
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, NOVEMBER 2024 1

PACKHUNTER: Recovering Missing Packages for
C/C++ Projects

Rongxin Wu, Zhiling Huang, Zige Tian, Chengpeng Wang, and Xiangyu Zhang

The reproducibility of software artifacts is a critical aspect of software development and application. However, current research
indicates that a notable proportion of C/C++ projects encounter non-reproducibility issues stemming from build failures, primarily
attributed to the absence of necessary packages. This paper introduces PACKHUNTER, a novel technique that automates the recovery
of missing packages in C/C++ projects. By identifying missing files during the project’s build process, PACKHUNTER can determine
potentially missing packages and synthesize an installation script. Specifically, it simplifies C/C++ projects through program reduction
to reduce build overhead and simulates the presence of missing files via mock build to ensure a successful build for probing missing
files. Besides, PACKHUNTER leverages a sophisticated design to eliminate packages that do not contain the required missing files,
effectively reducing the search space. Furthermore, PACKHUNTER introduces a greedy strategy to prioritize the packages, eventually
recovering missing packages with few times of package enumeration. We have implemented PACKHUNTER as a tool and evaluated it
on 30 real-world projects. The results demonstrate that PACKHUNTER can recover missing packages efficiently, achieving 26.59×
speed up over the state-of-the-art approach. The effectiveness of PACKHUNTER highlights its potential to assist developers in building
C/C++ artifacts and promote software reproducibility.

Index Terms—Package Management, Build System Maintenance, and Reproducibility.

✦

1 INTRODUCTION

The reproducibility of software artifacts is one of the funda-
mental challenges for both industrial and academia [1]. An
essential initial step in reproducing C/C++ projects is en-
suring their buildability. However, a recent study [2] reports
that less than 11% (65 out of 592) of C/C++ open source
projects using Make or CMake from GitHub repositories
can be built successfully. One primary cause of these build
failures stems from the absence of the required packages,
accounting for over 50% of the cases [2], [3], [4]. In this work,
we refer to this problem as missing package errors.

The prevalence of missing package errors in C/C++
projects can be largely attributed to the absence of a co-
hesive method for managing package dependencies [5], [6].
Users resort to various ways to manage package dependen-
cies, including project documents (e.g., readme.md), non-
uniform scripts of package installation (e.g., install.sh
and prerequisite.sh), and some package management
tools (e.g., vcpkg [7] and conan [8]). Due to the lack of a
widely-used standard of package management, developers
would easily forget to specify the required packages, thus
leading to failures when building in a new environment.
When encountering missing package errors, users have
to exhaustively search the missing dependency packages
based on the error messages or report bugs to ask for
guidance from developers, which often involves laborious

• Rongxin Wu, Zhiling Huang, and Zige Tian are with School of In-
formatics, Xiamen University, China. E-mail: {wurongxin@xm.edu.cn,
huangzhiling@stu.xmu.edu.cn, tianzige@stu.xmu.edu.cn}.

• Chengpeng Wang and Xiangyu Zhang are with Purdue University, USA.
E-mail: {wang6590@purdue.edu, xyzhang@cs.purdue.edu}.

Manuscript received June 12, 2024; revised September 30, 2024; accepted
November 15, 2024.

manual effort when building real-world projects1. In this
work, we concentrate on an automatic recovery of the miss-
ing packages for a given C/C++ project. More concretely,
we aim to synthesize an installation script that can install all
the missing packages and eventually facilitate a successful
build of the project.

Unfortunately, it is a challenging task to solve the
missing package recovery problem. On one hand, extract-
ing required dependencies via statically analyzing build
scripts [9], [10] is a possible solution. However, due to the
complicated and diverse syntax of build commands, it is
impossible to implement an omnipotent parser to extract de-
pendencies from build commands precisely and completely,
thus impeding the complete retrieval of required packages.
On the other hand, dynamically capturing dependencies via
monitoring the building process is another possible solu-
tion [11], [12], [13]. However, when encountering failures
caused by missing packages, we must pause the building
process and resume it only after successfully identifying and
installing the necessary packages, which is similar to a man-
ual trial process. Thus, this approach necessitates repetitive
and iterative building, which is time-consuming and leads
to efficiency concerns. Moreover, both techniques extract
dependencies at the file level, requiring us to deduce the
required packages from files by searching a large package
repository (e.g., there are 66,475 packages in Ubuntu 22.04
repository [14]).

To efficiently recover missing packages, we propose
a novel approach called PACKHUNTER, which originates
from three key observations. First, only a small propor-

1. A real-world project refers to a project that addresses practical,
real-life problems and is typically implemented outside of a purely
academic or theoretical context.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3506629

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on December 02,2024 at 21:09:18 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, NOVEMBER 2024 2

tion of source code, such as #include directives and
#define directives, determines the dependencies of the
project. Hence, it is not mandatory to perform a complete
build for the dependency extraction. Second, the absence
of symbols revealed in missing package errors, such as
variables, functions, and header files, is primarily caused
by the absence of specific files that should be provided
by the required packages. These missing files can serve as
important indicators for localizing the missing packages in
the initial step. Moreover, not all the packages that include
the missing files are desired by the project. If the file offered
by a package does not offer any symbols used by the project,
the package can be safely disregarded and not installed.
Third, only when the missing files are covered by specific
packages may the missing package error be resolved. By
building the project after installing such packages, we can
validate whether the packages are the desired ones.

Based on the above insights, we introduce PACKHUNTER
with three stages. In the first stage, we employ the technique
of program reduction and mocking files to facilitate a suc-
cessful one-time build. During this stage, we collect all the
missing files that reveal the root causes of missing package
errors. In the second stage, we examine whether there exist
the def-use relations between the symbols defined in a
package and the ones used in the C/C++ project. This
analysis enables us to effectively filter out the irrelevant
packages. In the last stage, we enumerate the set of packages
that covers the missing files and synthesize an installation
script. Particularly, we introduce a prioritized enumeration
where we maximize the number of missing files in the
package selection. Owing to our designs, PACKHUNTER hits
desired packages with few times of package enumeration in
our pruned search space, promoting the efficiency of the
installation script synthesis.

We have implemented our idea as a tool named PACK-
HUNTER and evaluated it using 30 popular and widely-used
C/C++ open-source projects hosted in GitHub, which lack
4.67 packages on average. It is shown that PACKHUNTER
finishes the overall analysis with 141.69 seconds averagely,
achieving 26.59× speed up over the state-of-the-art ap-
proach. We also conduct an ablation study to demonstrate
the importance of our technique designs. To sum up, the
contribution of our work can be summarized as follows.

• Our research represents the pioneering effort in address-
ing the problem of missing package recovery specifically
for C/C++ projects. By focusing on this aspect, our work
contributes to enhancing the reproducibility of C/C++
software artifacts.

• To efficiently synthesize an installation script, we propose
a novel approach called PACKHUNTER. This approach
capitalizes on the identification of missing files to effec-
tively reduce and explore the search space for missing
packages during the synthesis process.

• We perform a comprehensive empirical evaluation to as-
sess the effectiveness of our technical designs, showing
the practical value of PACKHUNTER in promoting soft-
ware reproducibility in real-world scenarios.

2 PACKHUNTER IN A NUTSHELL

In this section, we first introduce the motivation of this work
(Section 2.1), and then point out the technical challenges
(Section 2.2). Finally, we explain the key idea of PACK-
HUNTER (Section 2.3).

2.1 Empirical Study

To investigate the pervasiveness of missing package er-
rors, we first collected 1,294 C/C++ projects from GitHub
based on the following selection criteria. First, it should
have achieved over 1,000 stars or forks which indicates its
popularity. Second, it relies on certain build systems (e.g.,
Make, CMake, Autoconf, etc.) for building. Since it is non-
trivial and time-consuming to build such a large number of
projects, we decided to randomly select 80 of these projects
to examine whether they suffered from build failures and
missing package errors. To avoid introducing bias during
the selection process, we labeled each of the 1,294 projects
with an integer from 1 to 1,294. Using the sample function
from Python random module [15], we randomly selected
80 projects to form the experimental subject set. It is worth
noting that the sample function implements the Fisher-Yates
shuffle algorithm [16], which ensures that each project has
an equal probability of being chosen for the experimental
subject set. Therefore, we did not introduce bias in the
process of constructing the experimental subject set, and the
experimental results can generally reflect the characteristics
of the real-world projects.

For each selected project, we manually examine its build
scripts and the instructions on how to build the project in
the project documentation. Then, we set up a clean docker
whose environment (e.g., OS kernel version, compiler, etc.)
satisfies the requirements specified in project documents
and build the project with the default configuration settings.
If a project is built with failures, with the hints from the
error log messages, we resort to the searching command of
the system package manager (e.g., “apt-file search” in
Ubuntu), the help from the project developers (e.g., submit-
ting an issue report), and the online Q&A websites (e.g.,
StackOverflow) to repair the build failures manually.
Based on the fixing solutions, we categorize the root causes
of build failures.

Our preliminary study, which is publicly available on-
line [17], shows that 58.75% (47 out of 80) projects suffer
from build failures. We further investigate the root causes
of the build failures and categorize them into four groups:
missing package error (30 out of 47), build script error (7
out of 47), source code error (5 out of 47), and miscellaneous
error (5 out of 47, which refers to the errors that cannot fall
into the other three categories, such as incompatible com-
piler version and incorrect command options.). These results
are consistent with the findings in the prior studies [2], [3],
[4] that missing package error is the most dominant reason
for the build failures.

To better understand the difficulties of resolving missing
package errors, we examine the number of the missing
packages that have been identified and installed during our
manual repair process, as shown in Figure 1. Typically, the
number of missing packages that require to be installed is

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3506629

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on December 02,2024 at 21:09:18 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, NOVEMBER 2024 3

Build

Fix one missing
package Missing

package error

Project source code Project binary code

Fig. 1: The manual installation of missing packages

4.67 on average, ranging from 1 to 16. Resolving the missing
package errors is non-trivial. This is because, even with the
hints from error log messages, it still requires substantial
effort to try numerous potential packages. Figure 2 provides
an example simplified from the build failure in the open
source project guetzli [18]. The error log message indi-
cates that the header file “png.h” is required. By searching
with the command “apt-file search png.h”, there are
four packages that have the potential to fix the error, but
only the package libpng-dev is the correct one. Besides, if
the name of a missing file is common, e.g., “version.h”,
“config.h”, “types.h”, etc., there can be hundreds of
candidate packages containing the file with the same name.
Even worse, the exploration of the search space expands
exponentially when accounting for the permutations of dif-
ferent packages, thereby exacerbating the encountered chal-
lenges. In summary, manually recovering missing packages
is challenging and labor-intensive.

2.2 Problems of State-of-the-Art Approaches

The key to automatically recovering the missing packages is
to identify all the dependent packages required in the build-
ing process. Despite the tremendous research progress in ex-
tracting dependencies of C/C++ projects, existing methods
are deficient in recovering missing packages in the scenario
of resolving build failures.

One line of approaches, namely SCA (Software Com-
position Analysis) [9], [10], statically analyzes build scripts
to extract third-party dependency libraries and is applica-
ble to extracting missing packages. However, such static
approaches are afflicted by two limitations. First, imple-
menting a general parser to understand the syntax of build
commands in various kinds of build scripts associated
with different build systems is non-trivial and sometimes
even impossible, thereby impeding the complete retrieval
of required packages. For example, in scenarios where the
build scripts incorporate commands with a syntax that is
not predefined, the parser encounters difficulty in extracting
the necessary dependencies from the commands. Second,
in most cases, the dependencies derived from the parsing
outcomes of SCA approaches primarily manifest at the file
level, including header files, static/dynamic libraries, etc.
Consequently, we still have to deduce the required packages
from these files, thereby encountering the challenge of the
large search space, as discussed in Section 2.1.

The other line of approaches, originally designed to
detect build script errors [11], [12], [13], can capture depen-
dency files via continuously monitoring the build process.
Although such approaches can mitigate the generalizability
issue in the static approaches, they suffer from low effi-
ciency due to two main reasons. First, the nature of build

failures necessitates the adoption of an iterative process:
a build process halts whenever a package required by a
build command is absent, only to be resumed upon the
installation of the required package. Second, since build
monitoring exclusively captures dependencies at the file
level, it encounters the same challenge of inferring required
packages from these files discussed in Section 2.1.

2.3 Key Idea

In this study, we also employ build monitoring to mitigate
the generalizability issue associated with the implementa-
tion of build script parsers. To address the efficiency issues
of build monitoring described in Section 2.2, we introduce
two innovative designs.

First, instead of using an actual build which involves
an iteratively suspending and resuming the process, we
devise a “mock build” to accelerate the extraction of missing
dependency files. Our idea is inspired by a previous study
that introduced the notion of “virtual build” [13], which
involves pruning the program while retaining the original
dependencies in a one-time build. Although virtual build
can accelerate the build process by skipping the compilation
of unnecessary source code, it still cannot escape from the
iterative suspending and resuming problem. Therefore, on
top of virtual build, we mock the missing dependency files,
such as the file png.h in Figure 2, so as to make the build
proceed without the necessities of installing the required
packages. It is important to highlight that the virtual build
serves as the foundation of the mock build. Given that
a virtual build exclusively retains preprocessor directives,
such as #include directives and macro definitions, while
excluding other program constructs like function bodies and
global variables, there is no need for the mock files to furnish
declarations or definitions for any symbols, including vari-
ables and functions. Thus, empty mocking files are adequate
to ensure the successful completion of the build process.

Second, to reduce the expansive search space associated
with inferring required packages from files, we propose a
two-stage analysis, comprising package filtering and prior-
itization, to streamline the deduction of the required pack-
ages. Intuitively, the required packages should contain the
missing dependency files and symbols. Thus, during the
package filtering stage, we utilize the missing files identified
in the mock build process to pinpoint a set of candidate
packages that include these files. Meanwhile, we compare
symbols used in the project code with those defined in the
missing files provided by the candidate packages, which
facilitates filtering irrelevant packages. During the package
prioritization phase, we assign the packages covering more
missing files with higher priorities, based on which we ap-
proach the task of selecting packages containing all missing
files. With the greedy strategy, we are more likely to reach
a set of packages that resolves the missing package errors
with few times of package enumeration.

Roadmap. In the upcoming sections, we will first for-
malize the problem (Section 3) and delve into the technical
intricacies of PACKHUNTER (Section 4). The implementation
and evaluation of PACKHUNTER will demonstrate the effec-
tiveness of our approach (Section 4.4 and Section 5).

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3506629

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on December 02,2024 at 21:09:18 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, NOVEMBER 2024 4

#Install wrong package 1
apt install libcvd-dev

#Install correct package
apt install libpng-dev

Error message
guetzli/guetzli.cc:25:10: fatal error: png.h: No such file or directory
 25 | #include “png.h”
 | ^~~~~~~
compilation terminated.
make[1]: *** [guetzli.make:166: obj/Release/guetzli/guetzli.o] Error 1

Potential missing packages containing png.h
libcvd-dev: /usr/include/cvd/internal/io/png.h
jskeus-dev: /usr/share/euslisp/irteus/png.h
libbart-dev: /usr/include/bart/misc/png.h
libpng-dev: /usr/include/libpng16/png.h

...

② Search

① Build# guetzli.cc
25 #include “png.h”
 ...
61 if (setjmp(png_jmpbuf(png_ptr))!=0)
62 { png_destroy_read_struct(...);
63 return false;
64 }

Makefile
guetzli:
ifneq (,$(guetzli_config))
 @echo “==== Building guetzli ...”
 @${MAKE} --no-print-directory -C ...
endif

C/C++ Project

③ Install

Fig. 2: A motivating example of recovering missing packages simplified from the open source project guetzli.

Project P := (Fh, Fs, Fbs)

Header File fh := d fh | cs fh | ε
Source File fs := d fs | cf fs | ε

Build Script fbs := (target : (pre)∗ recipe)+

Preproc Directive d := #include str | #define str str | · · ·
Func Def cf := cs {(stmt;)∗}

Func Signature cs := τ fname (τ para)∗

Fig. 3: The program syntax

3 PROBLEM FORMULATION

This section first formulates the program syntax (Section 3.1)
and then introduces the missing package error (Section 3.2).
Lastly, we offer the formal statement of the missing package
recovery problem (Section 3.3).

3.1 Program Syntax

Following prior research [13], we formulate C/C++ projects
with the syntax shown in Figure 3. In essence, a project
encompasses header files, source files, and build scripts.
Specifically, both the header and source files may incorpo-
rate various preprocessor directives, including those that
involve the inclusion of specific header files and the def-
inition of macros. Function signatures and definitions are
presented in the header files and source files, respectively.
Notably, a function body can either be empty or consist of
multiple statements, such as assignments and function calls.
Without the loss of generality, we assume that each function
defined in the source file is declared in the corresponding
header file. Finally, a build script is a collection of build
target dependencies, each of which is associated with a set
of instructions as the recipe.

3.2 Missing Package Error

In our work, we target a prevalent class of build errors,
namely missing package errors. Formally, we formulate it
as follows.

Definition 1. (Missing Package Error) Let P be a C/C++
project. A missing package error in P is the absence of
a specific package required for the successful build of a
specific target t within P .

Basically, a missing package error is manifested as the
lack of preprocessor directives, functions, and files, which
are expected to be offered by the missing package. When
a build process yields a missing package error, its error
message can indicate the root cause, guiding the developers
to localize the missing package for a fix.
Example 1. As depicted in Figure 2, an error is encountered

while building the target guetzli, indicating that the
file png.h is not found. Thus, the source files that
include png.h as a header file, such as guetzli.cc,
cannot utilize the symbols defined within that file.
For instance, it becomes invalid to invoke the function
png_jmpbuf in the source file guetzli.cc at Line 61.
This absence of the package providing png.h leads to a
missing package error.

As shown in Example 1, the essential cause of a missing
package error is the absence of a specific file. Specifically,
the symbols defined in the missing file, such as preprocessor
directives and functions, become inaccessible to the current
C/C++ project. Existing efforts have indicated that miss-
ing package errors are widespread in real-world C/C++
projects. In particular, it has been reported that over 50%
of build failures of C/C++ projects are caused by the
missing packages [2], [3], [4]. The difficulty of identifying
and installing missing packages presents a major hurdle for
programmers aiming to create an executable artifact of their
own systems.

3.3 Problem Statement
To mitigate the burden of programmers in building C/C++
projects, we target the problem of automatically recovering
missing packages in this paper. Before we state our problem
explicitly, we first introduce two important preliminaries,
namely package installation strategy and installation script.
Definition 2. (Package Installation Strategy) A package in-

stallation strategy I is a function that maps a package to
its installation commands. Particularly, dom(I) is named
as the package base, indicating a finite set of packages
that can be potentially used.

As defined in Definition 2, the package installation strat-
egy I is responsible for specifying a finite set of packages
as the package base, i.e., dom(I), along with providing
guidance on their installation. For instance, we can focus on
packages that are maintained by a Linux package manager,

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3506629

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on December 02,2024 at 21:09:18 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, NOVEMBER 2024 5

C h

Reduced
Code Files

C h

Code Files

Build
Script

Program
Reduction

Build Monitor Missing
Packages Filter

Package Set
Enumerator

Package Knowledge
Database

Installation
Script

Missing File Probing (§4.1) Package Filtering (§4.2)

Missing Files
Mapping

Missing Packages
Mapping

Build Tool

Success

Fail

Package Prioritized Enumeration (§4.3)

Install

Fig. 4: The workflow of PACKHUNTER

as the installation commands for such packages are readily
available. With the guidance of the package installation
strategy, programmers can localize missing packages and
install them by executing the corresponding installation
commands. Essentially, programmers need to specify an
installation script, which is defined as follows, to recover
missing packages.
Definition 3. (Installation Script) Given a C/C++ project

P , an installation script fps is a sequence of commands
installing packages such that P can be successfully built
after the execution of fps.

Example 2. Consider the missing package error in Fig-
ure 2. An installation script should contain the instal-
lation command of the package libpng-dev. After
running the installation script, the missing package, i.e.,
libpng-dev, can supply the missing file png.h, which
resolves the missing package error in the project.

As illustrated at the end of Section 3.2, manually spec-
ifying an installation script can be a labor-intensive task,
particularly when dealing with a large package base and
multiple missing packages. To alleviate the laborious effort
involved, we formulate missing package recovery problem
as follows and attempt to propose an effective and effi-
cient solution, which would greatly reduce the burden on
individuals engaged in the development of C/C++ projects
when confronted with missing packages.

Given a C/C++ project P and a package installation
strategy I , synthesize an installation script fps auto-
matically.

Solving the missing package recovery problem is non-
trivial. The challenges mainly arise from two aspects. First,
extracting dependency files via monitoring the repetitive
and iterative building process, i.e., pausing the build for a
failure and resuming it upon a trial of package installation,
is time-consuming, leading to efficiency concerns. Second,
deducing missing packages from dependency files requires
to search from a large package repository and the large
space of candidate packages would exacerbate the efficiency
issues. In Section 4, we will demonstrate how to address the
above challenges and illustrate the details of our approach.

4 APPROACH

In this section, we introduce our approach, named PACK-
HUNTER, to resolve the missing package recovery problem.
The overall workflow of PACKHUNTER is illustrated in
Figure 4, consisting of three key stages: missing file probing

(Section 4.1), package filtering (Section 4.2), and package
prioritized enumeration (Section 4.3).
• First, the missing file probing involves simplifying C/C++

projects through program reduction to facilitate efficient
identification of missing files during a one-time build
(Section 4.1). This allows us to quickly locate the root
causes of missing package errors.

• Second, we utilize the def-use relations between the sym-
bols in the packages and the C/C++ projects to filter irrel-
evant packages (Section 4.2), which significantly reduces
the search space for the subsequent installation script
synthesis.

• Third, we prioritize the sets of packages that can resolve
all the missing files in the enumeration and validate
them by building the project after installing the packages
(Section 4.3). A successful build indicates that the desired
installation script has been generated.

In the following subsections, we provide a detailed ex-
planation of each of these stages.

4.1 Missing File Probing

As illustrated in Section 3.2, the occurrence of missing
package errors can be attributed to the absence of specific
files that are offered by required but missing packages.
This observation suggests that the missing files can serve
as valuable indicators of the missing packages, allowing us
to filter out the irrelevant package candidates effectively.
Motivated by this insight, we propose probing missing files
as our first step.

It is evident that probing missing files necessitates build-
ing the project for dynamic monitoring [11], [19], which
enables us to gather file I/O information. However, we
have to notice that a single build process can result in
considerable overhead, especially considering the need to
repeatedly try different packages and rebuild the project.
To achieve efficient missing file probing, we propose two
effective strategies, namely program reduction and mock
build, which aim to minimize the overhead associated with
a single build and reduce the number of build iterations,
respectively. The formulation of these strategies is presented
in Algorithm 1.
• Program Reduction. Inspired by prior study [13], gather-

ing file I/O information does not necessarily require an
actual build of the whole project. Instead, by trimming a
project via the program reduction proposed in [13], we can
obtain the same file I/O information as the one derived
from the original project. We formulate it as the function
reduceProgram at Line 2 in Algorithm 1. Note that the

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3506629

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on December 02,2024 at 21:09:18 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, NOVEMBER 2024 6

Algorithm 1: Probing Missing Files
Input: P := (Fh, Fs,Fbs): A C/C++ project;
Output: Mf : A mapping from targets to missing file

sets;
1 /* Remove statements and non-main

functions. */
2 P ′ ← reduceProgram(P);
3 T ← getTarget(P ′);
4 foreach t ∈ T do
5 /* Create and gather missing files */
6 Mf (t)← mockBuild(t);
7 return Mf ;

successful build of a target only depends on the existence
of its main function, so we eliminate non-main functions
from the project and remove all the statements from the
body of each main function. In particular, all the prepro-
cessor directives remain in the project. As demonstrated
in the previous study [13], such program reduction does
not change the file IO information during the build, while
the build time can significantly decrease. In this way, we
can accelerate the missing file probing by reducing the
overhead of a single build.

• Mock Build. To avoid multiple iterations of project builds,
we adopt a mocking strategy to permit the build process
to continue in the absence of necessary files. Specifically,
when building each target t, we dynamically monitor the
file IO operations and create empty files to mock the files
that need to be accessed but missing. The mock build pro-
cess is formulated by the function mockBuild at Line 6
in Algorithm 1. After the mock build, we can establish the
mapping from a build target to a set of missing files, which
serves as an ingredient for discovering missing packages
in the subsequent stages (Section 4.2 and Section 4.3).
Importantly, the mock build demands building the project
only one time. Any build errors caused by missing files are
skipped, avoiding unnecessary rebuild of the project with
extra overhead.

It is important to note that simply creating an empty file
for the missing one is sufficient to ensure a successful build.
By leveraging program reduction, all the symbols imported
from the packages are effectively removed, resulting in
the decoupling of the targeted project from the files in its
dependent packages. As a result, program reduction not
only reduces the overhead associated with a single build but
also enables the monitoring of file I/O information through
a single round of mock build.

Example 3. In Figure 2, the file png.h is missing in the
build of the target guetzli. Based on the mock build,
we can monitor the access operation upon the missing
file and create a corresponding empty file for png.h. The
non-main functions and the statements of main functions
are removed in the program reduction, such as the ones
in the file guetzli.cc. With the assistance of program
reduction, the mock build can successfully collect all the
missing files efficiently, like the file png.h, in only one
time of the build.

Algorithm 2: Filtering Packages
Input: P := (Fh, Fs,Fbs): A C/C++ project;

I : Package installation strategy;
Mf : A mapping from targets to missing file sets;

Output: Mp: A mapping from missing files to package
sets;

1 Mp ← [f 7→ ∅ | f ∈
⋃

f ′∈dom(Mf) Mf (f
′)];

2 foreach t ∈ dom(Mf) do
3 foreach f ′ ∈Mf (t) do
4 S′

p ← getPotentialPkg(f ′);
5 F̂ ← getAccessedFiles(t) ∩ Fh ∩ Fs;
6 foreach f ∈ F̂ do
7 /* Collect used symbols */
8 Suse ← getUsedSym(f);
9 foreach pkg ∈ S′

p do
10 /* Collect defined symbols */
11 Sdef ← getDefinedSym(f ′, pkg);
12 /* Compare defined/used

symbols */
13 if Sdef ∩ Suse ̸= ∅ then
14 Mp(f

′)←Mp(f
′) ∪ {pkg};

15 return Mp;

4.2 Package Filtering
Although missing file probing can effectively identify all
missing files in a project, we still need to address another
challenge: A single missing file can be provided by multi-
ple different packages. This phenomenon can significantly
inflate the search space when synthesizing an installation
script. To filter out irrelevant packages, we rely on an im-
portant insight that the symbol def-use relation enables us to
filter infeasible packages in a light-weighted fashion. Specif-
ically, if a package pkg offers a missing file but the file does
not define any symbols that are used in the source/header
files within the target C/C++ project, the file offered by the
package pkg can be decoupled from the project, indicating
that the package pkg cannot support necessary ingredients
for the build process.

Based on the above insights, we propose to filter ir-
relevant packages, as formalized in Algorithm 2. Initially,
it takes three inputs: a C/C++ project P , a package in-
stallation strategy I , and a mapping Mf that associates
targets with sets of missing files obtained from Algo-
rithm 1. When dealing with each missing file f ′, the function
getPotentialPkg at Line 4 retrieves all the packages that
provide a file with the same name as f ′. Based on the
file I/O information during a mock build, we collect all
the accessed source/header files in the project P at Line
5 and extract all the used symbols in the accessed files
with a parsing-based static analysis, forming the set Suse

at Line 8. Meanwhile, we consider each package pkg that
provides the file f ′ and gather all the symbols defined in the
corresponding file in a similar fashion, forming the set Sdef

at Line 11. Only when Suse and Sdef are not disjoint can the
package pkg be considered for use in the C/C++ project
(Line 13–14). Ultimately, we obtain a mapping Mp from
missing files to sets of packages, which defines the search
space for the synthesis of the installation script, which will
be demonstrated in Section 4.3. Owing to package filtering
design, we can safely discard infeasible packages, effectively

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3506629

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on December 02,2024 at 21:09:18 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, NOVEMBER 2024 7

png.h
983 # define png_jmpbuf(png_ptr) \
984 (*(png_set_longjmp_fn(...))
985 #else
986 # define png_jmpbuf(png_ptr) \
987 (LIBPNG_WAS_COMPILED_WITH_...)
988 #endif

jskeus-dev

libcvd-dev

libpng-dev

guetzli.cc
25 #include <png.h>

...
61 if (setjmp(png_jmpbuf(png_ptr))!=0)
62 { png_destroy_read_struct(...);
63 return false;
64 }

The Accessed File in the C/C++ project
png.h

Missing File libbart-dev

The Defined Functions in png.h

Fig. 5: An example of package filtering

reducing the search space for the synthesis process.
Lastly, it is important to note that there is no need

to perform additional mock builds to obtain the accessed
source/header files at Line 5 in Algorithm 2. When probing
for missing files in Algorithm 1, we can simultaneously
collect the information about the accessed files through an
on-the-fly mock build. In the paper, we have intentionally
separated the process of gathering missing files from the
demonstration to simplify the presentation.

Example 4. In Figure 5, the file png.h is missing and can
be provided by multiple packages. Upon analyzing the
contents of the offered png.h files and the accessed
files within the C/C++ project, we can discover that the
png.h file in libpng-dev defines the symbols utilized
by the C/C++ project, such as the function png_jmpbuf.
Hence, the package libpng-dev is a potential missing
package. Regarding other packages, they do not provide
any symbols used by the project. Consequently, we can
narrow down the list of missing packages for subsequent
installation script synthesis.

4.3 Package Prioritized Enumeration

Benefiting from the previous two stages demonstrated
in Section 4.1 and Section 4.2, we are able to establish a
search space of missing packages for the targeted C/C++
project. In essence, we need to select a set of packages from
the search space that can cover all the missing files identified
during the mock build process. To further accelerate the
enumeration of missing packages, we propose the package
prioritization during the enumeration, which is based on
two intuitions. First, if a missing file f ′ is provided by a
unique package pkg, we have to install pkg in our instal-
lation script. Otherwise, the file f ′ would still be missing
after the execution of the installation script. Second, if a
package can offer multiple missing files, it is very likely to
be the necessary one for the C/C++ project. Therefore, we
conduct the prioritized enumeration to validate whether the
enumerated packages facilitate the success of a build.

We formalize our idea in Algorithm 3. Technically, it
begins by identifying the packages that uniquely offer spe-
cific missing files (Line 2-6). The remaining missing files,
represented by the set Sf at Line 6, can be covered by more
than one package. Consequently, we generate all possible
choices of packages that can cover all the files in Sf using
the getCoverPkgSet function and form the set Γ at Line 8.

Algorithm 3: Synthesizing Installation Script via
Package Prioritized Enumeration

Input: P := (Fh, Fs,Fbs): A C/C++ project;
I : Package installation strategy;
Mp: A mapping from missing files to package

sets;
Output: fps: An installation script;

1 f̂ps ← ∅; Sf ← dom(Mp);
2 foreach f ′ ∈ dom(Mp) do
3 /* Select the unique package offering

f ′
*/

4 if |Mp(f
′)| = 1 then

5 f̂ps ← f̂ps ∪ {I(pkg) | pkg ∈Mp(f
′)};

6 Sf ← Sf \ {f ′};

7 /* Compute package sets covering missing
files */

8 Γ← getCoverPkgSet(Sf ,Mp);
9 foreach Sp ∈ Γ do

10 w(Sp)← des_sort([|M−1
p (pkg) ∩ Sf | | pkg ∈ Sp]);

11 while Γ is not empty do
12 /* Peek a package set according to the

descending order upon w. */
13 Sp ← peek(Γ, w); Γ← Γ \ {Sp};
14 fps ← f̂ps ∪ {I(pkg) | pkg ∈ Sp};
15 if installAndBuild(fps, P) is success then
16 return fps;

17 return fps;

Then we compute the weights of each package set by count-
ing the missing files covered by each package and sorting
them descendingly, which is formulated at Lines 9 and 10.
Based on the computed weights, we enumerate the package
sets in Γ by peeking a package set that contains packages
covering as many missing files as possible. Furthermore, we
synthesize the installation script fps based on the package
installation strategy I (Line 14) and build the target C/C++
project P to determine whether the installation script fps
successfully resolves the missing packages. If the build is
successful, we directly return fps as one feasible solution
for our problem. Otherwise, we continue to examine other
package sets in Γ until a successful build is achieved. To
ensure the integrity of subsequent iterations, we uninstall
the newly installed packages if the installation script fails to
support a successful build.

Note that the build at Line 15 represents the actual build
rather than the mock build. In the mock build mentioned
in Section 4.1, the project only contains the main functions
with empty bodies after reduction, which can not validate
the available symbols that should be provided by the pack-
ages. Considering the time overhead of performing an ac-
tual build, our design of the package filtering in Section 4.2
and the package prioritized enumeration in Algorithm 3
can significantly reduce the time cost of synthesizing the
installation script. This is because the desired packages are
more likely to be selected early in the enumeration process,
thereby limiting the number of actual builds required.

Example 5. As shown in Figure 6, the straight arrows
indicate the mapping from missing files to potential
missing packages obtained in Algorithm 2. Note that
the missing file libfreetype.so is only offered by

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3506629

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on December 02,2024 at 21:09:18 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, NOVEMBER 2024 8

qtbase5-dev

mame

libfreetype-dev

qtransform.h

qtwidgets-config.h

qt3d5-dev

qt6-base-dev

libfreetype.so

Fig. 6: A simplified example of synthesizing an installation
script with package prioritized enumeration for mame

TABLE 1: Basic Information of Projects. #Files, #Lines, and
#Pkgs represent the number of source files, lines of code,
and the number of the missing packages. Build represents
the time of clean build.

#Lines Build BuildProject #Files (KLoC) #Pkgs (sec) System
dump1090 3 2.78 1 0.80 Make
guetzli 26 2.02 1 4.14 Make
shairport 35 6.29 5 0.49 Make
coturn 85 46.07 8 4.88 Autoconf
clib 92 17.57 1 0.37 Make
tig 92 39.46 1 0.90 Make
paho-mqtt 102 54.22 1 5.92 Make
glfw 103 88.40 4 2.14 CMake
xmr-stak 144 36.11 3 32.47 CMake
tmux 191 75.19 2 1.82 Autoconf
box2d 240 99.89 5 2.98 CMake
workflow 245 41.57 1 4.30 CMake
Bonzomatic 260 203.86 7 3.14 CMake
raylib 293 335.77 5 10.17 CMake
TheAlgorithms/C 431 35.18 2 0.55 CMake
SFML 544 157.20 9 14.14 CMake
g2o 572 67.78 1 79.29 CMake
LearnOpenGL 579 157.18 8 5.13 CMake
xmrig 788 243.61 3 26.91 CMake
ZLMediaKit 1,031 176.85 1 35.82 CMake
minetest 1,036 309.71 16 203.56 CMake
libgit2 1,115 309.03 1 3.26 CMake
OpenRCT2 1,207 721.72 12 42.36 CMake
osrm-backend 1,680 332.87 6 104.33 CMake
postgres 2,342 1,393.94 2 64.17 Autoconf
stk-code 2,388 814.13 12 32.68 CMake
pcl 2,577 740.34 3 606.12 CMake
poco 2,898 944.03 1 80.02 CMake
vowpal wabbit 4,783 1,005.60 3 88.81 CMake
mame 19,039 9,781.75 15 767.50 Make
Average 4.67 74.31

the package libfreetype-dev. Hence, the installation
script should contain the installation command of the
package libfreetype-dev. Meanwhile, the missing
files qtransform.h and qtwidgets-config.h can
be offered by the package qtbase5-dev, so we enu-
merate the packages {qtbase5-dev} with the higher
priority than {qt3d5-dev, qt6-base-dev}. There-
fore, we pick the two packages libfreetype-dev and
qtbase5-dev at the beginning of the prioritized enu-
meration. After validating them with an actual build,
we can successfully synthesize an installation script that
installs libfreetype-dev and qtbase5-dev.

4.4 Implementation
We have implemented our approach PACKHUNTER as a
tool, which is designed to recover missing packages for
C/C++ projects. Our implementation primarily focuses on
APT [20], the package management system in Debian-based
Linux distributions like Ubuntu. To establish our package

base, we downloaded all 66,475 packages managed by APT
from its official website. Benefiting from our approach,
the process of manually identifying missing packages is
significantly simplified, eliminating the need for laborious
and time-consuming efforts.

To facilitate the detection of missing files, we have im-
plemented a program reduction technique inspired by VIR-
TUALBUILD [13]. However, unlike VIRTUALBUILD, which
relies on LD PRELOAD for file IO monitoring, we utilize
ptrace for more precise file IO monitoring and combine it
with the Berkeley Packet Filter (BPF) to capture only the
relevant system calls. This implementation design ensures
our monitoring requirements are met while minimizing the
performance overhead associated with surveillance.

To filter irrelevant packages, we utilize the ELF (Exe-
cutable and Linkable Format) analysis tool READELF [21]
and the parsing-based static analysis tool srcML [22] for
symbol extraction. Specifically, during the preprocessing
phase, for all packages, we leverage READELF to examine
their static and dynamic library files, and utilize SRCML to
analyze their header files. This process allows us to extract
the variables and function names defined by these packages,
with the extracted data stored in JSON files that occupy
less than 30MB of disk space. For symbol analysis in the
target C/C++ project, we adopt a demand-driven approach,
where only the header and source files accessed during
the mock build are analyzed using SRCML to identify the
external variables and functions used, resulting in improved
efficiency in the step of package filtering, as it means that we
do not need to analyze all files within the project.

5 EVALUATION

We evaluate the effectiveness of PACKHUNTER by investi-
gating the following research questions:
• RQ1: How effectively and efficiently does PACKHUNTER

recover missing packages for real-world C/C++ projects?
• RQ2: How does PACKHUNTER compare against the con-

sidered baselines that could be used for recovering miss-
ing packages?

• RQ3: How important are package filtering and package
prioritized enumeration in PACKHUNTER?

5.1 Experimental Setup

Dataset. We choose the projects with missing package errors
that are investigated in our empirical study (Section 2.1).
These projects are managed in different building systems,
such as Make, CMake and Autoconf. Table 1 shows the
basic information of these projects. We initially confirm
through manual verification that these projects would fail
to build due to missing essential packages when being
compiled and built directly. The absence of the packages
enables us to evaluate the effectiveness of PACKHUNTER in
the current build environment.

Baselines and Ablations. To answer RQ1 and RQ2,
we evaluate PACKHUNTER on our dataset and compare it
with CCSCANNER [9]. Specifically, CCSCANNER originally
targets the identification of dependencies in C/C++ projects
by statically analyzing build scripts and the software bill of

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3506629

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on December 02,2024 at 21:09:18 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, NOVEMBER 2024 9

TABLE 2: The results of PACKHUNTER and baselines. Speedup◁ represents the speedup of PackHunter over CCScanner.
Speedup⋆ represents the speedup of PackHunter over TryInstall. NA indicates that CCSCANNER fails to recover missing
packages for specific subjects.

PackHunter CCScanner TryInstall
Probe Filter Enumerate Total Total Speedup◁ Total Speedup⋆Project
(sec) (sec) (sec) (sec) Total/Build (sec) (×) (sec) (×)

dump1090 0.14 0.03 3.62 3.79 4.71 NA NA 8.66 2.29
guetzli 0.84 0.18 7.59 8.62 2.08 11.67 1.35 179.28 20.80
shairport 0.28 0.06 16.03 16.38 33.57 NA NA 863.57 52.72
coturn 6.08 0.55 17.64 24.28 4.97 130.61 5.38 1,180.31 48.62
clib 0.39 0.15 8.96 9.50 25.89 2,410.52 253.73 13.93 1.47
tig 1.04 0.83 2.51 4.38 4.85 335.76 76.70 8.55 1.95
paho-mqtt 3.62 0.86 10.32 14.80 2.50 97.39 6.58 474.48 32.05
glfw 7.74 0.50 19.44 27.68 12.92 306.38 11.07 112.39 4.06
xmr-stak 3.86 0.68 52.96 57.50 1.77 NA NA 416.06 7.24
tmux 4.12 0.01 5.92 10.04 5.51 NA NA 929.16 92.50
box2d 8.24 1.68 7.32 17.24 5.79 NA NA 73.67 4.27
workflow 2.14 1.10 9.69 12.92 3.01 207.11 16.02 70.49 5.45
Bonzomatic 7.89 1.08 12.91 21.89 6.97 NA NA 132.56 6.06
raylib 11.86 1.56 26.12 39.54 3.89 NA NA 243.20 6.15
TheAlgorithms/C 14.52 1.38 6.36 22.26 40.47 383.62 17.23 60.74 2.73
SFML 2.24 0.30 22.63 25.17 1.78 351.56 13.97 398.96 15.85
g2o 32.03 1.68 82.23 115.94 1.46 182.05 1.57 748.02 6.45
LearnOpenGL 23.33 1.04 24.34 48.71 9.51 NA NA 295.41 6.06
xmrig 7.69 2.58 35.97 46.24 1.72 186.47 4.03 179.31 3.88
ZLMediaKit 11.11 1.32 39.59 52.02 1.45 179.53 3.45 226.89 4.36
minetest 10.18 2.49 276.31 288.98 1.42 NA NA 6,188.24 21.41
libgit2 13.61 11.40 8.33 33.34 10.23 358.10 10.74 304.57 9.14
OpenRCT2 35.00 28.02 67.21 130.23 3.07 5,977.07 45.90 663.05 5.09
osrm-backend 3.57 1.88 276.68 282.13 2.70 NA NA 1,739.44 6.17
postgres 22.26 0.17 70.89 93.32 1.45 NA NA 166.70 1.79
stk-code 18.24 7.07 50.26 75.57 2.31 NA NA 1,786.43 23.64
pcl 94.92 2.56 654.55 752.03 1.24 2,188.31 2.91 1,694.69 2.25
poco 14.26 22.72 87.41 124.40 1.55 584.43 4.70 412.86 3.32
vowpal wabbit 58.74 6.25 134.47 199.45 2.25 199.99 1.00 744.35 3.73
mame 858.09 2.69 831.47 1,692.25 2.20 3,780.95 2.23 21,775.44 12.87
Average 42.60 3.43 95.66 141.69 6.78 992.86 26.59 1403.05 13.81

materials. We adapt CCSCANNER to achieve the identifica-
tion of potential missing packages and synthesize an instal-
lation script via enumeration. Also, we adapt existing build
monitoring methodologies [11], [12], [13] to detect missing
files. Subsequently, we adhere to developers’ convention of
searching for packages, i.e., deriving missing packages from
missing files using the “apt-file search” command, which
forms a baseline approach termed TRYINSTALL. Concretely,
we enumerate all the packages offering the missing files to
fix each missing package error and iterate such a process un-
til all the missing package errors are fixed. To answer RQ3,
we remove the design of package filtering, which forms an
ablation named PACKHUNTER-NOPF, and do not prioritize
the packages in the enumeration, which induces an ablation
named PACKHUNTER-NOPPE. The comparison with the
above baselines and ablations can effectively demonstrate
the superiority of PACKHUNTER and quantify the benefit of
each technique design.

Environment. Each group of experiments is conducted
on a computer running Ubuntu 22.04 LTS system, equipped
with an Intel(R) Xeon(R) Gold 6230R CPU @ 2.10GHz forty-
core processor and 512GB of physical memory.

5.2 Effectiveness and Efficiency

Setting and Metrics: To quantify the effectiveness and
efficiency of PACKHUNTER, we evaluate its performance

on the experimental subjects to determine whether it can
successfully recover missing packages. Additionally, we
measure the total time cost of PACKHUNTER, as well as
the time overhead associated with different stages of the
process. To illustrate the additional overhead incurred by
PACKHUNTER, we calculate the ratio of its total time cost to
that of a successful clean build.

As shown by the column PackHunter in Table 2, PACK-
HUNTER successfully synthesizes the installation scripts for
all the C/C++ projects to recover the missing packages. The
time cost ranges from 3.79 seconds to 1,692.25 seconds, and
the average time cost is 141.69 seconds. The average ratio of
the time cost of PACKHUNTER over the time of the actual
build upon the corresponding C/C++ projects is only 6.78,
indicating the low overhead of our approach in assisting
the build process in real-world scenarios. In particular, the
project mame has around 10 MLoC, and its actual build is
quite costly, consuming 767.50 seconds in total. What’s even
worse is that the number of missing packages of the project
mame reaches 15, which makes it quite challenging to fix
missing package errors manually. It is worth noting that all
the projects except for the project mame can be processed
within 13 minutes. The high efficiency demonstrates the
practical value of PACKHUNTER in analyzing real-world
C/C++ projects, especially the ones on a large scale.

In the sub-columns of PackHunter of Table 2, we dis-
play the time cost of each stage of PACKHUNTER. First,

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3506629

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on December 02,2024 at 21:09:18 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, NOVEMBER 2024 10

the average time cost of the missing file probing is 42.60
seconds, while the overheads can vary greatly among dif-
ferent projects. When a project contains more lines and
build targets, the missing file probing would take more
time to process each file and build the targets accordingly.
However, the average ratio of the time cost of missing
file probing over the time of the actual build is only 0.57,
indicating that our program reduction and mock build can
significantly reduce the overhead of the missing file probing.
Second, the average cost of package filtering is only 3.43
seconds. The number of missing files, packages offering
the missing files, and the accessed header/source files in
the projects can affect the overhead in this stage as such
files determine the scope of parsing-based static analysis.
Remarkably, PACKHUNTER can finish the package filtering
in only a few seconds for most of the projects. Third, the
package prioritized enumeration takes the most significant
proportion of time cost among the three stages, consuming
95.66 seconds on average. As demonstrated in Section 4.3,
it has to validate the enumerated packages with an actual
build, which introduces significant time overhead. Fortu-
nately, our designs of the package filtering and package
prioritized enumeration enable PACKHUNTER to find the
missing packages quickly.

Answer to RQ1: PACKHUNTER successfully recovers
missing packages for all experimental subjects, with an
average time cost of 141.69 seconds, introducing only
5.78 times more overhead than a clean build.

5.3 Comparisons with Baselines

Setting and Metrics: Similar to Section 5.2, we investi-
gate whether the two baselines, namely CCSCANNER and
TRYINSTALL, can recover missing packages successfully. To
demonstrate the superiority of our approach in terms of
efficiency, we also measure the time costs of the two base-
lines and further compute the speedups of PACKHUNTER
compared to the two baselines.

As demonstrated by the column CCScanner in Table 2,
CCSCANNER successfully recovers the missing packages for
only 18 projects, with the time cost ranging from 11.67
to 5,977.07 seconds, averaging 26.59 times that of PACK-
HUNTER. Notably, for the project clib, which only has one
missing package, CCSCANNER spends 2,410.52 seconds re-
covering the package. The reason is that CCSCANNER only
identifies partial files and package abbreviations needed by
the project, such as libm.so and “ssl”. However, there
are dozens of packages that could provide libm.so, and
numerous packages include “ssl” in their names. The in-
ability of the static analysis to gather complete information
for filtering candidate packages implies that it has to tra-
verse a vast space of potential packages in an attempt to fix
the project’s missing packages. Additionally, CCSCANNER
fails to repair 12 other projects. The failure can be attributed
to the difficulty in accurately parsing all build scripts with
static analysis, given their complexity and flexibility.

For example, as shown in the makefile in Listing 1 for
project dump1090, CCSCANNER cannot identify any infor-
mation related to the missing package librtlsdr-dev
from Line 1 to Line 2, thus it can never succeed in recovering

the missing packages for the project. The inability to identify
even a single missing package can lead to the failure of the
project’s compilation and build process.

Makefile for dump1090

1 CFLAGS?=-O2 -g -Wall -W $(shell pkg-config --cflags librtlsdr)

2 LDLIBS+=$(shell pkg-config --libs librtlsdr) -lpthread -lm

3 CC?=gcc

4 %.o: %.c

5 $(CC) $(CFLAGS) -c $<

Listing 1: A failure case of CCSCANNER

As outlined in the column TryInstall in Table 2, TRYIN-
STALL can recover the missing packages for all projects,
demonstrating the effectiveness of starting with the project’s
missing files to guide the recovery of missing packages.
However, the time cost of TRYINSTALL is far from satisfac-
tory. It is 13.81 times slower than PACKHUNTER on average.
Particularly, it takes 21,775.44 seconds to recover missing
packages for the largest project mame. The key reason for its
low efficiency is that TRYINSTALL cannot obtain all missing
files through a single mock build. The time overhead in-
curred from each missing package error can be aggregated.
Besides, the lack of package filtering makes TRYINSTALL
validate each potential package with more attempts than
PACKHUNTER.

Answer to RQ2: CCSCANNER and TRYINSTALL suc-
cessfully recover 18 and 30 out of 30 experimental sub-
jects, respectively, incurring average time overheads of
25.59 and 12.81 times more than PACKHUNTER.

5.4 Ablation Study
Setting and Metrics: We conduct the ablation study to
evaluate the two ablations, namely PACKHUNTER-NOPF
and PACKHUNTER-NOPPE, and measure their time costs
of recovering missing packages upon the experimental sub-
jects. Particularly, we count the numbers of missing package
candidates before and after the package filtering in the
ablation study. Considering potentially huge time cost of
analyzing large projects, we set ten hours as the time budget
for each project.

As shown in Table 3, PACKHUNTER-NOPF fails to
generate the installation script for six projects within the
time budget due to the incredibly large search space. On
average, PACKHUNTER-NOPF has to consider 94.43 pack-
ages as candidates in the package prioritized enumera-
tion, while PACKHUNTER only needs to take 8.10 packages
into account. Benefiting from the pruned search space,
PACKHUNTER achieves a 2.52× speedup on average over
PACKHUNTER-NOPF. For the largest project, i.e., the project
mame, PACKHUNTER saves 1424.97 (= 3117.22-1692.25) sec-
onds compared with PACKHUNTER-NOPF, as it only needs
to select 28 packages instead of 45 ones.

Owing to our package filtering design, the missing
files in 26 out of 30 projects can be uniquely offered by
specific packages, and thus, we can deterministically re-
cover the packages without any enumeration. For the rest
four projects, including minetest, OpenRCT2, stk-code,
and mame, we conduct the comparison between PACK-
HUNTER and PACKHUNTER-NOPPE as shown in Figure 7.
Basically, PACKHUNTER-NOPPE analyzes the projects 2.11

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3506629

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on December 02,2024 at 21:09:18 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, NOVEMBER 2024 11

TABLE 3: The statistics of PACKHUNTER-NOPF

PackHunter PackHunter-NoPF
Total Total SpeedupProject #Pkgs (sec) #Pkgs (sec) (×)

dump1090 1 3.79 1 6.57 1.73
guetzli 1 8.62 8 32.14 3.73
shairport 5 16.38 364 36.18 2.21
coturn 8 24.28 208 43.42 1.79
clib 1 9.50 79 21.14 2.23
tig 1 4.38 3 8.27 1.89
paho-mqtt 1 14.80 186 27.92 1.89
glfw 4 27.68 21 55.65 2.01
xmr-stak 3 57.50 18 176.56 3.07
tmux 2 10.04 174 14.38 1.43
box2d 5 17.24 12 39.09 2.27
workflow 1 12.92 198 17.87 1.38
Bonzomatic 7 21.89 24 75.74 3.46
raylib 5 39.54 37 NA NA
TheAlgorithms/C 2 22.26 4 30.73 1.38
SFML 9 25.17 101 NA NA
g2o 1 115.94 219 271.43 2.34
LearnOpenGL 8 48.71 27 191.92 3.94
xmrig 3 46.24 23 101.05 2.19
ZLMediaKit 1 52.02 72 412.65 7.93
minetest 23 288.98 40 NA NA
libgit2 1 33.34 134 42.16 1.26
OpenRCT2 90 130.23 393 541.01 4.15
osrm-backend 6 282.13 57 NA NA
postgres 2 93.32 8 187.88 2.01
stk-code 17 75.57 62 NA NA
pcl 3 752.03 233 NA NA
poco 1 124.40 84 205.45 1.65
vowpal wabbit 3 199.45 8 526.55 2.64
mame 28 1692.25 45 3117.22 1.84
Average 8.10 141.69 94.43 257.62 2.52

Ti
m
e
C
os
t(
Se
c)

Fig. 7: The statistics of PACKHUNTER-NOPPE

times slower than PACKHUNTER due to the lack of package
prioritization. It should be noted that the above four projects
still demonstrate that the package prioritized enumeration
improves the efficiency in several extreme cases where sev-
eral missing files can be offered by multiple packages.

Answer to RQ3: The package filtering and package
prioritized enumeration can significantly improve the
efficiency of PACKHUNTER, achieving 2.52× and 2.11×
speedups on average, respectively.

5.5 Threats to Validity

The threats to the validity of our work include the following
internal and external ones. The biggest threat to internal
validity is that the time overhead of PACKHUNTER depends
on the environment. The absence of specific packages in a
C/C++ project may vary across different installation en-
vironments, as each environment may have different sets
of installed packages. During our evaluation, we compare

PACKHUNTER with the baselines and ablations in the same
environment, which allows us to showcase the superiority
of PACKHUNTER through the observed speedup. Another
factor that can threaten the internal validity is the network
status, which can affect the overhead of package download-
ing and consequently influence the time cost of the package
filtering. The most significant threat to external validity
is that the time overhead of PACKHUNTER is affected by
the packages that cover the same number of missing files
during the package enumeration. In such cases, employing
a prioritization strategy still results in multiple choices,
necessitating the use of random selection to make decisions.
In our evaluation, we run PACKHUNTER ten times to com-
pute the average time cost, which can mitigate the effect of
randomness.

5.6 Discussion

Factors Impacting Performance. To further understand the
factors impacting the performance of PACKHUNTER, we
investigate the time cost of each step. As shown in Table 2,
the step “Package Prioritized Enumeration” takes up the
majority of analysis time, accounting for 67.5% of total
time. Essentially, the time cost of this step is determined
by two factors as shown in Algorithm 3. The first one
is the time cost of one actual build, since PACKHUNTER
requires at least one successful build to verify the solution.
Specifically, for the projects whose time cost of the clean
build is high, such as mame, pcl, and minetest, they
require more analysis time than the other projects. The
second one is the times of package set enumeration (Line 11-
16 in Algorithm 3). Due to the design of “Package Filtering”,
in 26 out of 30 projects, we can deterministically recover the
packages without enumeration. For the rest four projects
that still require multiple enumerations, we observe that
the times of package enumerations are not linearly related
to the number of candidate packages. This is because our
prioritized enumeration strategy is not influenced by the
candidate packages that only contain a few missing files.
Moreover, even with our prioritization strategy, we still
encounter the cases where the candidate packages cover the
same number of missing files. For these cases, we decide
to use random selection strategy to make decisions, since
it is simple and effective. We also compared the random
selection strategy with a popularity-based selection for four
projects that required prioritized enumeration: minetest,
OpenRCT2, stk-code, and mame. The final iteration counts
for the two methods were 1.4, 1.7, 2.3, and 2.2 versus 2, 1,
2, and 2, respectively, showing no significant difference in
performance between the two strategies.

Open Source Platforms and Repositories. GitHub
is currently the most popular platform for open-source
projects, widely recognized within the C/C++ community.
Many previous studies [9], [23] have used projects hosted
on GitHub as their datasets. In terms of package managers,
apt is the most commonly used in open-source projects [9].
Consequently, our experiments are based on GitHub and
apt. However, our approach is not dependent on any spe-
cific platform or package manager. The symbol extraction
and source code analysis we perform on packages are
universally applicable to all header files, library files, and

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3506629

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on December 02,2024 at 21:09:18 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, NOVEMBER 2024 12

source files. Therefore, our method is equally suitable for
other open-source platforms and package managers, such
as Sourceforge and vcpkg.

Limitations and Future Work. Firstly, the developers of a
C/C++ project may define specific macros in the build script
to check if a dependent package has been installed. Simply
mocking the missing files will not allow the mock build to
bypass the missing package error and complete the build
in a single round. To address this issue, we could combine
PACKHUNTER with the baseline TRYINSTALL to create a
hybrid approach. This hybrid approach can handle such
challenging missing package errors by first utilizing TRYIN-
STALL and then resolving other missing packages using
PACKHUNTER. Secondly, the enumeration process may be
time-consuming when dealing with a large number of pack-
ages after filtering irrelevant packages. For example, ana-
lyzing the project mame requires the enumeration process
upon 28 packages, which introduces significant overhead
when the actual build of the project is costly. One way to
enhance efficiency further is to leverage more sophisticated
static analysis for performing irrelevant package filtering.
Specifically, we could pose a stronger constraint on the
missing files provided by packages. That is, the missing
files should offer all the symbols used by the accessed
header/source files but not be defined in other files included
within the project. The enhanced irrelevant package filtering
can potentially prune more search space for the package
prioritized enumeration than PACKHUNTER. We plan to
extend PACKHUNTER in the two aspects above to enhance
its applicability and efficiency.

6 RELATED WORK

Missing Package Recovery. Some studies have explored
the missing package recovery problems for facilitating the
build process of a given project in the past decade. Typically,
DOCKERIZEME [24] infers the dependent packages by ana-
lyzing the import instructions in Python code snippets and
generates a Dockerfile for the corresponding environment to
avoid import errors. V2 [25] is an improvement of DOCK-
ERIZEME, addressing the issue of code snippets becoming
outdated due to configuration drift. While the aforemen-
tioned studies focus on code snippets, others tackle practi-
cal challenges such as complex dependency specifications.
READPYE [26], PYEGO [27], and PYCRE [28] build their
own knowledge graphs of the Python ecosystem, extracting
syntax features, module imports, and more from Python
source code to automatically infer Python-compatible run-
time environments. However, unlike Python’s PyPI, the
C/C++ ecosystem lacks a central repository, making it chal-
lenging to construct a comprehensive knowledge graph.
Furthermore, in C/C++ projects, obtaining dependencies in
third-party libraries involves multiple concerns, including
header file inclusion, library file linking, and conditional
compilation, which cannot be addressed solely through stat-
ically analyzing source code. Our work is the first attempt
to address missing package issues in C/C++ projects.

Build Script Error Detection. There is extensive lit-
erature on detecting build script errors, typically falling
into three categories. The first type statically analyzes
build scripts to detect dependency errors. For instance,

Gunter [29] proposed to utilize Petri nets to model depen-
dency relationships in build scripts to check their correct-
ness. SYMAKE [30] detects bad code smell, such as cyclic
and duplicated dependencies, using symbolic dependency
graphs. However, due to the unsoundness of extracting
dependencies, such analyses suffer from the issues of low
precision and recall. The second type detects build errors
by dynamically analyzing the build scripts. MKCHECK [12],
for example, employs a fuzz-testing-like approach to track
system calls during the build process and then triggers
incremental builds for each file to validate the correctness
of the dependencies. FABRICATE [31] and MEMOIZE [32]
utilize build monitor to automatically resolve unspecified
dependency relationships. TUP [33], IBM CLEARCASE [34],
and VESTA [35] employ runtime validation to detect de-
pendency issues. These approaches would incur significant
overhead for large-scale projects. The third type combines
both static and dynamic methods to detect build script
errors, yielding more satisfactory results. Bezemer et al. [19]
combine declared dependencies with actual dependencies
during the build process to reveal missing dependencies in
make build systems, while VERIBUILD [11] merges them
into a unified dependency graph to detect missing and
redundant dependencies. VIRTUALBUILD [13] extends the
concept of unified dependency graph and uses program
reduction to accelerate the detection. Although they are
promising in reducing the overhead, a complete analysis
requires a successful build. Our work aims to resolve miss-
ing package errors, which is a different problem from build
script error detection. Following the spirit of the hybrid
approaches for dependency error detection, we adopt the
virtual build [13] to achieve a smooth mock build even
in the absence of packages. Also, static analysis facilitates
search space pruning significantly, which reduces the overall
overhead further.

Automatic Build Repair. The build failures can be at-
tributed to many factors. Some studies have investigated
various root causes and proposed different automatic repair
approaches. For example, BUILDMEDIC [36] summarizes
three repair strategies, including version updates, depen-
dency removal, and repository addition, which can ad-
dress build failures related to Maven dependencies in Java
projects. HIREBUILD [37] generates automatic repair patches
for build scripts by analyzing the similarity of build logs
and incorporating specific repair patterns from the scripts.
HOBUFF [38] extracts error information from build logs of
Gradle or Maven build systems and performs fault localiza-
tion through lightweight data flow analysis using current
information in the logs. Other studies address dependency-
related build failures in Python projects. PYDFIX [1] detects
and fixes the irreproducibility of Python builds caused by
dependency errors by analyzing build logs. It primarily
addresses issues arising from version specification of open-
source dependency packages hosted in centralized reposi-
tories like PYPI. LOOCO [39] optimizes library version con-
straints to fix build failures caused by dependency conflicts
in Python projects. These studies mainly focus on build
failures caused by version constraints of packages. Different
from them, PACKHUNTER can be regarded as an automatic
build repair technique targeting missing package recovery.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3506629

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on December 02,2024 at 21:09:18 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, NOVEMBER 2024 13

7 CONCLUSION

We present PACKHUNTER, an automated tool that recovers
missing packages in C/C++ projects. PACKHUNTER em-
ploys a comprehensive approach to address this problem,
including probing missing files through a one-time mock
build, filtering irrelevant packages, and conducting a pack-
age prioritized enumeration. Our evaluation demonstrates
the high efficiency and effectiveness of PACKHUNTER.
To facilitate the future research, we make our tool and
dataset [40] publicly available.

ACKNOWLEDGEMENT

We thank anonymous reviewers for their insightful com-
ments. This work is supported by the Natural Science Foun-
dation of China (62272400) and the research grants from
Huawei. Rongxin Wu works as a member of Xiamen Key
Laboratory of Intelligent Storage and Computing in Xiamen
University. Cheng Wang is the corresponding author.

REFERENCES

[1] S. Mukherjee, A. Almanza, and C. Rubio-González, “Fixing
Dependency Errors for Python Build Reproducibility,” in ISSTA
’21: 30th ACM SIGSOFT International Symposium on Software
Testing and Analysis, Virtual Event, Denmark, July 11-17, 2021,
C. Cadar and X. Zhang, Eds. ACM, 2021, pp. 439–451. [Online].
Available: https://doi.org/10.1145/3460319.3464797

[2] D. Fonović and T. G. Grbac, “A Quantitative Study of C/C++
FOSS Software Buildability,” in Workshop on Software Quality, Anal-
ysis, Monitoring, Improvement, and Applications, 2022, pp. 1–10.

[3] N. Kerzazi, F. Khomh, and B. Adams, “Why Do Automated
Builds Break? An Empirical Study,” in 30th IEEE International
Conference on Software Maintenance and Evolution, Victoria, BC,
Canada, September 29 - October 3, 2014. IEEE Computer Society,
2014, pp. 41–50. [Online]. Available: https://doi.org/10.1109/
ICSME.2014.26

[4] H. Seo, C. Sadowski, S. G. Elbaum, E. Aftandilian, and R. W.
Bowdidge, “Programmers’ Build Errors: A Case Study (at
Google),” in 36th International Conference on Software Engineering,
ICSE ’14, Hyderabad, India - May 31 - June 07, 2014, P. Jalote, L. C.
Briand, and A. van der Hoek, Eds. ACM, 2014, pp. 724–734.
[Online]. Available: https://doi.org/10.1145/2568225.2568255

[5] D. Wu, L. Chen, Y. Zhou, and B. Xu, “How do developers use C++
libraries? An empirical study,” in The 27th International Conference
on Software Engineering and Knowledge Engineering, SEKE 2015,
Wyndham Pittsburgh University Center, Pittsburgh, PA, USA, July
6-8, 2015, H. Xu, Ed. KSI Research Inc. and Knowledge Systems
Institute Graduate School, 2015, pp. 260–265. [Online]. Available:
https://doi.org/10.18293/SEKE2015-9

[6] A. Miranda and J. Pimentel, “On the Use of Package Managers
by the C++ Open-Source Community,” in Proceedings of the 33rd
Annual ACM Symposium on Applied Computing, SAC 2018, Pau,
France, April 09-13, 2018, H. M. Haddad, R. L. Wainwright, and
R. Chbeir, Eds. ACM, 2018, pp. 1483–1491. [Online]. Available:
https://doi.org/10.1145/3167132.3167290

[7] Microsoft, “vcpkg,” 2023, accessed on 28/12/2023. [Online].
Available: https://vcpkg.io/en/

[8] JFrog, “Conan,” 2023, accessed on 28/12/2023. [Online].
Available: https://conan.io/

[9] W. Tang, Z. Xu, C. Liu, J. Wu, S. Yang, Y. Li, P. Luo, and
Y. Liu, “Towards Understanding Third-party Library Dependency
in C/C++ Ecosystem,” in 37th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2022, Rochester, MI, USA,
October 10-14, 2022. ACM, 2022, pp. 106:1–106:12. [Online].
Available: https://doi.org/10.1145/3551349.3560432

[10] J. Long, “dependency-check – File Type Analyzers,” 2023,
accessed on 28/12/2023. [Online]. Available: https://jeremylong.
github.io/DependencyCheck/analyzers/index.html

[11] G. Fan, C. Wang, R. Wu, X. Xiao, Q. Shi, and C. Zhang,
“Escaping Dependency Hell: Finding Build Dependency Errors
with the Unified Dependency Graph,” in ISSTA ’20: 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
Virtual Event, USA, July 18-22, 2020, S. Khurshid and C. S.
Pasareanu, Eds. ACM, 2020, pp. 463–474. [Online]. Available:
https://doi.org/10.1145/3395363.3397388

[12] N. Licker and A. Rice, “Detecting Incorrect Build Rules,”
in Proceedings of the 41st International Conference on Software
Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31,
2019, J. M. Atlee, T. Bultan, and J. Whittle, Eds. IEEE
/ ACM, 2019, pp. 1234–1244. [Online]. Available: https:
//doi.org/10.1109/ICSE.2019.00125

[13] R. Wu, M. Chen, C. Wang, G. Fan, J. Qiu, and C. Zhang,
“Accelerating Build Dependency Error Detection via Virtual
Build,” in 37th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2022, Rochester, MI, USA, October
10-14, 2022. ACM, 2022, pp. 5:1–5:12. [Online]. Available:
https://doi.org/10.1145/3551349.3556930

[14] U. Packages, “All packages [Ubuntu 22.04 - Jammy],” 2023,
accessed on 28/12/2023. [Online]. Available: https://packages.
ubuntu.com/jammy

[15] Python Software Foundation, “Python random module,” 2023,
accessed on 28/12/2023. [Online]. Available: https://docs.
python.org/3/library/random.html

[16] R. Durstenfeld, “Algorithm 235: random permutation,” Communi-
cations of the ACM, vol. 7, no. 7, p. 420, 1964.

[17] PackHunter, “Dataset of Empirical Study,” 2024. [Online]. Avail-
able: https://github.com/PackHunter-dataset/Empircal Study

[18] googke, “guetzli,” 2024. [Online]. Available: https://github.com/
google/guetzli

[19] C. Bezemer, S. McIntosh, B. Adams, D. M. Germán, and A. E.
Hassan, “An empirical study of unspecified dependencies in
make-based build systems,” Empir. Softw. Eng., vol. 22, no. 6, pp.
3117–3148, 2017. [Online]. Available: https://doi.org/10.1007/
s10664-017-9510-8

[20] D. P. Contributors, “The Debian package management tools:
APT,” 2023, accessed on 28/12/2023. [Online]. Available: https:
//www.debian.org/doc/manuals/debian-faq/pkgtools.en.html

[21] Free Software Foundation Inc., “Readelf,” 2023, accessed
on 28/12/2023. [Online]. Available: https://sourceware.org/
binutils/docs/binutils/readelf.html

[22] Michael L. Collard, Jonathan I. Maletic, “srcML,” 2023, accessed
on 28/12/2023. [Online]. Available: https://www.srcml.org/

[23] R. Duan, A. Bijlani, M. Xu, T. Kim, and W. Lee, “Identifying
Open-Source License Violation and 1-day Security Risk at Large
Scale,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017, B. Thuraisingham, D. Evans,
T. Malkin, and D. Xu, Eds. ACM, 2017, pp. 2169–2185. [Online].
Available: https://doi.org/10.1145/3133956.3134048

[24] E. Horton and C. Parnin, “DockerizeMe: Automatic Inference
of Environment Dependencies for Python Code Snippets,”
in Proceedings of the 41st International Conference on Software
Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019,
J. M. Atlee, T. Bultan, and J. Whittle, Eds. IEEE / ACM, 2019, pp.
328–338. [Online]. Available: https://doi.org/10.1109/ICSE.2019.
00047

[25] ——, “V2: Fast Detection of Configuration Drift in Python,”
in 34th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2019, San Diego, CA, USA, November 11-
15, 2019. IEEE, 2019, pp. 477–488. [Online]. Available:
https://doi.org/10.1109/ASE.2019.00052

[26] W. Cheng, W. Hu, and X. Ma, “Revisiting Knowledge-Based
Inference of Python Runtime Environments: A Realistic and
Adaptive Approach,” IEEE Trans. Software Eng., vol. 50, no. 2, pp.
258–279, 2024. [Online]. Available: https://doi.org/10.1109/TSE.
2023.3346474

[27] H. Ye, W. Chen, W. Dou, G. Wu, and J. Wei, “Knowledge-Based
Environment Dependency Inference for Python Programs,”
in 44th IEEE/ACM 44th International Conference on Software
Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27,
2022. ACM, 2022, pp. 1245–1256. [Online]. Available: https:
//doi.org/10.1145/3510003.3510127

[28] W. Cheng, X. Zhu, and W. Hu, “Conflict-aware Inference
of Python Compatible Runtime Environments with Domain
Knowledge Graph,” in 44th IEEE/ACM 44th International
Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA,
May 25-27, 2022. ACM, 2022, pp. 451–461. [Online]. Available:
https://doi.org/10.1145/3510003.3510078

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3506629

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on December 02,2024 at 21:09:18 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1145/3460319.3464797
https://doi.org/10.1109/ICSME.2014.26
https://doi.org/10.1109/ICSME.2014.26
https://doi.org/10.1145/2568225.2568255
https://doi.org/10.18293/SEKE2015-9
https://doi.org/10.1145/3167132.3167290
https://vcpkg.io/en/
https://conan.io/
https://doi.org/10.1145/3551349.3560432
https://jeremylong.github.io/DependencyCheck/analyzers/index.html
https://jeremylong.github.io/DependencyCheck/analyzers/index.html
https://doi.org/10.1145/3395363.3397388
https://doi.org/10.1109/ICSE.2019.00125
https://doi.org/10.1109/ICSE.2019.00125
https://doi.org/10.1145/3551349.3556930
https://packages.ubuntu.com/jammy
https://packages.ubuntu.com/jammy
https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/random.html
https://github.com/PackHunter-dataset/Empircal_Study
https://github.com/google/guetzli
https://github.com/google/guetzli
https://doi.org/10.1007/s10664-017-9510-8
https://doi.org/10.1007/s10664-017-9510-8
https://www.debian.org/doc/manuals/debian-faq/pkgtools.en.html
https://www.debian.org/doc/manuals/debian-faq/pkgtools.en.html
https://sourceware.org/binutils/docs/binutils/readelf.html
https://sourceware.org/binutils/docs/binutils/readelf.html
https://www.srcml.org/
https://doi.org/10.1145/3133956.3134048
https://doi.org/10.1109/ICSE.2019.00047
https://doi.org/10.1109/ICSE.2019.00047
https://doi.org/10.1109/ASE.2019.00052
https://doi.org/10.1109/TSE.2023.3346474
https://doi.org/10.1109/TSE.2023.3346474
https://doi.org/10.1145/3510003.3510127
https://doi.org/10.1145/3510003.3510127
https://doi.org/10.1145/3510003.3510078

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, NOVEMBER 2024 14

[29] C. A. Gunter, “Abstracting Dependencies between Software
Configuration Items,” in Proceedings of the Fourth ACM
SIGSOFT Symposium on Foundations of Software Engineering,
San Francisco, California, USA, October 16-18, 1996, D. Garlan,
Ed. ACM, 1996, pp. 167–178. [Online]. Available: https:
//doi.org/10.1145/239098.239129

[30] A. Tamrawi, H. A. Nguyen, H. V. Nguyen, and T. N.
Nguyen, “SYMake: A Build Code Analysis and Refactoring
Tool for Makefiles,” in IEEE/ACM International Conference
on Automated Software Engineering, ASE’12, Essen, Germany,
September 3-7, 2012, M. Goedicke, T. Menzies, and M. Saeki,
Eds. ACM, 2012, pp. 366–369. [Online]. Available: https:
//doi.org/10.1145/2351676.2351749

[31] B. Technology., “fabricate,” 2022, accessed on 28/12/2023. [On-
line]. Available: https://github.com/brushtechnology/fabricate

[32] B. McCloskey, “Memoize,” 2022, accessed on 28/12/2023.
[Online]. Available: https://github.com/kgaughan/memoize.py

[33] M. Shal, “Build System Rules and Algorithms,” Published online
(2009). Retrieved July, vol. 18, p. 2013, 2009. [Online]. Available:
http://gittup.org/tup/build system rules and algorithms.pdf

[34] I. B. M. C. (IBM), “IBM Rational Clearcase,” 2020, accessed on
28/12/2023. [Online]. Available: https://www.ibm.com/us-en/
marketplace/rational-clearcase

[35] VestaSys, “Vesta Configuration Management System,” 2020,
accessed on 28/12/2023. [Online]. Available: http://www.
vestasys.org/

[36] C. Macho, S. McIntosh, and M. Pinzger, “Automatically Repairing
Dependency-Related Build Breakage,” in 25th International
Conference on Software Analysis, Evolution and Reengineering,
SANER 2018, Campobasso, Italy, March 20-23, 2018, R. Oliveto,
M. D. Penta, and D. C. Shepherd, Eds. IEEE Computer Society,
2018, pp. 106–117. [Online]. Available: https://doi.org/10.1109/
SANER.2018.8330201

[37] F. Hassan and X. Wang, “HireBuild: An Automatic Approach
to History-Driven Repair of Build Scripts,” in Proceedings
of the 40th International Conference on Software Engineering,
ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018,
M. Chaudron, I. Crnkovic, M. Chechik, and M. Harman,
Eds. ACM, 2018, pp. 1078–1089. [Online]. Available: https:
//doi.org/10.1145/3180155.3180181

[38] Y. Lou, J. Chen, L. Zhang, D. Hao, and L. Zhang, “History-Driven
Build Failure Fixing: How Far Are We?” in Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2019, Beijing, China, July 15-19, 2019, D. Zhang
and A. Møller, Eds. ACM, 2019, pp. 43–54. [Online]. Available:
https://doi.org/10.1145/3293882.3330578

[39] H. Wang, S. Liu, L. Zhang, and C. Xu, “Automatically Resolving
Dependency-Conflict Building Failures via Behavior-Consistent
Loosening of Library Version Constraints,” in Proceedings of
the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE
2023, San Francisco, CA, USA, December 3-9, 2023, S. Chandra,
K. Blincoe, and P. Tonella, Eds. ACM, 2023, pp. 198–210.
[Online]. Available: https://doi.org/10.1145/3611643.3616264

[40] PackHunter, “PackHunter,” 2024. [Online]. Available: https:
//github.com/L00000719/PackHunter

Rongxin Wu received the PhD degree from
HKUST, in 2017. He is currently an associate
professor at the Department of Computer Sci-
ence and Technology, School of Informatics,
Xiamen University. His research interests in-
clude program analysis, software security, and
mining software repository. His research work
has been regularly published in top confer-
ences and journals in the research communi-
ties of program languages and software en-
gineering, including POPL, PLDI, ATC, ICSE,

FSE, ISSTA, ASE, and TSE and so on. He has served as a re-
viewer in reputable international journals and a program commit-
tee member in several international conferences (FSE’25, ISSTA’25,
SANER’25, FSE’24, ISSTA’24, ASE’23, SANER’23, and ASE 2021
and so on). He is a two-time recipient of the ACM SIGSOFT Distin-
guished Paper Award. More information about him can be found at:
https://wurongxin1987.github.io/wurongxin.xmu.edu.cn/

Zhiling Huang is a post-graduate student at the
Department of Computer Science and Technol-
ogy, School of Informatics, Xiamen University.
He received his Bachelor’s degree in Engineer-
ing from Xiamen University in 2022. His current
research focuses on software engineering, par-
ticularly on C/C++ compilation processes and
build systems.

Zige Tian is a post-graduate student at the De-
partment of Computer Science and Technology,
School of Informatics, Xiamen University. She
received her Bachelor’s degree in Engineering
from Xiamen University in 2023. Her current
research area is software engineering, with re-
search interests including build error detection
and dependency management.

Chengpeng Wang is a post-doctoral research
fellow at the Computer Science Department of
Purdue University. His research mainly focuses
on the use of program analysis, especially static
analysis, to improve software reliability and per-
formance. He is also interested in the intersec-
tion of machine learning techniques, such as
Large Language Models, and symbolic analysis
techniques, with the aim of establishing neuro-
symbolic program analysis. His contributions to
the field have been recognized through publica-

tions in esteemed conferences and journals on programming languages,
software engineering, and systems. Notably, he has been awarded the
SIGPLAN Distinguished Paper Award (2022) and the ASPLOS Best
Paper Award (2024). He earned his Ph.D. from the Hong Kong University
of Science and Technology in 2023. Before that, he completed his
bachelor’s and master’s degrees at Tsinghua University in 2016 and
2019, respectively.

Xiangyu Zhang is a professor specializing in
AI security, software analysis and cyber foren-
sics. His work involves developing techniques to
detect bugs, including security vulnerabilities, in
traditional software systems as well as AI models
and systems, and to diagnose runtime failures.
He has served as the Principal Investigator (PI)
for numerous projects funded by organizations
such as DARPA, IARPA, ONR, NSF, AirForce,
and industry. Many of the techniques developed
by his team have successfully transitioned into

practical applications. His research outcome has been published on top
venues in the areas of Security, AI, Software Engineering, and Program-
ming Languages, and recognized by various distinguished paper awards
including the prestigious ACM Distinguished Dissertation Awards. He
has mentored over 30 PhD students and post-docs, with fifteen securing
academic positions in various universities. Many of them have been
honored with NSF Career Awards or comparable recognitions.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3506629

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on December 02,2024 at 21:09:18 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1145/239098.239129
https://doi.org/10.1145/239098.239129
https://doi.org/10.1145/2351676.2351749
https://doi.org/10.1145/2351676.2351749
https://github.com/brushtechnology/fabricate
https://github.com/kgaughan/memoize.py
http://gittup.org/tup/build_system_rules_and_algorithms.pdf
https://www.ibm.com/us-en/marketplace/rational-clearcase
https://www.ibm.com/us-en/marketplace/rational-clearcase
http://www.vestasys.org/
http://www.vestasys.org/
https://doi.org/10.1109/SANER.2018.8330201
https://doi.org/10.1109/SANER.2018.8330201
https://doi.org/10.1145/3180155.3180181
https://doi.org/10.1145/3180155.3180181
https://doi.org/10.1145/3293882.3330578
https://doi.org/10.1145/3611643.3616264
https://github.com/L00000719/PackHunter
https://github.com/L00000719/PackHunter

	Introduction
	PackHunter in a Nutshell
	Empirical Study
	Problems of State-of-the-Art Approaches
	Key Idea

	Problem Formulation
	Program Syntax
	Missing Package Error
	Problem Statement

	Approach
	Missing File Probing
	Package Filtering
	Package Prioritized Enumeration
	Implementation

	Evaluation
	Experimental Setup
	Effectiveness and Efficiency
	Comparisons with Baselines
	Ablation Study
	Threats to Validity
	Discussion

	Related Work
	Conclusion
	References
	Biographies
	Rongxin Wu
	Zhiling Huang
	Zige Tian
	Chengpeng Wang
	Xiangyu Zhang

