate the efficiency issues. In Section IV, we will
demonstrate how to address the above challenges and illustrate
the details of our approach.

IV. APPROACH

In this section, we introduce our approach, named
PACKHUNTER, to resolve the missing package recovery
problem. The overall workflow of PACKHUNTER is illustrated
in Fig. 4, consisting of three key stages: missing file probing
(Section IV-A), package filtering (Section IV-B), and package
prioritized enumeration (Section IV-C).

• First, the missing file probing involves simplifying C/C++
projects through program reduction to facilitate efficient
identification of missing files during a one-time build
(Section IV-A). This allows us to quickly locate the root
causes of missing package errors.

• Second, we utilize the def-use relations between the sym-
bols in the packages and the C/C++ projects to filter irrele-
vant packages (Section IV-B), which significantly reduces
the search space for the subsequent installation script
synthesis.

• Third, we prioritize the sets of packages that can re-
solve all the missing files in the enumeration and validate
them by building the project after installing the packages
(Section IV-C). A successful build indicates that the de-
sired installation script has been generated.

In the following subsections, we provide a detailed explana-
tion of each of these stages.

A. Missing File Probing

As illustrated in Section III-B, the occurrence of missing
package errors can be attributed to the absence of specific
files that are offered by required but missing packages. This
observation suggests that the missing files can serve as valuable
indicators of the missing packages, allowing us to filter out
the irrelevant package candidates effectively. Motivated by this
insight, we propose probing missing files as our first step.

It is evident that probing missing files necessitates building
the project for dynamic monitoring [11], [19], which enables

Authorized licensed use limited to: Purdue University. Downloaded on March 21,2025 at 17:05:54 UTC from IEEE Xplore. Restrictions apply.

WU et al.: PACKHUNTER: RECOVERING MISSING PACKAGES FOR C/C++ PROJECTS 211

Algorithm 1: Probing Missing Files
Input: P := (Fh, Fs,Fbs): A C/C++ project;
Output: Mf : A mapping from targets to missing file sets;

1 /* Remove statements and non-main
functions. */

2 P ′ ← reduceProgram(P);
3 T ← getTarget(P ′);
4 foreach t ∈ T do
5 /* Create and gather missing files */
6 Mf (t)← mockBuild(t);
7 return Mf ;

us to gather file I/O information. However, we have to notice
that a single build process can result in considerable overhead,
especially considering the need to repeatedly try different pack-
ages and rebuild the project. To achieve efficient missing file
probing, we propose two effective strategies, namely program
reduction and mock build, which aim to minimize the overhead
associated with a single build and reduce the number of build
iterations, respectively. The formulation of these strategies is
presented in Algorithm 1.

• Program Reduction. Inspired by prior study [13], gath-
ering file I/O information does not necessarily require an
actual build of the whole project. Instead, by trimming a
project via the program reduction proposed in [13], we can
obtain the same file I/O information as the one derived
from the original project. We formulate it as the function
reduceProgram at Line 2 in Algorithm 1. Note that the
successful build of a target only depends on the existence
of its main function, so we eliminate non-main functions
from the project and remove all the statements from the
body of each main function. In particular, all the prepro-
cessor directives remain in the project. As demonstrated
in the previous study [13], such program reduction does
not change the file IO information during the build, while
the build time can significantly decrease. In this way, we
can accelerate the missing file probing by reducing the
overhead of a single build.

• Mock Build. To avoid multiple iterations of project builds,
we adopt a mocking strategy to permit the build process
to continue in the absence of necessary files. Specifically,
when building each target t, we dynamically monitor the
file IO operations and create empty files to mock the files
that need to be accessed but missing. The mock build pro-
cess is formulated by the function mockBuild at Line 6
in Algorithm 1. After the mock build, we can establish the
mapping from a build target to a set of missing files, which
serves as an ingredient for discovering missing packages
in the subsequent stages (Section IV-B and Section IV-C).
Importantly, the mock build demands building the project
only one time. Any build errors caused by missing files are
skipped, avoiding unnecessary rebuild of the project with
extra overhead.

It is important to note that simply creating an empty file
for the missing one is sufficient to ensure a successful build.
By leveraging program reduction, all the symbols imported

Algorithm 2: Filtering Packages
Input: P := (Fh, Fs,Fbs): A C/C++ project;

I: Package installation strategy;
Mf : A mapping from targets to missing file sets;

Output: Mp: A mapping from missing files to package sets;
1 Mp ← [f �→ ∅ | f ∈

⋃
f ′∈dom(Mf) Mf (f

′)];
2 foreach t ∈ dom(Mf) do
3 foreach f ′ ∈Mf (t) do
4 S′

p ← getPotentialPkg(f ′);
5 F̂ ← getAccessedFiles(t) ∩ Fh ∩ Fs;
6 foreach f ∈ F̂ do
7 /* Collect used symbols */
8 Suse ← getUsedSym(f);
9 foreach pkg ∈ S′

p do
10 /* Collect defined symbols */
11 Sdef ← getDefinedSym(f ′, pkg);
12 /* Compare defined/used

symbols */
13 if Sdef ∩ Suse �= ∅ then
14 Mp(f

′)←Mp(f
′) ∪ {pkg};

15 return Mp;

from the packages are effectively removed, resulting in the
decoupling of the targeted project from the files in its dependent
packages. As a result, program reduction not only reduces the
overhead associated with a single build but also enables the
monitoring of file I/O information through a single round of
mock build.

Example 3: In Fig. 2, the file png.h is missing in the build
of the target guetzli. Based on the mock build, we can
monitor the access operation upon the missing file and create
a corresponding empty file for png.h. The non-main func-
tions and the statements of main functions are removed in the
program reduction, such as the ones in the file guetzli.cc.
With the assistance of program reduction, the mock build can
successfully collect all the missing files efficiently, like the file
png.h, in only one time of the build.

B. Package Filtering

Although missing file probing can effectively identify all
missing files in a project, we still need to address another
challenge: A single missing file can be provided by multiple
different packages. This phenomenon can significantly inflate
the search space when synthesizing an installation script. To
filter out irrelevant packages, we rely on an important insight
that the symbol def-use relation enables us to filter infeasible
packages in a light-weighted fashion. Specifically, if a package
pkg offers a missing file but the file does not define any symbols
that are used in the source/header files within the target C/C++
project, the file offered by the package pkg can be decoupled
from the project, indicating that the package pkg cannot support
necessary ingredients for the build process.

Based on the above insights, we propose to filter irrelevant
packages, as formalized in Algorithm 2. Initially, it takes three
inputs: a C/C++ project P , a package installation strategy I ,

Authorized licensed use limited to: Purdue University. Downloaded on March 21,2025 at 17:05:54 UTC from IEEE Xplore. Restrictions apply.

212 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 1, JANUARY 2025

Fig. 5. An example of package filtering.

and a mapping Mf that associates targets with sets of miss-
ing files obtained from Algorithm 1. When dealing with each
missing file f ′, the function getPotentialPkg at Line 4
retrieves all the packages that provide a file with the same
name as f ′. Based on the file I/O information during a mock
build, we collect all the accessed source/header files in the
project P at Line 5 and extract all the used symbols in the
accessed files with a parsing-based static analysis, forming the
set Suse at Line 8. Meanwhile, we consider each package pkg
that provides the file f ′ and gather all the symbols defined in
the corresponding file in a similar fashion, forming the set Sdef

at Line 11. Only when Suse and Sdef are not disjoint can the
package pkg be considered for use in the C/C++ project (Line
13–14). Ultimately, we obtain a mapping Mp from missing
files to sets of packages, which defines the search space for
the synthesis of the installation script, which will be demon-
strated in Section IV-C. Owing to package filtering design, we
can safely discard infeasible packages, effectively reducing the
search space for the synthesis process.

Lastly, it is important to note that there is no need to perform
additional mock builds to obtain the accessed source/header
files at Line 5 in Algorithm 2. When probing for missing files
in Algorithm 1, we can simultaneously collect the informa-
tion about the accessed files through an on-the-fly mock build.
In the paper, we have intentionally separated the process of
gathering missing files from the demonstration to simplify the
presentation.

Example 4: In Fig. 5, the file png.h is missing and can be
provided by multiple packages. Upon analyzing the contents of
the offered png.h files and the accessed files within the C/C++
project, we can discover that the png.h file in libpng-dev
defines the symbols utilized by the C/C++ project, such as the
function png_jmpbuf. Hence, the package libpng-dev is
a potential missing package. Regarding other packages, they do
not provide any symbols used by the project. Consequently, we
can narrow down the list of missing packages for subsequent
installation script synthesis.

C. Package Prioritized Enumeration

Benefiting from the previous two stages demonstrated in
Section IV-A and Section IV-B, we are able to establish a search
space of missing packages for the targeted C/C++ project. In
essence, we need to select a set of packages from the search

Algorithm 3: Synthesizing Installation Script via Pack-
age Prioritized Enumeration

Input: P := (Fh, Fs,Fbs): A C/C++ project;
I: Package installation strategy;
Mp: A mapping from missing files to package sets;

Output: fps: An installation script;
1 f̂ps ←∅; Sf ← dom(Mp);
2 foreach f ′ ∈ dom(Mp) do
3 /* Select the unique package offering

f ′ */
4 if |Mp(f

′)|= 1 then
5 f̂ps ← f̂ps ∪ {I(pkg) | pkg ∈Mp(f

′)};
6 Sf ← Sf \ {f ′};

7 /* Compute package sets covering missing
files */

8 Γ← getCoverPkgSet(Sf ,Mp);
9 foreach Sp ∈ Γ do

10 w(Sp)← des_sort([|M−1
p (pkg) ∩ Sf | | pkg ∈ Sp]);

11 while Γ is not empty do
12 /* Peek a package set according to the

descending order upon w. */
13 Sp ← peek(Γ, w); Γ← Γ \ {Sp};
14 fps ← f̂ps ∪ {I(pkg) | pkg ∈ Sp};
15 if installAndBuild(fps, P) is success then
16 return fps;

17 return fps;

space that can cover all the missing files identified during the
mock build process. To further accelerate the enumeration of
missing packages, we propose the package prioritization during
the enumeration, which is based on two intuitions. First, if a
missing file f ′ is provided by a unique package pkg, we have to
install pkg in our installation script. Otherwise, the file f ′ would
still be missing after the execution of the installation script.
Second, if a package can offer multiple missing files, it is very
likely to be the necessary one for the C/C++ project. Therefore,
we conduct the prioritized enumeration to validate whether the
enumerated packages facilitate the success of a build.

We formalize our idea in Algorithm 3. Technically, it begins
by identifying the packages that uniquely offer specific missing
files (Line 2-6). The remaining missing files, represented by the
set Sf at Line 6, can be covered by more than one package.
Consequently, we generate all possible choices of packages that
can cover all the files in Sf using the getCoverPkgSet
function and form the set Γ at Line 8. Then we compute the
weights of each package set by counting the missing files cov-
ered by each package and sorting them descendingly, which is
formulated at Lines 9 and 10. Based on the computed weights,
we enumerate the package sets in Γ by peeking a package
set that contains packages covering as many missing files as
possible. Furthermore, we synthesize the installation script fps
based on the package installation strategy I (Line 14) and build
the target C/C++ project P to determine whether the installa-
tion script fps successfully resolves the missing packages. If
the build is successful, we directly return fps as one feasible
solution for our problem. Otherwise, we continue to examine

Authorized licensed use limited to: Purdue University. Downloaded on March 21,2025 at 17:05:54 UTC from IEEE Xplore. Restrictions apply.

WU et al.: PACKHUNTER: RECOVERING MISSING PACKAGES FOR C/C++ PROJECTS 213

Fig. 6. A simplified example of synthesizing an installation script with
package prioritized enumeration for mame.

other package sets in Γ until a successful build is achieved. To
ensure the integrity of subsequent iterations, we uninstall the
newly installed packages if the installation script fails to support
a successful build.

Note that the build at Line 15 represents the actual build
rather than the mock build. In the mock build mentioned in
Section IV-A, the project only contains the main functions
with empty bodies after reduction, which can not validate the
available symbols that should be provided by the packages.
Considering the time overhead of performing an actual build,
our design of the package filtering in Section IV-B and the pack-
age prioritized enumeration in Algorithm 3 can significantly
reduce the time cost of synthesizing the installation script. This
is because the desired packages are more likely to be selected
early in the enumeration process, thereby limiting the number
of actual builds required.

Example 5: As shown in Fig. 6, the straight arrows indicate
the mapping from missing files to potential missing packages
obtained in Algorithm 2. Note that the missing file libfree-
type.so is only offered by the package libfreetype-
dev. Hence, the installation script should contain the
installation command of the package libfreetype-
dev. Meanwhile, the missing files qtransform.h and
qtwidgets-config.h can be offered by the package
qtbase5-dev, so we enumerate the packages {qtbase5-
dev} with the higher priority than {qt3d5-dev, qt6-
base-dev}. Therefore, we pick the two packages
libfreetype-dev and qtbase5-dev at the beginning
of the prioritized enumeration. After validating them with an
actual build, we can successfully synthesize an installation
script that installs libfreetype-dev and qtbase5-dev.

D. Implementation

We have implemented our approach PACKHUNTER as a tool,
which is designed to recover missing packages for C/C++
projects. Our implementation primarily focuses on APT [20],
the package management system in Debian-based Linux distri-
butions like Ubuntu. To establish our package base, we down-
loaded all 66,475 packages managed by APT from its official
website. Benefiting from our approach, the process of manually
identifying missing packages is significantly simplified, elimi-
nating the need for laborious and time-consuming efforts.

To facilitate the detection of missing files, we have
implemented a program reduction technique inspired by

VIRTUALBUILD [13]. However, unlike VIRTUALBUILD, which
relies on LD_PRELOAD for file IO monitoring, we utilize
ptrace for more precise file IO monitoring and combine it
with the Berkeley Packet Filter (BPF) to capture only the
relevant system calls. This implementation design ensures
our monitoring requirements are met while minimizing the
performance overhead associated with surveillance.

To filter irrelevant packages, we utilize the ELF (Executable
and Linkable Format) analysis tool READELF [21] and the
parsing-based static analysis tool srcML [22] for symbol ex-
traction. Specifically, during the preprocessing phase, for all
packages, we leverage READELF to examine their static and
dynamic library files, and utilize SRCML to analyze their header
files. This process allows us to extract the variables and func-
tion names defined by these packages, with the extracted data
stored in JSON files that occupy less than 30MB of disk space.
For symbol analysis in the target C/C++ project, we adopt a
demand-driven approach, where only the header and source files
accessed during the mock build are analyzed using SRCML to
identify the external variables and functions used, resulting in
improved efficiency in the step of package filtering, as it means
that we do not need to analyze all files within the project.

V. EVALUATION

We evaluate the effectiveness of PACKHUNTER by investigat-
ing the following research questions:

• RQ1: How effectively and efficiently does PACKHUNTER

recover missing packages for real-world C/C++ projects?
• RQ2: How does PACKHUNTER compare against the con-

sidered baselines that could be used for recovering missing
packages?

• RQ3: How important are package filtering and package
prioritized enumeration in PACKHUNTER?

A. Experimental Setup

Dataset. We choose the projects with missing package errors
that are investigated in our empirical study (Section II-A). These
projects are managed in different building systems, such as
Make, CMake and Autoconf. Table I shows the basic infor-
mation of these projects. We initially confirm through manual
verification that these projects would fail to build due to missing
essential packages when being compiled and built directly. The
absence of the packages enables us to evaluate the effectiveness
of PACKHUNTER in the current build environment.

Baselines and Ablations. To answer RQ1 and RQ2, we
evaluate PACKHUNTER on our dataset and compare it with
CCSCANNER [9]. Specifically, CCSCANNER originally targets
the identification of dependencies in C/C++ projects by stati-
cally analyzing build scripts and the software bill of materials.
We adapt CCSCANNER to achieve the identification of poten-
tial missing packages and synthesize an installation script via
enumeration. Also, we adapt existing build monitoring method-
ologies [11], [12], [13] to detect missing files. Subsequently,
we adhere to developers’ convention of searching for packages,
i.e., deriving missing packages from missing files using the

Authorized licensed use limited to: Purdue University. Downloaded on March 21,2025 at 17:05:54 UTC from IEEE Xplore. Restrictions apply.

214 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 1, JANUARY 2025

TABLE I
BASIC INFORMATION OF PROJECTS. #FILES, #LINES, AND #PKGS

REPRESENT THE NUMBER OF SOURCE FILES, LINES OF CODE,
AND THE NUMBER OF THE MISSING PACKAGES. BUILD REPRESENTS

THE TIME OF CLEAN BUILD

#Lines Build BuildProject #Files (KLoC) #Pkgs (sec) System
dump1090 3 2.78 1 0.80 Make
guetzli 26 2.02 1 4.14 Make
shairport 35 6.29 5 0.49 Make
coturn 85 46.07 8 4.88 Autoconf
clib 92 17.57 1 0.37 Make
tig 92 39.46 1 0.90 Make
paho-mqtt 102 54.22 1 5.92 Make
glfw 103 88.40 4 2.14 CMake
xmr-stak 144 36.11 3 32.47 CMake
tmux 191 75.19 2 1.82 Autoconf
box2d 240 99.89 5 2.98 CMake
workflow 245 41.57 1 4.30 CMake
Bonzomatic 260 203.86 7 3.14 CMake
raylib 293 335.77 5 10.17 CMake
TheAlgorithms/C 431 35.18 2 0.55 CMake
SFML 544 157.20 9 14.14 CMake
g2o 572 67.78 1 79.29 CMake
LearnOpenGL 579 157.18 8 5.13 CMake
xmrig 788 243.61 3 26.91 CMake
ZLMediaKit 1,031 176.85 1 35.82 CMake
minetest 1,036 309.71 16 203.56 CMake
libgit2 1,115 309.03 1 3.26 CMake
OpenRCT2 1,207 721.72 12 42.36 CMake
osrm-backend 1,680 332.87 6 104.33 CMake
postgres 2,342 1,393.94 2 64.17 Autoconf
stk-code 2,388 814.13 12 32.68 CMake
pcl 2,577 740.34 3 606.12 CMake
poco 2,898 944.03 1 80.02 CMake
vowpal_wabbit 4,783 1,005.60 3 88.81 CMake
mame 19,039 9,781.75 15 767.50 Make
Average 4.67 74.31

“apt-file search” command, which forms a baseline approach
termed TRYINSTALL. Concretely, we enumerate all the packages
offering the missing files to fix each missing package error and
iterate such a process until all the missing package errors are
fixed. To answer RQ3, we remove the design of package filter-
ing, which forms an ablation named PACKHUNTER-NOPF, and
do not prioritize the packages in the enumeration, which induces
an ablation named PACKHUNTER-NOPPE. The comparison with
the above baselines and ablations can effectively demonstrate
the superiority of PACKHUNTER and quantify the benefit of each
technique design.

Environment. Each group of experiments is conducted on
a computer running Ubuntu 22.04 LTS system, equipped with
an Intel(R) Xeon(R) Gold 6230R CPU @ 2.10GHz forty-core
processor and 512GB of physical memory.

B. Effectiveness and Efficiency

Setting and Metrics: To quantify the effectiveness and effi-
ciency of PACKHUNTER, we evaluate its performance on the
experimental subjects to determine whether it can successfully
recover missing packages. Additionally, we measure the total
time cost of PACKHUNTER, as well as the time overhead as-
sociated with different stages of the process. To illustrate the
additional overhead incurred by PACKHUNTER, we calculate the
ratio of its total time cost to that of a successful clean build.

As shown by the column PackHunter in Table II,
PACKHUNTER successfully synthesizes the installation scripts
for all the C/C++ projects to recover the missing packages.
The time cost ranges from 3.79 seconds to 1,692.25 seconds,
and the average time cost is 141.69 seconds. The average
ratio of the time cost of PACKHUNTER over the time of the
actual build upon the corresponding C/C++ projects is only
6.78, indicating the low overhead of our approach in assisting
the build process in real-world scenarios. In particular, the
project mame has around 10 MLoC, and its actual build is
quite costly, consuming 767.50 seconds in total. What’s even
worse is that the number of missing packages of the project
mame reaches 15, which makes it quite challenging to fix
missing package errors manually. It is worth noting that all the
projects except for the project mame can be processed within
13 minutes. The high efficiency demonstrates the practical
value of PACKHUNTER in analyzing real-world C/C++ projects,
especially the ones on a large scale.

In the sub-columns of PackHunter of Table II, we display
the time cost of each stage of PACKHUNTER. First, the average
time cost of the missing file probing is 42.60 seconds, while
the overheads can vary greatly among different projects. When
a project contains more lines and build targets, the missing file
probing would take more time to process each file and build
the targets accordingly. However, the average ratio of the time
cost of missing file probing over the time of the actual build
is only 0.57, indicating that our program reduction and mock
build can significantly reduce the overhead of the missing file
probing. Second, the average cost of package filtering is only
3.43 seconds. The number of missing files, packages offering
the missing files, and the accessed header/source files in the
projects can affect the overhead in this stage as such files de-
termine the scope of parsing-based static analysis. Remarkably,
PACKHUNTER can finish the package filtering in only a few
seconds for most of the projects. Third, the package prioritized
enumeration takes the most significant proportion of time cost
among the three stages, consuming 95.66 seconds on average.
As demonstrated in Section IV-C, it has to validate the enumer-
ated packages with an actual build, which introduces significant
time overhead. Fortunately, our designs of the package filtering
and package prioritized enumeration enable PACKHUNTER to
find the missing packages quickly.

Answer to RQ1: PACKHUNTER successfully recovers
missing packages for all experimental subjects, with an
average time cost of 141.69 seconds, introducing only
5.78 times more overhead than a clean build.

C. Comparisons With Baselines

Setting and Metrics: Similar to Section V-B, we inves-
tigate whether the two baselines, namely CCSCANNER and
TRYINSTALL, can recover missing packages successfully. To
demonstrate the superiority of our approach in terms of effi-
ciency, we also measure the time costs of the two baselines and
further compute the speedups of PACKHUNTER compared to the
two baselines.

Authorized licensed use limited to: Purdue University. Downloaded on March 21,2025 at 17:05:54 UTC from IEEE Xplore. Restrictions apply.

WU et al.: PACKHUNTER: RECOVERING MISSING PACKAGES FOR C/C++ PROJECTS 215

TABLE II
THE RESULTS OF PACKHUNTER AND BASELINES. SPEEDUP� REPRESENTS THE SPEEDUP OF PACKHUNTER over CCSCANNER. SPEEDUP� REPRESENTS THE

SPEEDUP OF PACKHUNTER OVER TRYINSTALL. NA INDICATES THAT CCSCANNER FAILS TO RECOVER MISSING PACKAGES FOR SPECIFIC SUBJECTS

PackHunter CCScanner TryInstall
Probe Filter Enumerate Total Total Speedup� Total Speedup�Project
(sec) (sec) (sec) (sec) Total/Build (sec) (×) (sec) (×)

dump1090 0.14 0.03 3.62 3.79 4.71 NA NA 8.66 2.29
guetzli 0.84 0.18 7.59 8.62 2.08 11.67 1.35 179.28 20.80
shairport 0.28 0.06 16.03 16.38 33.57 NA NA 863.57 52.72
coturn 6.08 0.55 17.64 24.28 4.97 130.61 5.38 1,180.31 48.62
clib 0.39 0.15 8.96 9.50 25.89 2,410.52 253.73 13.93 1.47
tig 1.04 0.83 2.51 4.38 4.85 335.76 76.70 8.55 1.95
paho-mqtt 3.62 0.86 10.32 14.80 2.50 97.39 6.58 474.48 32.05
glfw 7.74 0.50 19.44 27.68 12.92 306.38 11.07 112.39 4.06
xmr-stak 3.86 0.68 52.96 57.50 1.77 NA NA 416.06 7.24
tmux 4.12 0.01 5.92 10.04 5.51 NA NA 929.16 92.50
box2d 8.24 1.68 7.32 17.24 5.79 NA NA 73.67 4.27
workflow 2.14 1.10 9.69 12.92 3.01 207.11 16.02 70.49 5.45
Bonzomatic 7.89 1.08 12.91 21.89 6.97 NA NA 132.56 6.06
raylib 11.86 1.56 26.12 39.54 3.89 NA NA 243.20 6.15
TheAlgorithms/C 14.52 1.38 6.36 22.26 40.47 383.62 17.23 60.74 2.73
SFML 2.24 0.30 22.63 25.17 1.78 351.56 13.97 398.96 15.85
g2o 32.03 1.68 82.23 115.94 1.46 182.05 1.57 748.02 6.45
LearnOpenGL 23.33 1.04 24.34 48.71 9.51 NA NA 295.41 6.06
xmrig 7.69 2.58 35.97 46.24 1.72 186.47 4.03 179.31 3.88
ZLMediaKit 11.11 1.32 39.59 52.02 1.45 179.53 3.45 226.89 4.36
minetest 10.18 2.49 276.31 288.98 1.42 NA NA 6,188.24 21.41
libgit2 13.61 11.40 8.33 33.34 10.23 358.10 10.74 304.57 9.14
OpenRCT2 35.00 28.02 67.21 130.23 3.07 5,977.07 45.90 663.05 5.09
osrm-backend 3.57 1.88 276.68 282.13 2.70 NA NA 1,739.44 6.17
postgres 22.26 0.17 70.89 93.32 1.45 NA NA 166.70 1.79
stk-code 18.24 7.07 50.26 75.57 2.31 NA NA 1,786.43 23.64
pcl 94.92 2.56 654.55 752.03 1.24 2,188.31 2.91 1,694.69 2.25
poco 14.26 22.72 87.41 124.40 1.55 584.43 4.70 412.86 3.32
vowpal_wabbit 58.74 6.25 134.47 199.45 2.25 199.99 1.00 744.35 3.73
mame 858.09 2.69 831.47 1,692.25 2.20 3,780.95 2.23 21,775.44 12.87
Average 42.60 3.43 95.66 141.69 6.78 992.86 26.59 1403.05 13.81

As demonstrated by the column CCScanner in Table II,
CCSCANNER successfully recovers the missing packages for
only 18 projects, with the time cost ranging from 11.67 to
5,977.07 seconds, averaging 26.59 times that of PACKHUNTER.
Notably, for the project clib, which only has one missing
package, CCSCANNER spends 2,410.52 seconds recovering the
package. The reason is that CCSCANNER only identifies partial
files and package abbreviations needed by the project, such as
libm.so and “ssl”. However, there are dozens of packages
that could provide libm.so, and numerous packages include
“ssl” in their names. The inability of the static analysis to
gather complete information for filtering candidate packages
implies that it has to traverse a vast space of potential packages
in an attempt to fix the project’s missing packages. Additionally,
CCSCANNER fails to repair 12 other projects. The failure can be
attributed to the difficulty in accurately parsing all build scripts
with static analysis, given their complexity and flexibility.

For example, as shown in the makefile in Listing 1 for project
dump1090, CCSCANNER cannot identify any information re-
lated to the missing package librtlsdr-dev from Line 1
to Line 2, thus it can never succeed in recovering the missing
packages for the project. The inability to identify even a single

missing package can lead to the failure of the project’s compi-
lation and build process.

Listing 1: A failure case of CCSCANNER

Makefile for dump1090

1 CFLAGS?=-O2 -g -Wall -W $(shell pkg-config --cflags librtlsdr)

2 LDLIBS+=$(shell pkg-config --libs librtlsdr) -lpthread -lm

3 CC?=gcc

4 %.o: %.c

5 $(CC) $(CFLAGS) -c $<

As outlined in the column TryInstall in Table II,
TRYINSTALL can recover the missing packages for all
projects, demonstrating the effectiveness of starting with
the project’s missing files to guide the recovery of missing
packages. However, the time cost of TRYINSTALL is far from
satisfactory. It is 13.81 times slower than PACKHUNTER on
average. Particularly, it takes 21,775.44 seconds to recover
missing packages for the largest project mame. The key reason
for its low efficiency is that TRYINSTALL cannot obtain all
missing files through a single mock build. The time overhead
incurred from each missing package error can be aggregated.
Besides, the lack of package filtering makes TRYINSTALL

Authorized licensed use limited to: Purdue University. Downloaded on March 21,2025 at 17:05:54 UTC from IEEE Xplore. Restrictions apply.

216 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 1, JANUARY 2025

TABLE III
THE STATISTICS OF PACKHUNTER-NOPF

PackHunter PackHunter-NoPF
Total Total SpeedupProject #Pkgs (sec) #Pkgs (sec) (×)

dump1090 1 3.79 1 6.57 1.73
guetzli 1 8.62 8 32.14 3.73
shairport 5 16.38 364 36.18 2.21
coturn 8 24.28 208 43.42 1.79
clib 1 9.50 79 21.14 2.23
tig 1 4.38 3 8.27 1.89
paho-mqtt 1 14.80 186 27.92 1.89
glfw 4 27.68 21 55.65 2.01
xmr-stak 3 57.50 18 176.56 3.07
tmux 2 10.04 174 14.38 1.43
box2d 5 17.24 12 39.09 2.27
workflow 1 12.92 198 17.87 1.38
Bonzomatic 7 21.89 24 75.74 3.46
raylib 5 39.54 37 NA NA
TheAlgorithms/C 2 22.26 4 30.73 1.38
SFML 9 25.17 101 NA NA
g2o 1 115.94 219 271.43 2.34
LearnOpenGL 8 48.71 27 191.92 3.94
xmrig 3 46.24 23 101.05 2.19
ZLMediaKit 1 52.02 72 412.65 7.93
minetest 23 288.98 40 NA NA
libgit2 1 33.34 134 42.16 1.26
OpenRCT2 90 130.23 393 541.01 4.15
osrm-backend 6 282.13 57 NA NA
postgres 2 93.32 8 187.88 2.01
stk-code 17 75.57 62 NA NA
pcl 3 752.03 233 NA NA
poco 1 124.40 84 205.45 1.65
vowpal_wabbit 3 199.45 8 526.55 2.64
mame 28 1692.25 45 3117.22 1.84
Average 8.10 141.69 94.43 257.62 2.52

validate each potential package with more attempts than
PACKHUNTER.

Answer to RQ2: CCSCANNER and TRYINSTALL suc-
cessfully recover 18 and 30 out of 30 experimental sub-
jects, respectively, incurring average time overheads of
25.59 and 12.81 times more than PACKHUNTER.

D. Ablation Study

Setting and Metrics: We conduct the ablation study to
evaluate the two ablations, namely PACKHUNTER-NOPF and
PACKHUNTER-NOPPE, and measure their time costs of recov-
ering missing packages upon the experimental subjects. Partic-
ularly, we count the numbers of missing package candidates
before and after the package filtering in the ablation study. Con-
sidering potentially huge time cost of analyzing large projects,
we set ten hours as the time budget for each project.

As shown in Table III, PACKHUNTER-NOPF fails to
generate the installation script for six projects within the
time budget due to the incredibly large search space. On
average, PACKHUNTER-NOPF has to consider 94.43 packages
as candidates in the package prioritized enumeration, while
PACKHUNTER only needs to take 8.10 packages into account.
Benefiting from the pruned search space, PACKHUNTER

achieves a 2.52× speedup on average over PACKHUNTER-

NOPF. For the largest project, i.e., the project mame,

Fig. 7. The statistics of PACKHUNTER-NOPPE.

PACKHUNTER saves 1424.97 (= 3117.22-1692.25) seconds
compared with PACKHUNTER-NOPF, as it only needs to select
28 packages instead of 45 ones.

Owing to our package filtering design, the missing files
in 26 out of 30 projects can be uniquely offered by spe-
cific packages, and thus, we can deterministically recover
the packages without any enumeration. For the rest four
projects, including minetest, OpenRCT2, stk-code, and
mame, we conduct the comparison between PACKHUNTER

and PACKHUNTER-NOPPE as shown in Fig. 7. Basically,
PACKHUNTER-NOPPE analyzes the projects 2.11 times slower
than PACKHUNTER due to the lack of package prioritization.
It should be noted that the above four projects still demon-
strate that the package prioritized enumeration improves the
efficiency in several extreme cases where several missing files
can be offered by multiple packages.

Answer to RQ3: The package filtering and package
prioritized enumeration can significantly improve the ef-
ficiency of PACKHUNTER, achieving 2.52× and 2.11×
speedups on average, respectively.

E. Threats to Validity

The threats to the validity of our work include the following
internal and external ones. The biggest threat to internal validity
is that the time overhead of PACKHUNTER depends on the envi-
ronment. The absence of specific packages in a C/C++ project
may vary across different installation environments, as each en-
vironment may have different sets of installed packages. During
our evaluation, we compare PACKHUNTER with the baselines
and ablations in the same environment, which allows us to
showcase the superiority of PACKHUNTER through the observed
speedup. Another factor that can threaten the internal validity
is the network status, which can affect the overhead of package
downloading and consequently influence the time cost of the
package filtering. The most significant threat to external validity
is that the time overhead of PACKHUNTER is affected by the
packages that cover the same number of missing files during the
package enumeration. In such cases, employing a prioritization
strategy still results in multiple choices, necessitating the use
of random selection to make decisions. In our evaluation, we
run PACKHUNTER ten times to compute the average time cost,
which can mitigate the effect of randomness.

Authorized licensed use limited to: Purdue University. Downloaded on March 21,2025 at 17:05:54 UTC from IEEE Xplore. Restrictions apply.

WU et al.: PACKHUNTER: RECOVERING MISSING PACKAGES FOR C/C++ PROJECTS 217

F. Discussion

Factors Impacting Performance. To further understand the
factors impacting the performance of PACKHUNTER, we inves-
tigate the time cost of each step. As shown in Table II, the
step “Package Prioritized Enumeration” takes up the majority
of analysis time, accounting for 67.5% of total time. Essentially,
the time cost of this step is determined by two factors as shown
in Algorithm 3. The first one is the time cost of one actual build,
since PACKHUNTER requires at least one successful build to
verify the solution. Specifically, for the projects whose time cost
of the clean build is high, such as mame, pcl, and minetest,
they require more analysis time than the other projects. The
second one is the times of package set enumeration (Line 11-
16 in Algorithm 3). Due to the design of “Package Filtering”,
in 26 out of 30 projects, we can deterministically recover the
packages without enumeration. For the rest four projects that
still require multiple enumerations, we observe that the times
of package enumerations are not linearly related to the number
of candidate packages. This is because our prioritized enu-
meration strategy is not influenced by the candidate packages
that only contain a few missing files. Moreover, even with our
prioritization strategy, we still encounter the cases where the
candidate packages cover the same number of missing files.
For these cases, we decide to use random selection strategy
to make decisions, since it is simple and effective. We also
compared the random selection strategy with a popularity-based
selection for four projects that required prioritized enumeration:
minetest, OpenRCT2, stk-code, and mame. The final
iteration counts for the two methods were 1.4, 1.7, 2.3, and
2.2 versus 2, 1, 2, and 2, respectively, showing no significant
difference in performance between the two strategies.

Open Source Platforms and Repositories. GitHub is
currently the most popular platform for open-source projects,
widely recognized within the C/C++ community. Many previ-
ous studies [9], [23] have used projects hosted on GitHub as
their datasets. In terms of package managers, apt is the most
commonly used in open-source projects [9]. Consequently, our
experiments are based on GitHub and apt. However, our ap-
proach is not dependent on any specific platform or package
manager. The symbol extraction and source code analysis we
perform on packages are universally applicable to all header
files, library files, and source files. Therefore, our method is
equally suitable for other open-source platforms and package
managers, such as Sourceforge and vcpkg.

Limitations and Future Work. Firstly, the developers of a
C/C++ project may define specific macros in the build script to
check if a dependent package has been installed. Simply mock-
ing the missing files will not allow the mock build to bypass the
missing package error and complete the build in a single round.
To address this issue, we could combine PACKHUNTER with the
baseline TRYINSTALL to create a hybrid approach. This hybrid
approach can handle such challenging missing package errors
by first utilizing TRYINSTALL and then resolving other missing
packages using PACKHUNTER. Secondly, the enumeration pro-
cess may be time-consuming when dealing with a large number
of packages after filtering irrelevant packages. For example,
analyzing the project mame requires the enumeration process

upon 28 packages, which introduces significant overhead when
the actual build of the project is costly. One way to enhance
efficiency further is to leverage more sophisticated static anal-
ysis for performing irrelevant package filtering. Specifically, we
could pose a stronger constraint on the missing files provided by
packages. That is, the missing files should offer all the symbols
used by the accessed header/source files but not be defined in
other files included within the project. The enhanced irrelevant
package filtering can potentially prune more search space for
the package prioritized enumeration than PACKHUNTER. We
plan to extend PACKHUNTER in the two aspects above to en-
hance its applicability and efficiency.

VI. RELATED WORK

Missing Package Recovery. Some studies have explored
the missing package recovery problems for facilitating the
build process of a given project in the past decade. Typically,
DOCKERIZEME [24] infers the dependent packages by analyzing
the import instructions in Python code snippets and gener-
ates a Dockerfile for the corresponding environment to avoid
import errors. V2 [25] is an improvement of DOCKERIZEME,
addressing the issue of code snippets becoming outdated due
to configuration drift. While the aforementioned studies focus
on code snippets, others tackle practical challenges such as
complex dependency specifications. READPYE [26], PYEGO

[27], and PYCRE [28] build their own knowledge graphs of
the Python ecosystem, extracting syntax features, module im-
ports, and more from Python source code to automatically in-
fer Python-compatible runtime environments. However, unlike
Python’s PyPI, the C/C++ ecosystem lacks a central repository,
making it challenging to construct a comprehensive knowledge
graph. Furthermore, in C/C++ projects, obtaining dependencies
in third-party libraries involves multiple concerns, including
header file inclusion, library file linking, and conditional com-
pilation, which cannot be addressed solely through statically
analyzing source code. Our work is the first attempt to address
missing package issues in C/C++ projects.

Build Script Error Detection. There is extensive literature
on detecting build script errors, typically falling into three
categories. The first type statically analyzes build scripts to
detect dependency errors. For instance, Gunter [29] proposed
to utilize Petri nets to model dependency relationships in build
scripts to check their correctness. SYMAKE [30] detects bad
code smell, such as cyclic and duplicated dependencies, using
symbolic dependency graphs. However, due to the unsoundness
of extracting dependencies, such analyses suffer from the issues
of low precision and recall. The second type detects build errors
by dynamically analyzing the build scripts. MKCHECK [12], for
example, employs a fuzz-testing-like approach to track system
calls during the build process and then triggers incremental
builds for each file to validate the correctness of the dependen-
cies. FABRICATE [31] and MEMOIZE [32] utilize build monitor
to automatically resolve unspecified dependency relationships.
TUP [33], IBM CLEARCASE [34], and VESTA [35] employ run-
time validation to detect dependency issues. These approaches
would incur significant overhead for large-scale projects.

Authorized licensed use limited to: Purdue University. Downloaded on March 21,2025 at 17:05:54 UTC from IEEE Xplore. Restrictions apply.

218 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 1, JANUARY 2025

The third type combines both static and dynamic methods to
detect build script errors, yielding more satisfactory results.
Bezemer et al. [19] combine declared dependencies with ac-
tual dependencies during the build process to reveal missing
dependencies in make build systems, while VERIBUILD [11]
merges them into a unified dependency graph to detect missing
and redundant dependencies. VIRTUALBUILD [13] extends the
concept of unified dependency graph and uses program reduc-
tion to accelerate the detection. Although they are promising
in reducing the overhead, a complete analysis requires a suc-
cessful build. Our work aims to resolve missing package errors,
which is a different problem from build script error detection.
Following the spirit of the hybrid approaches for dependency
error detection, we adopt the virtual build [13] to achieve a
smooth mock build even in the absence of packages. Also, static
analysis facilitates search space pruning significantly, which
reduces the overall overhead further.

Automatic Build Repair. The build failures can be attributed
to many factors. Some studies have investigated various root
causes and proposed different automatic repair approaches. For
example, BUILDMEDIC [36] summarizes three repair strategies,
including version updates, dependency removal, and repository
addition, which can address build failures related to Maven
dependencies in Java projects. HIREBUILD [37] generates auto-
matic repair patches for build scripts by analyzing the similarity
of build logs and incorporating specific repair patterns from the
scripts. HOBUFF [38] extracts error information from build logs
of Gradle or Maven build systems and performs fault localiza-
tion through lightweight data flow analysis using current infor-
mation in the logs. Other studies address dependency-related
build failures in Python projects. PYDFIX [1] detects and fixes
the irreproducibility of Python builds caused by dependency
errors by analyzing build logs. It primarily addresses issues
arising from version specification of open-source dependency
packages hosted in centralized repositories like PYPI. LOOCO

[39] optimizes library version constraints to fix build failures
caused by dependency conflicts in Python projects. These stud-
ies mainly focus on build failures caused by version constraints
of packages. Different from them, PACKHUNTER can be re-
garded as an automatic build repair technique targeting missing
package recovery.

VII. CONCLUSION

We present PACKHUNTER, an automated tool that recovers
missing packages in C/C++ projects. PACKHUNTER employs
a comprehensive approach to address this problem, including
probing missing files through a one-time mock build, filtering
irrelevant packages, and conducting a package prioritized enu-
meration. Our evaluation demonstrates the high efficiency and
effectiveness of PACKHUNTER. To facilitate the future research,
we make our tool and dataset [40] publicly available.

ACKNOWLEDGMENT

The authors thank anonymous reviewers for their insightful
comments.

REFERENCES

[1] S. Mukherjee, A. Almanza, and C. Rubio-González, “Fixing dependency
errors for python build reproducibility,” in Proc. 30th ACM SIGSOFT
Int. Symp. Softw. Testing Anal. (ISSTA), Virtual Event, Denmark,
C. Cadar and X. Zhang, Eds., New York, NY, USA: ACM, 2021,
pp. 439–451, doi: 10.1145/3460319.3464797.

[2] D. Fonović and T. G. Grbac, “A quantitative study of C/C++ FOSS
software buildability,” in Proc. Workshop Softw. Qual., Anal., Monit.,
Improvement, Appl., 2022, pp. 1–10.

[3] N. Kerzazi, F. Khomh, and B. Adams, “Why do automated builds break?
An empirical study,” in Proc. 30th IEEE Int. Conf. Softw. Maintenance
Evol., Victoria, BC, Canada. Los Alamitos, CA, USA: IEEE Comput.
Soc. Press, 2014, pp. 41–50, doi: 10.1109/ICSME.2014.26.

[4] H. Seo, C. Sadowski, S. G. Elbaum, E. Aftandilian, and R. W. Bowdidge,
“Programmers’ build errors: A case study (at Google),” in Proc. 36th
Int. Conf. Softw. Eng., ICSE ’14, Hyderabad, India, P. Jalote, L. C.
Briand, and A. van der Hoek, Eds., New York, NY, USA: ACM, 2014,
pp. 724–734, doi: 10.1145/2568225.2568255.

[5] D. Wu, L. Chen, Y. Zhou, and B. Xu, “How do developers use C++
libraries? An empirical study,” in Proc. 27th Int. Conf. Softw. Eng.
Knowl. Eng. (SEKE), Wyndham Pittsburgh Univ. Center, Pittsburgh, PA,
USA, H. Xu, Ed., KSI Research Inc. and Knowledge Systems Institute
Graduate School, 2015, pp. 260–265, doi: 10.18293/SEKE2015-9.

[6] A. Miranda and J. Pimentel, “On the use of package managers by the
C++ open-source community,” in Proc. 33rd Annu. ACM Symp. Appl.
Comput. (SAC), Pau, France, H. M. Haddad, R. L. Wainwright, and R.
Chbeir, Eds., New York, NY, USA: ACM, 2018, pp. 1483–1491, doi:
10.1145/3167132.3167290.

[7] “vcpkg,” 2023. Microsoft. Accessed: Dec. 28, 2023. [Online]. Available:
https://vcpkg.io/en/

[8] “Conan,” 2023. JFrog. Accessed: Dec. 28, 2023. [Online]. Available:
https://conan.io/

[9] W. Tang et al., “Towards understanding third-party library dependency
in C/C++ ecosystem,” in Proc. 37th IEEE/ACM Int. Conf. Automated
Softw. Eng. (ASE), Rochester, MI, USA, 2022, New York, NY, USA:
ACM, 2022, pp. 106:1–106:12, doi: 10.1145/3551349.3560432.

[10] J. Long, “Dependency-check – File type analyzers,” 2023. Ac-
cessed: Dec. 28, 2023. [Online]. Available: https://jeremylong.github.
io/DependencyCheck/analyzers/index.html

[11] G. Fan, C. Wang, R. Wu, X. Xiao, Q. Shi, and C. Zhang, “Escaping
dependency hell: Finding build dependency errors with the unified
dependency graph,” in Proc. 29th ACM SIGSOFT Int. Symp. Softw.
Testing Anal. (ISSTA), Virtual Event, USA, S. Khurshid and C. S.
Pasareanu, Eds., New York, NY, USA: ACM, 2020, pp. 463–474, doi:
10.1145/3395363.3397388.

[12] N. Licker and A. Rice, “Detecting incorrect build rules,” in Proc. 41st
Int. Conf. Softw. Eng. (ICSE), Montreal, QC, Canada, J. M. Atlee,
T. Bultan, and J. Whittle, Eds., Piscataway, NJ, USA: IEEE Press, 2019,
pp. 1234–1244, doi: 10.1109/ICSE.2019.00125.

[13] R. Wu, M. Chen, C. Wang, G. Fan, J. Qiu, and C. Zhang, “Accel-
erating build dependency error detection via virtual build,” in Proc.
37th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Rochester,
MI, USA. New York, NY, USA: ACM, 2022, pp. 5:1–5:12, doi:
10.1145/3551349.3556930.

[14] U. Packages, “All packages [Ubuntu 22.04 - Jammy],” 2023. Accessed:
Dec. 28, 2023. [Online]. Available: https://packages.ubuntu.com/jammy

[15] “Python random module,” Python Software Foundation. 2023. Accessed:
Dec. 28, 2023. [Online]. Available: https://docs.python.org/3/library/
random.html

[16] R. Durstenfeld, “Algorithm 235: Random permutation,” Commun. ACM,
vol. 7, no. 7, 1964, Art. no. 420.

[17] “Dataset of empirical study,” PackHunter. 2024. Accessed: Dec.
28, 2023. [Online]. Available: https://github.com/PackHunter-dataset/
Empircal_Study

[18] “guetzli,” googke. 2024. Accessed: Dec. 28, 2023. [Online]. Available:
https://github.com/google/guetzli

[19] C. Bezemer, S. McIntosh, B. Adams, D. M. Germán, and A. E. Hassan,
“An empirical study of unspecified dependencies in make-based build
systems,” Empir. Softw. Eng., vol. 22, no. 6, pp. 3117–3148, 2017, doi:
10.1007/s10664-017-9510-8.

[20] D. P. Contributors, “The Debian package management tools: APT,” 2023.
Accessed: Dec. 28, 2023. [Online]. Available: https://www.debian.org/
doc/manuals/debian-faq/pkgtools.en.html

[21] Free Software Foundation Inc., “Readelf,” 2023, Accessed: Dec. 28,
2023. [Online]. Available: https://sourceware.org/binutils/docs/binutils/
readelf.html

Authorized licensed use limited to: Purdue University. Downloaded on March 21,2025 at 17:05:54 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/3460319.3464797
http://dx.doi.org/10.1109/ICSME.2014.26
http://dx.doi.org/10.1145/2568225.2568255
http://dx.doi.org/10.18293/SEKE2015-9
http://dx.doi.org/10.1145/3167132.3167290
https://vcpkg.io/en/
https://conan.io/
http://dx.doi.org/10.1145/3551349.3560432
https://jeremylong.github.io/DependencyCheck/analyzers/index.html
https://jeremylong.github.io/DependencyCheck/analyzers/index.html
http://dx.doi.org/10.1145/3395363.3397388
http://dx.doi.org/10.1109/ICSE.2019.00125
http://dx.doi.org/10.1145/3551349.3556930
https://packages.ubuntu.com/jammy
https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/random.html
https://github.com/PackHunter-dataset/Empircal_Study
https://github.com/PackHunter-dataset/Empircal_Study
https://github.com/google/guetzli
http://dx.doi.org/10.1007/s10664-017-9510-8
https://www.debian.org/doc/manuals/debian-faq/pkgtools.en.html
https://www.debian.org/doc/manuals/debian-faq/pkgtools.en.html
https://sourceware.org/binutils/docs/binutils/readelf.html
https://sourceware.org/binutils/docs/binutils/readelf.html

WU et al.: PACKHUNTER: RECOVERING MISSING PACKAGES FOR C/C++ PROJECTS 219

[22] M. L. Collard, J. I. Maletic, “srcML,” 2023. Accessed: Dec. 28, 2023.
[Online]. Available: https://www.srcml.org/

[23] R. Duan, A. Bijlani, M. Xu, T. Kim, and W. Lee, “Identifying open-
source license violation and 1-day security risk at large scale,” in
Proc. ACM SIGSAC Conf. Comput. Commun. Secur. (CCS), Dallas, TX,
USA, B. Thuraisingham, D. Evans, T. Malkin, and D. Xu, Eds., New
York, NY, USA: ACM, 2017, pp. 2169–2185, doi: 10.1145/3133956.
3134048.

[24] E. Horton and C. Parnin, “DockerizeMe: Automatic inference of envi-
ronment dependencies for Python code snippets,” in Proc. 41st Int. Conf.
Softw. Eng., ICSE 2019, Montreal, QC, Canada, J. M. Atlee, T. Bultan,
and J. Whittle, Eds., New York, NY, USA: ACM, 2019, pp. 328–338,
doi: 10.1109/ICSE.2019.00047.

[25] E. Horton and C. Parnin, “V2: Fast detection of configuration drift in
Python,” in Proc. 34th IEEE/ACM Int. Conf. Automated Softw. Eng.
(ASE), San Diego, CA, USA. Piscataway, NJ, USA: IEEE Press, 2019,
pp. 477–488, doi: 10.1109/ASE.2019.00052.

[26] W. Cheng, W. Hu, and X. Ma, “Revisiting knowledge-based inference
of Python runtime environments: A realistic and adaptive approach,”
IEEE Trans. Softw. Eng., vol. 50, no. 2, pp. 258–279, Feb. 2024, doi:
10.1109/TSE.2023.3346474.

[27] H. Ye, W. Chen, W. Dou, G. Wu, and J. Wei, “Knowledge-based
environment dependency inference for Python programs,” in Proc.
44th IEEE/ACM 44th Int. Conf. Softw. Eng., ICSE 2022, Pittsburgh,
PA, USA. New York, NY, USA: ACM, 2022, pp. 1245–1256, doi:
10.1145/3510003.3510127.

[28] W. Cheng, X. Zhu, and W. Hu, “Conflict-aware inference of Python
compatible runtime environments with domain knowledge graph,” in
Proc. 44th IEEE/ACM 44th Int. Conf. Softw. Eng. (ICSE), Pittsburgh,
PA, USA. New York, NY, USA: ACM, 2022, pp. 451–461, doi:
10.1145/3510003.3510078.

[29] C. A. Gunter, “Abstracting dependencies between software configura-
tion items,” in Proc. 4th ACM SIGSOFT Symp. Found. Softw. Eng.,
San Francisco, California, USA, D. Garlan, Ed., New York, NY, USA:
ACM, 1996, pp. 167–178, doi: 10.1145/239098.239129.

[30] A. Tamrawi, H. A. Nguyen, H. V. Nguyen, and T. N. Nguyen, “SYMake:
A build code analysis and refactoring tool for makefiles,” in Proc.
IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Essen, Germany,
M. Goedicke, T. Menzies, and M. Saeki, Eds., New York, NY, USA:
ACM, 2012, pp. 366–369, doi: 10.1145/2351676.2351749.

[31] B. Technology., “fabricate,” 2022, Accessed: Dec. 28, 2023. [Online].
Available: https://github.com/brushtechnology/fabricate

[32] B. McCloskey, “Memoize,” 2022, Accessed: Dec. 28, 2023. [Online].
Available: https://github.com/kgaughan/memoize.py

[33] M. Shal, “Build system rules and algorithms,” Accessed: Jul. 18,
2013. [Online]. Available: http://gittup.org/tup/build_system_rules_and_
algorithms.pdf

[34] I. B. M. C. (IBM), “IBM Rational Clearcase,” 2020. Accessed: Dec.
28, 2023. [Online]. Available: https://www.ibm.com/us-en/marketplace/
rational-clearcase

[35] “Vesta Configuration Management System,” VestaSys. 2020. Accessed:
28/12/2023. [Online]. Available: http://www.vestasys.org/

[36] C. Macho, S. McIntosh, and M. Pinzger, “Automatically repairing
dependency-related build breakage,” in Proc. 25th Int. Conf. Softw.
Anal., Evol. Reeng. (SANER), Campobasso, Italy, March 20-23, 2018,
R. Oliveto, M. D. Penta, and D. C. Shepherd, Eds., Los Alami-
tos, CA, USA: IEEE Comput. Soc. Press, 2018, pp. 106–117, doi:
10.1109/SANER.2018.8330201.

[37] F. Hassan and X. Wang, “HireBuild: An automatic approach to history-
driven repair of build scripts,” in Proc. 40th Int. Conf. Softw. Eng.
(ICSE), Gothenburg, Sweden, M. Chaudron, I. Crnkovic, M. Chechik,
and M. Harman, Eds., New York, NY, USA: ACM, 2018, pp. 1078–
1089, doi: 10.1145/3180155.3180181.

[38] Y. Lou, J. Chen, L. Zhang, D. Hao, and L. Zhang, “History-driven
build failure fixing: How far are we?” in Proc. 28th ACM SIGSOFT
Int. Symp. Softw. Testing Anal. (ISSTA), Beijing, China, D. Zhang and
A. Møller, Eds., New York, NY, USA: ACM, 2019, pp. 43–54, doi:
10.1145/3293882.3330578.

[39] H. Wang, S. Liu, L. Zhang, and C. Xu, “Automatically resolving
dependency-conflict building failures via behavior-consistent loosening
of library version constraints,” in Proc. 31st ACM Joint Eur. Softw. Eng.
Conf. Symp. Found. Softw. Eng., (ESEC/FSE), San Francisco, CA, USA,
S. Chandra, K. Blincoe, and P. Tonella, Eds., New York, NY, USA:
ACM, 2023, pp. 198–210, doi: 10.1145/3611643.3616264.

[40] “PackHunter,” PackHunter. 2024. Accessed: Dec. 28, 2023. [Online].
Available: https://github.com/L00000719/PackHunter

Rongxin Wu received the Ph.D. degree from
HKUST, in 2017. Currently, he is an Associate
Professor with the Department of Computer Science
and Technology, School of Informatics, Xiamen
University. His research interests include program
analysis, software security, and mining software
repository. His research work has been regularly
published in top conferences and journals in the
research communities of program languages and
software engineering, including POPL, PLDI, ATC,
ICSE, FSE, ISSTA, ASE, and TSE and so on. He

has served as a Reviewer in reputable international journals and a Program
Committee Member in several international conferences (FSE’25, ISSTA’25,
SANER’25, FSE’24, ISSTA’24, ASE’23, SANER’23, and ASE 2021 and so
on). He is a two-time recipient of the ACM SIGSOFT Distinguished Paper
Award. For more information, see https://wurongxin1987.github.io/wurongxin.
xmu.edu.cn/

Zhiling Huang received the bachelor’s degree in
engineering from Xiamen University, in 2022. He
is a Postgraduate Student with the Department of
Computer Science and Technology, School of Infor-
matics, Xiamen University. His research focuses on
software engineering, particularly on C/C++ com-
pilation processes and build systems.

Zige Tian received the bachelor’s degree in en-
gineering from Xiamen University, in 2023. She
is a Postgraduate Student with the Department of
Computer Science and Technology, School of In-
formatics, Xiamen University. Her research area is
software engineering, with research interests in-
cluding build error detection and dependency
management.

Chengpeng Wang received the bachelor’s and mas-
ter’s degrees from Tsinghua University, in 2016
and 2019, respectively, and the Ph.D. degree from
Hong Kong University of Science and Technology,
in 2023. He is a Postdoctoral Research Fellow
with the Computer Science Department, Purdue
University. His research mainly focuses on the use
of program analysis, especially static analysis, to
improve software reliability and performance. He
is also interested in the intersection of machine
learning techniques, such as Large Language Mod-

els, and symbolic analysis techniques, with the aim of establishing neuro-
symbolic program analysis. His contributions to the field have been recognized
through publications in esteemed conferences and journals on programming
languages, software engineering, and systems. Notably, he has been awarded
the SIGPLAN Distinguished Paper Award (2022) and the ASPLOS Best Paper
Award (2024).

Xiangyu Zhang is a Professor specializing in AI
security, software analysis, and cyber forensics. His
work involves developing techniques to detect bugs,
including security vulnerabilities, in traditional soft-
ware systems as well as AI models and systems,
and to diagnose runtime failures. He has served as
the Principal Investigator (PI) for numerous projects
funded by organizations such as DARPA, IARPA,
ONR, NSF, AirForce, and industry. Many of the
techniques developed by his team have successfully
transitioned into practical applications. His research

outcome has been published on top venues in the areas of Security, AI,
Software Engineering, and Programming Languages, and recognized by vari-
ous distinguished paper awards including the prestigious ACM Distinguished
Dissertation Awards. He has mentored over 30 Ph.D. students and post-docs,
with fifteen securing academic positions in various universities. Many of them
have been honored with NSF Career Awards or comparable recognitions.

Authorized licensed use limited to: Purdue University. Downloaded on March 21,2025 at 17:05:54 UTC from IEEE Xplore. Restrictions apply.

https://www.srcml.org/
http://dx.doi.org/10.1145/3133956.3134048
http://dx.doi.org/10.1145/3133956.3134048
http://dx.doi.org/10.1109/ICSE.2019.00047
http://dx.doi.org/10.1109/ASE.2019.00052
http://dx.doi.org/10.1109/TSE.2023.3346474
http://dx.doi.org/10.1145/3510003.3510127
http://dx.doi.org/10.1145/3510003.3510078
http://dx.doi.org/10.1145/239098.239129
http://dx.doi.org/10.1145/2351676.2351749
https://github.com/brushtechnology/fabricate
https://github.com/kgaughan/memoize.py
http://gittup.org/tup/build_system_rules_and_algorithms.pdf
http://gittup.org/tup/build_system_rules_and_algorithms.pdf
https://www.ibm.com/us-en/marketplace/rational-clearcase
https://www.ibm.com/us-en/marketplace/rational-clearcase
http://www.vestasys.org/
http://dx.doi.org/10.1109/SANER.2018.8330201
http://dx.doi.org/10.1145/3180155.3180181
http://dx.doi.org/10.1145/3293882.3330578
http://dx.doi.org/10.1145/3611643.3616264
https://github.com/L00000719/PackHunter
https://wurongxin1987.github.io/wurongxin.xmu.edu.cn/
https://wurongxin1987.github.io/wurongxin.xmu.edu.cn/

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

