3022

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 11, NOVEMBER 2024

Fast and Precise Static Null Exception Analysis
With Synergistic Preprocessing

Yi Sun @, Chengpeng Wang “, Gang Fan “?, Qingkai Shi

Abstract—Pointer operations are common in programs written
in modern programming languages such as C/C++ and Java.
While widely used, pointer operations often suffer from bugs like
null pointer exceptions that make software systems vulnerable
and unstable. However, precisely verifying the absence of null
pointer exceptions is notoriously slow as we need to inspect a
huge number of pointer-dereferencing operations one by one
via expensive techniques like SMT solving. We observe that,
among all pointer-dereferencing operations in a program, a large
number can be proven to be safe by lightweight preprocessing.
Thus, we can avoid employing costly techniques to verify their
nullity. The impacts of lightweight preprocessing techniques are
significantly less studied and ignored by recent works. In this
paper, we propose a new technique, BONA, which leverages
the synergistic effects of two classic preprocessing analyses. The
synergistic effects between the two preprocessing analyses allow
us to recognize a lot more safe pointer operations before a
follow-up costly nullity verification, thus improving the scalability
of the whole null exception analysis. We have implemented
our synergistic preprocessing procedure in two state-of-the-art
static analyzers, KLEE and Pinpoint. The evaluation results
demonstrate that BONA itself is fast and can finish in a few
seconds for programs that KLEE and Pinpoint may require
several minutes or even hours to analyze. Compared to the vanilla
versions of KLEE and Pinpoint, BONA respectively enables
them to achieve up to 1.6x and 6.6x speedup (1.2x and 3.8x
on average) with less than 0.5% overhead. Such a speedup is
significant enough as it allows KLEE and Pinpoint to check more
pointer-dereferencing operations in a given time budget and, thus,
discover over a dozen previously unknown null pointer exceptions
in open-source projects.

Index Terms—Null exception analysis, static analysis, dataflow
analysis, symbolic execution, and path sensitivity.

1. INTRODUCTION

ULL pointer exception (NPE), listed as the CWE top 25
most dangerous software weaknesses in past five years
[1], occurs when a program dereferences a memory pointer that

Received 6 February 2024; revised 20 July 2024; accepted 17 September
2024. Date of publication 23 September 2024; date of current version
14 November 2024. Recommended for acceptance by S. Ryu. (Corresponding
author: Qingkai Shi.)

Yi Sun, Chengpeng Wang, and Xiangyu Zhang are with Purdue Uni-
versity, West Lafayette, IN 47907 USA (e-mail: sun624@purdue.edu;
wang6590@purdue.edu; xyzhang @purdue.edu).

Gang Fan is with Hong Kong University of Science and Technology, Hong
Kong, People’s Republic of China (e-mail: gfan@cse.ust.hk).

Qingkai Shi is with the State Key Laboratory for Novel Software Technol-
ogy, Nanjing University, Nanjing 210023, People’s Republic of China (e-mail:
qingkaishi@nju.edu.cn).

Digital Object Identifier 10.1109/TSE.2024.3466551

, Member, IEEE, and Xiangyu Zhang "2, Member, IEEE

100%

80%

60%

40%

bc |E——
bc | ———
bc |——
bc |——
bc | ———
bc |—

bc |—
bc |e——
bc |—

bc |—
bc |—
bc |—

bc |——
bc |——
bc |—

bc |——
bc |—

bc |—

bc |——
bc |——

bc |——
bc |——
bc |—
bc |—

bc —
bc |——
bc | —
bc |e——

bc
be

~
e 3
X X

bc | —

433.milc
435 gromacs
470.Ibm
481.wrf.
482.sphinx3.

429.mcf.
436.cactusADM.

403.gcc.
429.mcf.
433.milc.
435.gromacs.
436.cactusADM
458 sjeng
470.lbm
403.gcc.

462.libquantum
458.sjeng.

400.perlbench
401.bzip2.

445 gobmk.
454.calculix.
456.hmmer.
464.h264ref.
482.sphinx3.
400.perlbench
401.bzip2
445.gobmk.
454 calculix.
456.hmmer.
462 libquantum
464.h264ref.

(a) M # Pointer Insts / # Insts (b) B # Dereferences / # Pointer Insts

Fig. 1. Percentage of pointer operations and pointer dereferences. The X-
axes list 18 programs from SPEC2006.

is expected to be valid but is “null”. NPE has been one of the
most common software vulnerabilities due to the wide use of
pointer-dereferencing operations in the code written in modern
programming languages. According to our investigation and as
shown in Fig. 1, C programs in SPEC CPU 2006 [2], a standard
and widely-used benchmark suite, contain up to 64% pointer
instructions, in which up to 61% dereference pointers. Thus,
it is highly challenging to guarantee the absence of NPE even
if advanced quality assurance techniques are used. It has been
reported that over 70 NPE vulnerabilities are collected by the
CVE database every year [3] and as of July 2024, there are
over 3000 CVEs involving NPEs [4]. These NPE vulnerabilities
often lead to Denial of Service attacks, causing immeasurable
losses.

To prevent NPE as well as its serious consequences, re-
searchers have proposed a large number of static dataflow anal-
yses in the past decades, including general approaches able to
detect various bug types [5], [6], [7], [8], [9] and techniques
specially designed for detecting NPEs [10], [11], [12], [13]. We
appreciate these existing works and acknowledge their contribu-
tions. However, it is hard to say the problem of NPE detection
has been completely addressed, given the increasing number
of NPEs every year. A notable problem of static analysis is
that, when high precision like path sensitivity is required, it
often takes many hours to complete the analysis due to the
heavy use of costly techniques such as symbolic execution
and SMT solving. To make these techniques scalable for large
codebases, they either make unsound assumptions that sacrifice
precision and recall, or seek some advanced techniques, such as
sparse dataflow analysis [6], [14], [15], parallel static analysis

0098-5589 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on November 14,2024 at 21:50:38 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0005-3161-3242
https://orcid.org/0000-0003-0617-5322
https://orcid.org/0000-0002-8633-6036
https://orcid.org/0000-0002-8297-8998
https://orcid.org/0000-0002-9544-2500
mailto:sun624@purdue.edu
mailto:wang6590@purdue.edu
mailto:xyzhang@purdue.edu
mailto:gfan@cse.ust.hk
mailto:qingkaishi@nju.edu.cn

SUN et al.: FAST AND PRECISE STATIC NULL EXCEPTION ANALYSIS WITH SYNERGISTIC PREPROCESSING

[16], [17], [18], and specially designed type systems [10], to
name just a few.

Different from the aforementioned techniques that focus on
the dataflow analysis itself, in this paper, we advocate a design
that is less studied and significantly underestimated by previ-
ous works. In the design, one or more lightweight but sound
preprocessing procedures are conducted before the main static
analysis. In the application scenario of detecting NPEs, such
preprocessing procedures are capable of quickly identifying a
large number of safe pointer-dereferencing operations so that
we will not need to take a costly technique, e.g., symbolic
execution and SMT solving, to verify their safety. Therefore,
the performance of the whole program analysis is improved. For
instance, unification-based flow- and context-insensitive alias
analysis [19] is commonly used as a preprocessing procedure,
e.g., in [20], [21], because the preprocessing alias analysis is
of almost linear complexity and can answer alias queries in
constant time. Using it as a preprocessing procedure, we can
easily identify pointers that may be null and must not be null,
thus avoiding expensive checks on those non-null pointers in
the follow-up NPE analysis.

However, we observe that all existing approaches, e.g., [20],
[21], independently utilize preprocessing procedures and fail to
deeply explore their potential. Our key insight is that different
preprocessing procedures can promote each other, exhibiting
a synergistic effect. For NPE detection, the synergistic effects
let us identify a lot more non-null pointers than using mul-
tiple preprocessing procedures independently. While the idea
of utilizing mutually beneficial static analyses was studied in
general settings particularly for compiler optimization [22],
[23], [24], [25], [26], it has not been explored in the context of
scaling precise bug or NPE detectors via preprocessing. More
specifically, existing approaches cannot reply to the questions
about what and how specific static analyses can promote each
other for NPE detection. This paper provides an answer for NPE
detection.

In this work, for detecting null pointer exceptions, we iden-
tify two lightweight and sound preprocessing techniques, which
we refer to as the global value-flow analysis (VFA) and the local
null-check analysis (NCA), and study the synergistic effects
between them. VFA propagates the dataflow facts of whether
a pointer variable is null across the function borders. NCA
performs dataflow analysis to discover if a pointer variable v,
albeit may be null, is guarded with a null-check statement such
as if (v != null) or *v = u.! VFA can be boosted by
NCA in the sense that NCA provides more null or non-null
dataflow facts for VFA to propagate. NCA can be boosted by
VFA in the sense that, since null or non-null dataflow facts are
propagated via VFA to other program variables, we can identify
more null-check statements via NCA. Such mutual promotion
eases the burden of subsequent expensive static analysis and,
thus, dramatically improves the analysis performance. We pro-
vide a detailed example in Section II to illustrate the idea.

IGiven two consecutive statements dereferencing the same pointer, e.g.,
*v = x; *v =y, the pointer v is deemed nonnull because, if it is null,
the code has been crashed at the first statement and cannot reach the second.

3023

On top of the LLVM compiler infrastructure [27], we have
implemented the synergistic preprocessing technique, namely
BONA, as a Booster Of Null Analysis. We apply BONA to
two precise static analyses for detecting null pointer exceptions.
One is KLEE [9], a symbolic execution engine, and the other
is Pinpoint [6], an industrial-strength bug detector with the
precision of interprocedural path sensitivity. The evaluation is
conducted based on the original benchmark programs of KLEE
and Pinpoint in their papers. The experimental results demon-
strated that BONA is very fast and can finish the synergistic pre-
processing in a few seconds. Compared to the vanilla versions
of KLEE and Pinpoint, BONA respectively enables them to
achieve up to 1.6x and 6.6x speedup (1.2x and 3.8x on average)
with less than 0.5% overhead. Such a speedup is significant
enough as it allows KLEE and Pinpoint to check more pointer-
dereferencing operations in a given time budget, leading to
the discovery of a dozen previously unknown NPEs in open-
source projects. We make the following three contributions in
this paper:

« We identify two fast and sound preprocessing techniques
and, for the first time to our best knowledge, study their
mutual synergy for scaling NPE detectors via preprocess-
ing. The key novelty is three-fold:

— We propose lightweight VFA and NCA as the prepro-
cessing procedures of NPE detection. They exhibit lit-
tle overhead but are effective in identifying safe pointer
operations.

— We study the synergistic effects between VFA and
NCA for NPE detection. Existing approaches that ex-
plore synergistic static analyses are not designed for
detecting NPEs.

— We explore the potential of utilizing simple preprocess-
ing procedures to scale static analysis. As discussed
before, this is a method significantly underestimated by
existing works.

« We implement our synergistic preprocessing approach as
a tool” and use it to accelerate two precise static dataflow
analyses for detecting NPEs.

« We evaluate our approach using many programs, including
those previously used in evaluating KLEE and Pinpoint,
showing the effectiveness with a dozen previously un-
known NPEs detected and confirmed.

The remainder of the paper is organized as follows. §II pro-
vides an overview and §III explains the details of our approach.
We discuss the evaluation results in §IV. §V surveys the related
work and §VI concludes.

II. SYNERGISTIC EFFECTS IN A NUTSHELL

In this section, we use a motivating example to (1) introduce
two preprocessing procedures for NPE detection, (2) illustrate
the weakness of independently running them, and (3) show how
our approach, i.e., BONA, activates their synergistic effects. We
refer to the two preprocessing procedures as value-flow analysis
(VFA) and null-check analysis (NCA).

Zhttps://github.com/BONA- Analyzer/bona

Authorized licensed use limited to: Purdue University. Downloaded on November 14,2024 at 21:50:38 UTC from IEEE Xplore. Restrictions apply.

https://github.com/BONA-Analyzer/bona

3024 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 11, NOVEMBER 2024
1. int mainQ { 1. int mainQ {
2. int *p; zero_init(&p); 2. int *p; zero_init(&p);
3. *p = 10; 3. *p = 10;
4. return 0; 4. return 0;
5. 3} 5. }
6. 6. (4]
7. void zero_init(int **a) { 7. void zero_init(int **a) { |-
8. int *q; safe_alloc(&q); 8. int *q; safe_alloc(&q); g
9. if (a == NULL) { 9. if (a4 = NULL) { // ureachoble de to
10. *a = NULL; 10. *a = NULL; /7 a > ronull
11. } else { *q = 0; 11. } else { *q = 0; R\
12. *a=gq; } 12. *a = q; } I &
13. 3} 13. } (3)
14. 14.
15. void safe_alloc(int **b) { 15. void safe_alloc(int **b) {
16. int *r = malloc(sizeof(int)); 16. int *r = malloc(sizeof(int));
17. if (r == NULL) abort(); 17. if (r == NULL) abort(); -7
18. *b = r; 18. *b = pr; /el ---"] /7 r > may_null
19. 3} 19. %
(a) Code (b VFA (a) Code with NCA Results (b) VFA
main() zero_initQ) safe_alloc()
Fig. 3. Steps of achieving the synergistic effects.

[zero_init(&p)] [safe_alloc(&q)]

¢ p > may_null ¢ q > may_null r > may_null
(*p-10 (if Ca == NuD) =
Yy P> non_null q > nonnill——q > must_null r > mus y non_null
return 0 *g = Q: *q =

[*2 - a][NULL;] [aborto][*=r]

— r > non_null

> 1
(c) NCA g > mzu b > non_null
Fig. 2. A motivating example.

Fig. 2(a) shows the code snippet of the motivating example,
which is simplified from real programs. The code consists of
three functions, main, zero init, and safe_alloc. The
function safe_alloc is a wrapper of the C library function
malloc. It tries to allocate a memory space and returns the
pointer of the memory space. If the memory allocation fails,
malloc returns null, and the program aborts at Line 17. The
function zero init invokes the function safe alloc at
Line 8 to create a memory space pointed-to by the pointer q. It
then zero-initializes the memory space at Line 11. The function
main invokes the function zero init to create an integer
(Line 2), assigns it a constant ten (Line 3), and then returns
(Line 4). Since the code aborts at Line 17 when malloc returns
a null pointer, the pointer p at Line 3 cannot be null. Hence,
NPE cannot happen at Line 3.

VFA. The global value-flow analysis captures the def-use rela-
tions in the code. Like many previous works [20], [21], VFA is
built on top of a flow- and context-insensitive pointer analysis to
capture the def-use relations hidden behind pointer operations
and across the function boundaries. As a preprocessing pro-
cedure, although VFA is inter-procedure, it remains cheap be-
cause it only relies on a “flow- and context-insensitive” pointer
analysis. Fig. 2(b) shows the value-flow graph (VFG) that cap-
tures the def-use relations. A VFG node represents a variable
definition and a VFG edge represents the value propagation
between variables. The edge is labeled by L; if the propagation
happens through the code at Line ¢. In the VFG, the edges
labeled by Lg and Lo capture the def-use relations hidden by
pointer operations and discovered by the pointer analysis. The
other edges are direct def-use relations. To check if NPE can

happen at Line 3, VFA checks if the pointer p at Line 3 may be
null. Since the node p in the VFG is reachable from possible
null pointers, i.e., the node NULL and the node r, VFA has to
conclude that the pointer p could be null and reports an NPE
at Line 3. As discussed before, this is a false warning.

NCA. Unlike VFA that is global but keeps cheap by resolving
flow-insensitive pointer relations, NCA stays cheap by a local
but flow-sensitive analysis that does not resolve pointer rela-
tions (This is because a global flow-sensitive pointer analysis
is often expensive). NCA discovers non-null pointers by two
simple rules. In the example, NCA analyzes the control-flow
graph of each function individually as illustrated in Fig. 2(c).
In the beginning, we assume all pointers could be null. First,
whenever a conditional branch with a comparison to null is
met, null or non-null facts are derived for the corresponding
branch selections. For instance, the pointer g cannot be null if
we take the false branch of the if-statement at Line 9 but must be
null if we take the true branch. Second, when a dereferencing
instruction is met, a non-null fact is generated. For instance,
the pointer ¢ is deemed not null at Line 12 because it has
been dereferenced at Line 11. Fig. 2(c) shows the results of
NCA on the example program. From the results, NCA can
only conservatively conclude that the pointer p in the main
function could be null. Therefore, such an independent NCA
also mistakenly reports an NPE at Line 3.

BONA. As illustrated above, using NCA or VFA alone fails
to filter out the NPE candidate at Line 3. If a preprocessing
procedure cannot remove a majority of NPE candidates in a
program, the whole analysis will not be scalable, because we
then have to rely on an expensive verification procedure to
check if such NPE candidates may happen at runtime. Fortu-
nately, by combining NCA and VFA, the synergistic effects
enable us to remove the NPE candidate easily and let us avoid
an expensive verification procedure. The steps of achieving
synergistic effects are shown in Fig. 3.

(1) Boosting VFA by NCA. We first perform NCA for all
functions. Since NCA has not obtained any facts from VFA yet,
the same facts will be generated as those in Fig. 2(c), where we

Authorized licensed use limited to: Purdue University. Downloaded on November 14,2024 at 21:50:38 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: FAST AND PRECISE STATIC NULL EXCEPTION ANALYSIS WITH SYNERGISTIC PREPROCESSING

get the information: the pointer r cannot be a null pointer at the
statement *b = r (Line 18). VFA then updates the null facts
of the VFG nodes as shown by Step @ in Fig. 3. That is, the
pointer *b in the VFG cannot be null because the edge from r
to *b is labeled by L8, i.e., *b receives the value from r at
Line 18. Since the pointer g is only reachable from the non-null
pointer *b, we can conclude that the pointer g cannot be null,
as shown by Step @ in Fig. 3.

(2) Boosting NCA by VFA. We have concluded based on the
boosted VFA that the pointer g in the function zero_init is
not null. Hence, we rerun NCA on the function zero_init
with this new information. As shown by Step® in Fig. 3, since
the pointer g is not null, NCA does not enter the true branch at
Lines 9 and 10. This further means that, in the VFG, the edge
labeled by Lqg can be removed as illustrated by Step ®. As a
result, in the VFG, the pointer p is no longer reachable from
the constant null pointer.

(3) BONA’s Result. After the synergistic analysis above, as
shown in Fig. 3(b), the pointer p is not reachable from any
null pointers. Hence, we can conclude that the pointer p is
not null and the NPE candidate at Line 3 can be pruned. No
further costly analysis is needed to verify the safety of the
pointer-dereferencing operation. In practice, we expect to use
the synergistic effects between NCA and VFA to boost existing
static NPE analysis as the synergistic effects can easily discover
a lot more non-null pointers compared to using NCA and VFA
independently.

Summary. As illustrated above, our approach has the following
merits for NPE detection.

« Easy to Deploy: BONA utilizes simple preprocessing pro-
cedures to remove NPE candidates without any complex
interaction with the follow-up verification procedure. This
makes it easy to integrate BONA with any precise but
costly NPE detector.

« Effective for NPE Detection: The mutual synergy of
NCA and VFA, as illustrated above, allows us to remove
a majority of NPE candidates before a costly verification
procedure and, therefore, improves the scalability of the
whole NPE detector.

III. SYNERGISTIC PREPROCESSING

In this section, we first detail the value-flow analysis (VFA,
§III-A) and the null-check analysis (NCA, §III-B). Then, we
discuss how they achieve mutual synergy (§III-C) and speed
up NPE detection (§II1-D).

Abstract Language. To ease the detailed explanation of our
approach, with no loss of generality, we model the target pro-
grams using the following C-like call-by-value language.

In the small language, a program is composed of multiple
functions and each function consists of multiple simple or
compound statements, including assignments, loads, stores, null
comparisons, calls, returns, sequencing, branching, and loop-
ing. The semantics of these program statements are standard
and, thus, are omitted.

3025

Program P = F7T

Function I = f(vi,v2,...){S; }

Statement S = vy < vg :assignment
| v1 = *v2 | * v + V2 ::1oad/store
| v1 (v2 = null) ::cmp-to-null
|7+ f(vi,v2,...) ucall
| return v ureturn
| S1;52 usequencing
| if (v) { S1; }else{ S2; } = ubranching
| while (v) { S; :looping

Fig. 4. A small C-like language to illustrate our approach.

Abstract Domain. During our static analysis, either VFA
or NCA, each program variable v is assigned an abstract
value ¥ € {MAY-NULL, MUST-NULL, MUST-NONNULL}, meaning
the dataflow facts that v may be a null pointer, must be a null
pointer, or must be a non-null pointer. We define the following
meet operation 1 between these abstract values,

L 0 01 = D2

V1 Mg = A .

LR {MAY-NULL D1 # Dy

so that the abstract values form a lattice of finite height and
guarantee the convergence of static analysis [28].

A. Lightweight Value-Flow Analysis

Our approach first builds intra-procedural value-flow graphs
(VFGs) for each function. The VFGs are then connected to
each other to form a whole-program VFG, on which a whole-
program value-flow analysis (VFA) is performed. In general,
VFA consists of two tasks. First, VFA builds a VFG that cap-
tures the def-use relations among all program variables, in-
cluding the direct def-use chain as well as those hidden be-
hind pointer operations and across function boundaries. Second,
VFA propagates dataflow facts along paths in the graph. Our
VFA is cheap because of the following two designs, which are
briefly listed below and detailed later.

o Unlike existing works that build complex intermediate
representations like the memory SSA [29], we directly
build VFG based on a flow- and context-insensitive pointer
analysis.

« We leverage a fast reachability indexing technique to speed
up reachability queries on the control flow graph, thereby
achieving partial flow sensitivity.

VFG. Before diving into the details of VFA, we formally define
the value-flow graph that VFA builds, as follows.

Definition 1 (Value-Flow Graph (VFG)): VFG is a directed
graph (V, E) where each vertex v € V is a program variable and
an edge (v1,S,v3) € E is a def-use relation, meaning that the
value of the variable v; flows to the variable v, via the program
statement .S.

To recognize def-use relations hidden behind pointer op-
erations, we first perform a sound, unification-based, flow-
insensitive, and context-insensitive pointer analysis to resolve
pointer relations in the code [30]. The analysis is of almost
linear complexity and, thus, is very cheap. With the pointer anal-
ysis results, a standard Mod-Ref analysis is performed to rec-
ognize the side effects of every function. Here, side effects have

Authorized licensed use limited to: Purdue University. Downloaded on November 14,2024 at 21:50:38 UTC from IEEE Xplore. Restrictions apply.

3026

Fi is an extra parameter s.t. £ = *(vj, &) at the entry of f

R is an extra return value s.t. R = *(vj, k) at the end of f f
unc

f v, v,)i fw, ., A, Ry,)1
(v, B < A

‘ R o~ *(v, ©

return r; return r, R, R, .;

} }

f (v, Vo, v, A, R, .D) {.; return r, R, R, ..; }
31, j, ki Fi=*(y, K; 31, j, ki Ri=*(y, K);

| *

ey Ay Ay D)

call

r’— f (u, t, 2;

A= Xy, B
r, G, G, .
*w, B < G

< flu, w,

Fig. 5. Transformation rules for function and call statement.

Algorithm 1: VFG

1 procedure VFG()
// Building intra-procedural value flows
foreach assignment: vy < vg do

L add edge (v2,v1 < v2,v1) to VFG;

foreach load-store pair: v1 < xva, *v3 < v4 in a function do
if reachable(xvs < vy4, v1 < *v2) A alias(va, v3) then
let o be a fresh VFG vertex;
add edge (v4, *v3 < v4,0) into VFG;
add edge (o, v1 < *v2,v1) into VFG;

w oD

® 9 v ok

// Building inter-procedure value flows
9 foreach call: r,C1,--- <+ f(u1,---,A1,---); do

10 assume the callee f has parameters: vy,--- , F1,---;

11 assume the callee f has returns: 7/, Ry,---;

12 add edges (u;, S,v;), (A, S, F;) to VFG where S is the
call statement;

13 add edges (', S,r), (Ri, S, C;) to VEG where S is the

return statement;

14 procedure alias(vy, v2)

// It is provided by pointer analysis [?].
It checks if two inputs are aliases in
constant time.

15 procedure reachable(S7, S2)

// It is provided by a reachabiliy indexing
technique [? 1. It checks if the
statement Si1 can reach Sy in a control
flow graph in almost constant time.

a broader meaning, including both referencing and modifying
non-local memory locations in a function. With the side-effects,
we can transform each function to a pure function by adding
extra function parameters and returns, via the transformation
rules in Fig. 5.

Specifically, an extra parameter is a variable that stands for a
non-local memory location referenced through a pointer expres-
sion *(v, k), where v is a formal parameter and we use *(v, k)
as a shorthand of dereferencing a pointer k£ times. Similarly,
an extra return value stands for a non-local memory location
that is modified in a function. Formally, the transformation rules
are shown in Fig. 5. The rule func inserts extra parameters F;
and extra return values R; into a function and establish the
relationship between the extra values with the original formal

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 11, NOVEMBER 2024

parameters. The rule call transforms corresponding function
calls after callee functions are transformed.

Example 1: The figure below demonstrates, in practice,
how we transform the function safe alloc written in C.
The function modifies the memory pointed to by the formal

1 void safe_alloc(int **b) { 1. int *safe_alloc(int **b) {
2. int *r = malloc(sizeof(int)); 2. int *r = malloc(sizeof(int));
3. if (r == NULL) abortQ); ‘ 3. if (r == NULL) abort(Q);
4 * =r; 4. *b =r;
5 } 5 R = *b;
6. return R;
the function modifies a memory space 7.}
pointed-to by the parameter b at line 4.
1. safe_alloc(&q); // call 1. C = safe_alloc(&q);
2. ‘ 2. *@q) =C; /*i.e., g=C*/

parameter b. Thus, by the rule func, we add an extra return
value R. Accordingly, by the rule call, we also transform the
call statement that invokes this function by adding a receiver
C to receive the extra return value. A store instruction is also
inserted to establish the relationship between the pointer &g and
the receiver C. O

After the transformation, all implicit side effects in a function
are made explicit via the load and store statements inserted by
the transformation rules. As a result, we can easily build VFG
using Algorithm 1, which consists of two parts. The first part
is from Line 2 to Line 8, which builds intra-procedural value
flows. That is, for each assignment vy <— vo, Lines 2-3 build a
direct value flow from vq to vy.

In addition to direct value flows, Lines 4-8 build indirect
value flows between load and store statements. To this end,
given a pair of load and store statements, Line 5 checks if the
store statement can reach the load statement and, meanwhile,
checks if the load statement loads a value from a memory
space that is possibly the same as the memory accessed by the
store statement. If both conditions are satisfied, we establish
value flows between them. The reachability check is done by a
reachability indexing technique [31]. The reachability indexing
technique can answer reachability queries in almost constant
time after a one-time graph traversal of almost linear complex-
ity, without building an expensive transitive-closure of reacha-
bility. The memory-alias check is done by calling the function
alias(vy,v2) provided by the pointer analysis [30]. Since both
the reachability check and the alias check are of almost constant
complexity and the load and store pairs are restricted in the same
function, this procedure is cheap.

In the procedure above, the load-store pair loop at line 4
may introduce a potentially quadratic blow-up, i.e., O(n?)
complexity where n stands for the number of load and store
instructions, if a function has a non-trivial size. On the one
hand, most functions in practice are not large. Thus, n is small
and does not cause performance issues. On the other hand,
we can keep n small via some efficient data structures. For
instance, via a linear scan of all instructions, we can put load
and store instructions into different small groups. In each group,
load and store instructions refer to pointers that are aliases.
As such, we only need to enumerate load-store pairs in the
small groups.

Authorized licensed use limited to: Purdue University. Downloaded on November 14,2024 at 21:50:38 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: FAST AND PRECISE STATIC NULL EXCEPTION ANALYSIS WITH SYNERGISTIC PREPROCESSING

Algorithm 2: VFA
M(v) < MAY-NULL for all vertices in VFG (V,E);

1

2 M(v) <~ MUST-NULL for all v that denotes a constant null;

3 M(v) < MUST-NONNULL for all v that cannot be null;

4

5 procedure VFA(EMusT-NULL: EMUST-NONNULL)

6 W {v: (u, S,v) € Emust-NULL U EMUST-NONNULL };

7 while W £ 0 do

8 v+ W.pop();

9 if V(’U,, S, 1)) €E st (u, S, U) € Eyust-yurr then

10 M(v) <~ MUST-NULL;

u Epmust-NULL < Emust-NuLL U {(v, §7, w) € E};

12 | WeWu{w: (v, w) e E};

13 else if V(u, S, U) €E st (u, S, U) € Eyust-nonnvurr then
14 M(v) <~ MUST-NONNULL;

15 EMusT-NONNULL ¢~ Emust-NonnuLL U {(v, S', w) €
16 | WWu{w: (v, w) €E};

17 else

18 | M(v) < MAY-NULL;

The second part, i.e., Lines 9-13, builds inter-procedural
value-flows for each function call, by adding value flows from
the actuals to the formals, and value flows from the return values
to their receivers. This part is also lightweight as its complexity
is linear in the number of function calls.

Example 2: (Continue.) The figure below shows the VFG
snippet built for the transformed code in Example 1. First, we
build the indirect value-flow edges from r to R as per Lines 4-8
in Algorithm 1. We build this indirect value flows because the
store and load statements, i.e., *o = rand R = *Db, access
the same memory space and the load statement is reachable
from the store. The other two edges, which are from R to C
and from C to g, are direct value flows, which are built as per
Line 13 and Line 3 in Algorithm 1, respectively. Note that the
value flow path from r to g is a bit different from that in Fig. 2,
where the node R and the node C are omitted for easing the
explanation. g

(i.e., *b)
\ | I\ J
Y Y Y

Lines 4-8, Alg 1 Line 13, Alg 1 Line 3, Alg 1

VFA. VFA determines if a pointer, represented by a VFG
vertex, is or is not a null pointer. To this end, we leverage
Algorithm 2, a worklist algorithm, to propagate null pointer
information on VFG. In detail, we use a map M to keep the
null fact for each pointer. By default, as shown by Line 1
to Line 3 in Algorithm 2, all pointers are conservatively re-
garded to be possibly null except for those that are constant null
pointers or cannot be null pointers, e.g., global addresses and
return values of an external function that returns only non-null
pointers.

The inputs of VFA are two edge sets, Epust.NurL and
EMUST-NONNULL, representing the edges that do and do not
propagate null pointers, respectively (Line 5). When VFA is

3027

an independent analysis, the edges are the outgoing edges of
the vertices that are definitely null and not null, respectively
(see Line 2 and Line 3 in Algorithm 2). Note that the two sets
are not empty. For instance, a VFG always contains vertices
standing for constant null pointers. Thus, EpjusT-NULL contains
edges outgoing from the vertices standing for constant null. A
VEG also may contain vertices standing for pointers that point
to global variables, e.g., the pointer p in p = &g where g is
a global variable. Such global variable pointers cannot be null,
and EpusT-NONNULL contains edges from vertices representing
them. When we link VFA and NCA as discussed in §11I-C, VFA
receives the two sets from NCA, which will be detailed later.

Line 6 initializes a worklist that contains all pointers that are
successors of a pointer in Eypjyst-NuLL and EpusT-NONNULL-
Intuitively, we will check in the follow-up loop if a pointer in
the worklist is or is not a null pointer based on the following
rule. That is, if all predecessors of a pointer v must (resp. must
not) be null, the pointer v must (resp. must not) be null (Line
10 and Line 14). Otherwise, a pointer is regarded as possibly
null (Line 17).

Lemma 1: VFA, i.e., Algorithm 2, is sound: if a pointer v
may be a null pointer at runtime, we have M(v) = MAY-NULL
after Algorithm 2.

Proof: (Sketch) First, VFG is built on a pointer analysis
to figure out the indirect def-use relations at stores, loads, and
calls. Since the pointer analysis is sound, i.e., does not miss
any possible pointer aliases, the VFG is sound, i.e., contains all
possible value flows that may happen at runtime. Second, Algo-
rithm 2 ensures that all pointers reachable from a possibly null
pointer in VFG are set to be possibly null. Thus, Algorithm 2
is also sound, i.e., does not miss any possibly null pointers. [

B. Lightweight Null Check Analysis

Our null-check analysis (NCA) aims to check if a pointer p
dereferenced at a program statement is nullable. For instance,
given two consecutive statements dereferencing the same
pointer, e.g., *p = xX; *p = Yy, the pointer p is deemed
nonnull at the second statement because, if it is null, the code
has crashed at the first statement and cannot reach the second.
Since NCA cares about the order of program statements, we
realize it as a flow-sensitive intra-procedure dataflow analysis.

A dataflow analysis is often defined by a set of transfer
and merging functions over dataflow facts. A transfer function
specifies how we compute dataflow facts when visiting a pro-
gram statement. A merging function defines how we compute
dataflow facts at the join point of multiple program paths. Fig. 6
lists the transfer and merging functions as a series of inference
rules. In each rule, the part above the horizontal line is a set
of assumptions and, under these assumptions, the bottom part
describes dataflow facts before and after a statement S (defined
in Fig. 4) in the form of R,N+ S : R’ N'. Here, R is a set of
reachable statements and N maps each pointer v to a dataflow
fact ¥ including MAY-NULL, MUST-NULL, and MUST-NONNULL.
In the inference rules, we use N[v — 0] to mean we update the
dataflow fact in the map.

Authorized licensed use limited to: Purdue University. Downloaded on November 14,2024 at 21:50:38 UTC from IEEE Xplore. Restrictions apply.

3028

R=0 init

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 11, NOVEMBER 2024

assign

F_:R,N[Vv : v — MAY-NULL]

load

R,NF vy < *v2 : RU {v1 + *v2}, N[ug — MUST-NONNULL]

S belongs to other types of simple statements

others
R,NF S:RU{S}N

R,NF vy < vy : RU {v1 + va},N[vy — Nlvz]]

store

R,NF %v1 < vo : RU {*v1 < v2}, N[v; — MUST-NONNULL]

R1,N; S : R, Ny Ry, Nz F Sy :Rs, N3

sequencin
R1,N; = S1;5S2 : Rz, N3 E 8

The conditional variable v; is the Boolean result of checking if pointer v equals null

R,N; - S; : R}, N

R,Ns - Sy : Ry, N, where N; = N[vg — MUST-NULL], Ny = N[vy +— MUST-NONNULL]

R/ N/
1>y
R,N F if (v1) { S1; }else { So; }: R, N,

R} URS, N7 NNj

branching-null-cmp
if N(v2) = MUST-NULL

if N(vy) = MUST-NONNULL
Otherwise

The conditional variable v; is not a Boolean result of checking if pointer vy equals null

R,NF Sp : Ry, N;

R,NF S5 : Ry, Ny

]R,N)—if(vl){sl; }else{SQ; }:Rl URs, N7 N Ny

let: Ro,Ng «+ R,N

repeat: R;>0,N; = S : R,
until: i = X such that we reach the fixed point or, if vy <— (v = null), Ny (v2) = MUST-NONNULL

!
N,

branching-others

Rit1,Nj41 <« RUR,,NNN]

looping

R,N F while (v1) {S; }: Ry N»

Fig. 6. Inference rules for NCA.

As shown by the rule init, where _ means the entry of a
function, at the beginning of analyzing a function, the set of
reachable program statements is empty, and the dataflow facts
of all variables are set to MAY-NULL, meaning that every pointer
may be null. All other rules deal with a simple or compound
statement in our small language. The rule assign means that
after an assignment, the dataflow fact of v; propagates to vs.
The rules for load and store mean that after dereferencing a
pointer, the pointer is regarded to be not null. For other simple
statements, we do not change the dataflow facts as shown by
the rule others. For each simple statement, we add it to the set
R after visiting it.

The rule sequencing is straightforward. It means that we
analyze program statements in order, i.e., using the result of
S1 as the precondition of S;. The rule branching-null-cmp
describes how we handle if-statements that check if a pointer
is null. In this rule, N contains the dataflow facts before the if-
statement, N; and N» contain the dataflow facts at the beginning
of the true and the false branches, respectively. That is, since
the conditional variable v; in the if-statement represents the
Boolean result of checking if the pointer v, is a null pointer,
we have N; equals NJvg — MUST-NULL] and Ny equals N[vg —
MUST-NONNULL]. If the pointer vy must (not) be null, we only
take the true (false) branch and the resulting dataflow fact is
N} (N). In other cases, we compute the intersection of the
two branches, i.e., Nj N NJ, as the analysis result. In terms of
the set of reachable statements, if only the true (resp. false)
branch is reachable, the resulting set is R} (resp. R5). If both
branches are reachable, the resulting set is R} URY. The rule
branching-others deals with other if-statements. We consider
both branches to be reachable. Thus, the resulting sets are
R; UR5 and Ny N Ns. The rule looping deals with the while
loop and involves a fixed-point computation. That is, we repeat

R, Ny [va — MUST-NONNULL]

if v — (’UQ = null)
Otherwise

analyzing the loop body until R; and N; do not change or until
the loop condition does not hold and we have to exit the loop.

After performing NCA over a function, we have a set of
reachable statements R and a map N at each program point.
Thus, we can check if a reachable program statement may
dereference a null pointer.

Example 3: See Fig. 2(c) in §II as an example. [

Lemma 2: NCA, as illustrated by the rules in Fig. 6, is sound,
i.e., does not miss any possible null pointers.

Proof: (Sketch) It is easy to check that all rules in Fig. 6

are sound because each rule models the exact semantics of a
program statement. Meanwhile, the finite number of statements
and the finite height of the lattice ensure the termination of ap-
plying the rules. As such, we can obtain the fixed-point results,
where N over-approximate the nullity properties. Hence, NCA,
which is performed based on these rules, is sound. OJ

C. Achieving Synergistic Effects

Simply taking the union of the results of VFA and NCA does
not realize the potential of both analyses. We found that VFA
and NCA can mutually promote the performance of each other.
VFA can refine VFG according to the reachable statements
from NCA and can get MUST-NULL and MUST-NONNULL facts
to propagate on VFG. NCA, on the other hand, can utilize the
information passed by VFA across the function boundaries to
perform more precise reasoning.

Boosted VFA. VFA benefits from NCA in two aspects. First,
VEFG can be refined by NCA. Recall that NCA records reach-
able statements in a set R and an edge in VFG is labeled by a
program statement. Hence, after NCA, VFG edges labeled by
statements not in R can be removed.

Authorized licensed use limited to: Purdue University. Downloaded on November 14,2024 at 21:50:38 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: FAST AND PRECISE STATIC NULL EXCEPTION ANALYSIS WITH SYNERGISTIC PREPROCESSING

Algorithm 3: BONA
1 function BONA()

2 F < all functions;
3 while F # () do
// NCA
4 foreach function in F do

perform NCA for each function with the rule
init-with-vfa, yielding R and N at each statement;

6 F <« 0;
// VFA
7 remove VFG edges, (u, S,v) if S ¢ R;
8 build Epjust-nuLL and Epust-NonNuLL based on N;
9 VFA(EmusT-NULL> EmusT-NONNULL), Yielding M
// Check if we reach the fixed-point
10 if 3v : M[v] changes then

11 L add v’s function into F;

Second, as VFA (see Algorithm 2) accepts two edge sets,
i.e., Emqust-NuLL and EypusT-NONNULL, as the inputs, NCA
can provide more such edges for VFA. That is, since NCA
maintains a map N at every program statement to record if a
pointer is null or not null at a program statement. For instance,
if N(v2) = MUST-NONNULL at an assignment v; < vg, the edge
(vg,v1 < v2,v1) in VFG (see Line 3, Algorithm 1) should be
in the set EpusT-NONNULL-

Boosted NCA. NCA can receive null-related dataflow facts
propagated by VFA. Recall that VFA maintains a map M that
records if a pointer may be, must be, or cannot be null. As such,
we can revise the rule init in NCA (Fig. 6) as below to receive
null-related dataflow facts from VFA.

R=10
F_: R N[Vv: v +— M[v]]

init-with-vfa

BONA. Now we have all the pieces for achieving the synergis-

tic effects. The detailed algorithm is described in Algorithm 3,
where VFA and NCA promote each other until reaching the
fixed point. The algorithm consists of three parts. The first part,
Line 4 to Line 6, performs NCA with the rule init-with-vfa,
which boosts NCA with VFA results. The second part, Line
7 to Line 9, performs the boosted VFA with NCA results. The
third part, Line 10 to Line 11, checks if we reach the fixed point,
i.e., if the null-related dataflow facts in a function change. If so,
we continue the synergistic preprocessing until the fixed point.
Otherwise, we reach the fixed point and terminate the loop.

Although the algorithm runs repetitively until the fixed point
is reached, the overhead is negligible compared with running
NCA and VFA once. This is because, only in the first round,
all functions need to be analyzed by NCA, while in later rounds
only a fraction of functions need to be re-analyzed, making
the time cost much smaller. When evaluating BONA in §IV,
we observe that the loop in Algorithm 3 iterates 2.8 times on
average, and every iteration other than the first one takes less
than 100ms to finish.

Example 4: See Fig. 3 in §II as an example. 0

Lemma 3: BONA, i.e., Algorithm 3, is sound, i.e., does not
miss any possible null pointers.

3029

Proof: (Sketch) Algorithm 3 is a composition of VFA
and NCA. Since both VFA and NCA are sound by Lemma 1
and Lemma 2, Algorithm 3 is also sound, meaning that it
does not miss any MAY-NULL facts and does not generate false
MUST-NULL or MUST-NONNULL facts. O

Soundy Implementation. As stated in Lemma 3, BONA is
sound in theory with respect to the abstract language in Fig. 4.
However, in practice, we have to handle common program
structures not included in the abstract language, which leads
to a “soundy [32]” (i.e., reasonably unsound) implementation
of BONA. In other words, BONA shares the same reasonable
assumptions and standard approaches to handle challenging
program structures with previous bug-finding techniques, e.g.,
[51, [6], [7]. For example, following the aforementioned bug-
finding techniques, we currently have not modeled inline as-
sembly and call statements that invoke non-standard library
APIs. The semantics of standard C/C++ APIs such as mem-
cpy and memset are manually modeled and embedded in our
implementation.

D. Speeding Up Precise but Costly NPE Analyzers

Recall that BONA (Algorithm 3) computes a map N be-
fore each statement. The map N maps each pointer at a state-
ment to the fact whether the pointer could be null. As such,
armed with BONA, an NPE detector can be accelerated in
two cases. That is, at a pointer-dereferencing statement, e.g.,
v1 ¢ *vg, if N(vg) = MUST-NONNULL, the NPE detector can
skip the procedure of checking NPE at this statement because
the pointer dereference must be safe. If N(v5) = MUST-NULL,
the NPE detector can also skip the procedure of checking NPE
at this statement and directly report NPE because the pointer
dereference must be unsafe.

In practice, it is unlikely for a pointer at a pointer-
dereferencing statement, e.g., vy at vy — *vs, to be marked as
MUST-NULL. In our experiments, BONA always marks a pointer
at a dereferencing statement as MUST-NONNULL or MAY-NULL.
This result follows the intuition that a high-quality program
should not contain trivial NPEs that can be easily detected.
Thus, the key factor in accelerating NPE detectors is the set
of MUST-NONNULL pointers discovered by BONA.

It is worth mentioning that, although MUST-NULL facts
rarely propagate to pointer-dereferencing statements, we do
not remove MUST-NULL from our abstract domain and do not
merge MUST-NULL into MAY-NULL. On the one hand, merging
MUST-NULL into MAY-NULL only lets us maintain one less set of
pointers, which does not reduce the time and space complex-
ity of our analysis. On the other hand, MUST-NULL are gener-
ated at many places, such as null initialization statements like
p=NULL, and the true branch of null checks if (p==NULL).
These MUST-NULL facts are crucial for determining the reach-
ability of statements and deriving MUST-NONNULL facts. For
example, in the code below, assuming a fact that p must be
null propagates to line 1, the dereference of the pointer r at
line 2 will always be executed. As such, our algorithm derives
a MUST-NONNULL fact at line 3 — the pointer r is not null at

Authorized licensed use limited to: Purdue University. Downloaded on November 14,2024 at 21:50:38 UTC from IEEE Xplore. Restrictions apply.

3030

line 3. If we downgrade MUST-NULL to MAY-NULL, we will miss
this MUST-NONNULL fact.

NULL)

P if (p =
2 * 10;

2 r
3 *r = 0;

In what follows, we discuss how BONA speeds up two com-
mon categories of static analyzers — symbolic execution [9]
and path-sensitive dataflow analysis [6], [33].

Symbolic Execution. Symbolic execution techniques like
KLEE explore program paths and represent memory states
using logical constraints [9]. Using KLEE as an example, it
maintains logical constraints that precisely model the effect
of each program statement on the memory. When targeting a
specific type of bug, such as an NPE, symbolic execution checks
whether the memory state can imply a potential null value
for a dereferenced pointer, which typically involves constraint
solving with an SMT solver. The presence of a large number of
program paths can result in a pointer being examined multiple
times or forming verbose constraints and, thus, introduce sig-
nificant overhead to the overall analysis. Armed with BONA, a
symbolic-execution-based NPE analyzer like KLEE can check
with BONA if N(v) = MUST-NONNULL at a statement derefer-
encing the pointer v. If so, we can avoid costly operations like
SMT solving for examining the pointer v at that statement, thus
reducing the analysis overhead.

Path-Sensitive Dataflow Analysis. Path-sensitive dataflow
analysis, exemplified by Pinpoint [6], detects value-flow bugs,
including NPEs, by validating the path conditions of program
paths connecting sources and sinks in specific forms. For the
NPE detection, it needs to collect the path constraints of all
reachable paths from a null value to a pointer-dereferencing
statement and then solve them, which consumes a significant
amount of time. By utilizing the null facts obtained from
BONA, the path-sensitive dataflow analysis can avoid collecting
and solving the path constraints for the pointer v if N(v) =
MUST-NONNULL at a pointer-dereferencing statement. Clearly,
this optimization can help reduce the analysis time.

IV. EVALUATION

We aim to, as systematically as possible, evaluate the scal-
ing effect of recent expensive static analyzers boosted by our
approach. Particularly, we focus on the study of the following
research questions. We also provide a case study at the end
to show real NPEs we discovered after arming recent static
analyzers with our approach. To conduct the evaluation, we
implement BONA and the baseline approaches on top of the
LLVM compiler framework. Note that since BONA is designed
to improve the “efficiency” rather than “precision” of heavy
path-sensitive static analyzers, e.g., KLEE and Pinpoint, the
research questions studied in our experiments focus on effi-
ciency improvement. While BONA cannot improve the pre-
cision of KLEE and Pinpoint (which already have been very
precise due to path-sensitivity) by design, we will show that
BONA improves the bug detection capability because due to

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 11, NOVEMBER 2024

the improvement of efficiency, BONA enables path-sensitive
analyzers to explore more program paths in a given time budget.

« RQ1: How many non-null facts can we discover via the

synergistic effects?

¢ RQ2: How much overhead does BONA add to existing

NPE analyzers?
e RQ3: How much can BONA speed up state-of-the-art
NPE analyzers?
RQ1. As discussed in §III-D, non-null facts are the key factors
to accelerate NPE detection. Thus, we compare the number of
non-null facts detected by BONA to the number of non-null
facts discovered by VFA, NCA, and their simple combination,
denoted as VFA+NCA.

Readers may wonder why we do not compare BONA to a
cheap pointer analysis (CPA), e.g., a unification-based flow-
and context-insensitive pointer analysis that is widely used as a
preprocessing procedure [20], [21]. This is because our VFA is
built based on such a CPA. Thus, the results of VFA are almost
the same as the CPA’s results. In other words, comparing BONA
to VFA is almost equivalent to comparing BONA to CPA.

To be more specific, assume the set of pointers dereferenced
at a statement S is D(S). The percentage of nonnull facts
discovered in a program P is computed as:

{ (v, 8)|SePAveD(S)AN(v)=MUST-NONNULL }|

x100%.
Ssep|D(S)] ’

In the formula, the denominator denotes the total number of
pointer-dereferencing operations in a program and the numera-
tor means how many dereferencing operations are safe because
the pointer is marked as MUST-NONNULL by BONA. Thus, the
larger the percentage is, the fewer pointer-dereferencing opera-
tions a downstream NPE detector (see §1II-D) needs to check.

RQ2 and RQ3. To address the other two research ques-
tions, we use BONA to boost two state-of-the-art static
analyzers, KLEE [9] and Pinpoint [6] for NPE detection.
Specifically, KLEE is a symbolic execution engine and Pin-
point features a path-sensitive dataflow analysis. The vanilla
versions of both tools are expensive as they need to invoke
SMT solvers at every pointer-dereferencing statement to check
if there are feasible program paths with NPEs. As demonstrated
in §I1I-D, BONA can boost these tools as it can serve as a
lightweight preprocessing procedures to discover pointers that
cannot be null and, thus, improve the analysis efficiency. We
compare the versions boosted by BONA, namely KLEE++ and
Pinpoint++, to the versions boosted by VFA+NCA, namely
KLEE+ and Pinpoint+, as well as the vanilla versions of KLEE
and Pinpoint.

While many static analyzers can check NPEs in addition to
KLEE and Pinpoint, we use them in our evaluation because of
two reasons. First, we aim to scale expensive static analyzers
that detect NPE. KLEE and Pinpoint make use of path-sensitive
techniques and, thus, are expensive and belong to the target
set of static analyzers we aim to scale. Second, our technique
features a preprocessing procedure that is orthogonal to all
NPE detectors and can work with any NPE detector. Hence,
it is impossible and unnecessary to enumerate and conduct

Authorized licensed use limited to: Purdue University. Downloaded on November 14,2024 at 21:50:38 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: FAST AND PRECISE STATIC NULL EXCEPTION ANALYSIS WITH SYNERGISTIC PREPROCESSING

TABLE I
THE BENCHMARK PROGRAMS

ID | Test Suite | Program Name | KLoC
1 Is 4.0
2 sort 34
3 factor 1.9
4 ptx 1.2
5 csplit 0.8
6 COREUTIL expr 08
7 du 0.8
8 tac 0.5
9 nl 0.5

10 cksum 0.2

11 400.perlbench 128

12 403.gcc 385
13 435.gromacs 85
14 436.cactusADM 60
15 445.gobmk 157
16 | SPEC2006 1 45y caleulix 75
17 456.hmmer 20

18 464.h264ref 36

19 481.wrf 25

20 482.sphinx3 13

21 webassembly 23

22 darknet 24

23 html5-parser 31

24 tmux 40

25 libssh 44

26 REAL goaccess 48

27 shadowsocks 53

28 swoole 54

29 libuv 62

30 transmission 88

experiments on all existing NPE detectors. We use KLEE and
Pinpoint as they are two of the most prominent static analyzers
that can check NPE.

Benchmark Programs. As listed in Table I, in the evaluation,
we include benchmark programs from both KLEE [9] and Pin-
point [6]. They are the ten largest programs from the GNU
COREUTILS utility suite, ten largest C programs from the
standard SPEC2006 test suite,> and ten real-world programs.
Note that Pinpoint can analyze programs with or without entry
functions; KLEE, which is a symbolic executor, requires an
entry function. As the technical part shows, BONA does not
assume there is an entry function in the programs to analyze
and can work well with both Pinpoint and KLEE. For the first
research question, we use all benchmark programs to evaluate
the effectiveness of BONA. For the other two research ques-
tions, when comparing KLEE to KLEE+ and KLEE++, we
use the GNU COREUTILS utility suite, which was used to
evaluate KLEE [9]. When comparing Pinpoint to Pinpoint+ and
Pinpoint++, we use the SPEC2006 test suite and the real-world
programs, which were used to evaluate Pinpoint [6].

Environment. All the experiments are run on a Ubuntu-20.04
server equipped with a 12-core 20-thread Intel Core i5 CPU,
with 3.60GHz speed and 64GB of RAM.

3We note that the original paper of Pinpoint [6] uses SPEC2000, which is
too old and not available to us. We replace it with SPEC2006.

3031

TABLE II
RQ1: THE PERCENTAGE OF DETECTED NON-NULL FACTS

ID | VFA/ICPA NCA VFA+NCA BONA T
1 51.9 479 63.9 69.2 8.3
2 355 435 51.1 59.5 16.5
3 559 66.2 69.4 75.1 8.4
4 22.1 34.1 39.7 49.8 25.6
5 20.0 27.5 31.7 455 435
6 14.1 24.7 27.8 40.0 442
7 20.3 31.9 359 474 31.8
8 19.5 27.9 31.6 42.8 355
9 20.0 27.1 31.8 434 36.1
10 8.6 12.6 15.0 17.4 16.1
11 34.6 39.9 50.0 51.5 3.0
12 34.0 46.7 54.5 58.1 6.7
13 29.5 333 40.9 50.9 24.5
14 153 44.1 48.2 54.1 12.1
15 96.6 98.6 99.1 99.6 0.5
16 33.6 57.1 63.4 66.0 4.1
17 16.7 222 242 47.0 94.5
18 35.0 35.7 41.7 55.1 32.0
19 27.1 51.3 56.4 60.3 6.9
20 20.6 254 28.7 52.4 825
21 19.0 54.4 56.7 64.8 14.3
22 43.3 66.9 69.5 79.9 15.0
23 88.6 89.0 89.1 923 3.6
24 38.6 63.7 66.1 713 79
25 80.4 80.9 81.5 84.6 3.8
26 38.0 65.6 70.8 713 9.2
27 339 44.0 57.0 63.5 11.3
28 714 87.2 87.9 923 5.0
29 18.2 56.6 60.4 62.2 3.0
30 42.2 73.7 82.4 89.6 8.7
Avg. | 36.4 49.3 54.2 62.1 20.5

A. RQI: Non-Null Facts Detected

Recall that our goal is to detect as many non-null facts as
possible so that an expensive NPE detector can only focus on a
small part of dereferences in the code. Hence, the more non-null
facts we can detect, the more effective our approach is. Table II
demonstrates the percentage of non-null facts detected by the
baselines, i.e., VFA or CPA, NCA, and VFA+NCA, and our ap-
proach in the benchmark programs. The percentage represents
the number of non-nullable dereferences divided by the total
number of dereferences in the code. We can observe that BONA
detects up to 94.5%, 19.0% on average, more non-null facts than
the simple combination of VFA and NCA. Specifically, BONA
detects 49%, 59.5%, and 77.8% non-null facts (17.8%, 33.3%,
and 8.2% more non-null facts) on average in the three test suites,
respectively. Since we detect more non-null facts than the base-
line approaches, as demonstrated in the following subsections,
the synergistic effects achieved by BONA can speed up existing
static analyzers much more than all other baseline approaches.

As shown in Table I, BONA’s improvement over VFA+NCA
varies across different programs, from 0.5% to 94.5%. Many
program features could affect BONA'’s performance. We discuss
a few as follows. First, the in-degree of VFG could be a measur-
able characteristic that affects VFA and BONA’s effectiveness.
That is, when a VFG node has more incoming edges, it has
more chances to receive a may-null fact which over-writes any

Authorized licensed use limited to: Purdue University. Downloaded on November 14,2024 at 21:50:38 UTC from IEEE Xplore. Restrictions apply.

3032

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 11, NOVEMBER 2024

TABLE III
THE NUMBER OF EXECUTED INSTRUCTIONS BY KLEE, KLEE+, AND KLEE++

ID KLEE KLEE+ KLEE++ ‘ KLEE vs. KLEE+ (%) KLEE vs. KLEE++ (%) KLEE+ vs. KLEE++ (%)
1 1,870,754 2,126,278 2,315,826 13.7 23.8 8.9
2 1,961,781 2,151,820 2,305,456 9.7 17.5 7.1
3 254,521 256,747 284,246 0.9 11.7 10.7
4 6,036 7,884 9,753 30.6 61.6 23.7
5 1,719,187 1,894,182 2,124,930 10.2 23.6 12.2
6 21,326 21,702 22,938 1.8 7.6 5.7
7 24,581 24,581 25,916 0.0 5.4 5.4
8 643,431 671,665 825,205 44 28.3 229
9 238,088 239,833 240,590 0.7 1.1 0.3
10 437,660 460,937 501,928 53 14.7 8.9

Avg. | 717,737 785,563 865,679 | 7.7 19.5 10.6

must-null or must-nonnull facts it gets, making the synergistic
effect less effective. When VFG nodes have lower in-degree,
the chance for must-null or must-nonnull facts to propagate is
bigger. Thus, BONA may perform better. Second, the effective-
ness of NCA and BONA could depend on the patterns of the
program structure. Patterns like if (p != null) or *p =
u can derive MUST-NONNULL facts that dominate all following
dereferences of pointer p. The more these patterns exist in the
program, the more non-null pointers NCA can infer to boost
the effectiveness of BONA. Third, the density of the call graph
can affect the effectiveness of BONA. Since NCA is intra-
procedure, only when there are more inter-procedural value
flows can more must-null or must-nonnull facts computed by
NCA be passed across the function boundary, thus increasing
the chances of the synergistic effect working.

B. RQ2: Overhead over NPE Analyzers

In this subsection, we aim to show that, compared to KLEE
and Pinpoint, two state-of-the-art path-sensitive static analyz-
ers, the overhead of BONA is negligible. However, as discussed
in the next subsection, the performance improvement brought
by the small overhead is notable.

1) Using BONA With KLEE: KLEE is a symbolic execu-
tion engine that exhaustively explores every program path in
the code. When used to detect NPEs, before every pointer-
dereferencing instruction, if we can determine the pointer
cannot be null, we will skip the NPE detection procedure.
Otherwise, the symbolic executor will fork a new execu-
tion state, and invoke the SMT solver, to check if an NPE
may happen.

When using the original version of KLEE to detect NPE
in the ten largest programs from GNU COREUTILS, KLEE
cannot complete its analysis in 15 minutes for each program
due to the path-explosion problem in symbolic execution. Thus,
we try to run BONA to improve the performance of KLEE-
based NPE detection, as BONA can help determine if a pointer
could be null. For each program, BONA can finish in less than
4 seconds, less than 0.44% (=4/(15*%60)) of the time cost of
KLEE. In practice, KLEE usually runs for hours or indefinitely
when analyzing realistic-sized programs. As reported in [9], for
most programs in GUN COREUTILS, KLEE failed to complete

10000

-&-Pinpoint —e=BONA
1000
w
©
c
]
< 100
b
c 3
—wn
[
£& 10
= M
1
c 9 v X X S S e M > 5 X Cco9u v oo > Cc
S HEZESREEESEEZEEESE S
me<°£EszEfmygug§=2
2 0 0 4 g o N 0 a9 c 2 Q2 "
cd 52 A8 S < 938 T4 o @ £
9 SRS T] ~N © 0 @ 3 a
S @83ILre g £ 2 g
S IS < 5 g £ S s
< ™
<
Fig. 7. Time cost of BONA and the original Pinpoint.

within one hour. Thus, in practice, compared to the 0.44%
overhead that is computed based on a 15-minute budget, the
real overhead added to KLEE by BONA is far less than 0.44%.
In conclusion, using BONA with KLEE only adds a negligible
overhead to KLEE.

2) Using BONA With Pinpoint: Pinpoint is a sparse data-
flow analysis that uses an SMT solver to check if possible NPE
paths are feasible or not. Pinpoint works in a bottom-up manner,
meaning that it analyzes callees before callers. When analyz-
ing callees, it builds function summaries containing possible
NPE paths. When analyzing callers, the function summaries
of callees are used to check if NPE may happen at a call site.
When detecting NPEs, if we can determine that a pointer cannot
be null, we can not only skip the SMT solving procedure that
checks path feasibility but also reduce the number of function
summaries to build. Thus, a promising preprocessing procedure
is very helpful.

Fig. 7 shows the time cost (in seconds) of the original Pin-
point and the preprocessing procedure. As illustrated in the
figure and listed in the second column in Table IV, it usually
takes Pinpoint 42 to 5,099 seconds to analyze the SPEC and real
programs. In contrast, BONA can finish in 15 seconds. BONA’s
time cost ranges from 0.08% to 4.76% and, on average, 0.32%
of Pinpoint’s cost. Thus, we can conclude that, using BONA as
a preprocessing procedure of Pinpoint only adds a negligible
overhead to Pinpoint.

Authorized licensed use limited to: Purdue University. Downloaded on November 14,2024 at 21:50:38 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: FAST AND PRECISE STATIC NULL EXCEPTION ANALYSIS WITH SYNERGISTIC PREPROCESSING

3033

TABLE IV
THE TIME COST (IN SECONDS) OF PINPOINT, PINPOINT+, AND PINPOINT++

ID ‘ Pinpoint Pinpoint+ Pinpoint++ ‘ Pinpoint vs. Pinpoint+ Pinpoint vs. Pinpoint++ Pinpoint+ vs. Pinpoint++
11 3912 1,901 1,640 2.1x 2.4x 1.2x
12 5,099 3,293 2,792 1.5x 1.8x 1.2x
13 1,200 782 471 1.5x 2.5x 1.7x
14 995 691 424 1.4x 2.3x 1.6x
15 3,881 1,902 589 2.0x 6.6x 3.2x
16 392 164 99 2.4x 4.0x 1.7x
17 326 132 54 2.5x 6.0x 2.4x
18 433 199 66 2.2x 6.6x 3.0x
19 69 36 21 1.9x 3.3x 1.7x
20 54 18 10 3.0x 5.4x 1.8x
21 201 82 54 2.5x 3.7x 1.5x
22 187 63 32 3.0x 5.8x 2.0x
23 42 20 19 2.1x 2.2x L.1x
24 108 78 30 1.4x 3.6x 2.6x
25 110 45 31 2.4x 3.5x 1.5x
26 237 186 109 1.3x 2.2x 1.7x
27 781 391 156 2.0x 5.0x 2.5x
28 1,001 438 321 2.3x 3.1x 1.4x
29 987 499 309 2.0x 3.2x 1.6x
30 1,567 612 429 2.6x 3.7x 1.4x
Avg. | 1,079 571 383 | 2.1x 3.8x 1.8x

C. RQ3: Performance Improvement for NPE Analyzers

We have shown that the overhead of BONA is small. This
subsection aims to demonstrate that, the small overhead brought
by BONA can notably improve the performance of KLEE and
Pinpoint, two prominent static analyzers that can detect NPE
with high precision.

1) Using BONA With KLEE: While there are a few possible
measurements, such as the time cost of the symbolic execution
and the number of pointers proved to be safe, that can be
used to show the performance improvement brought by BONA,
we choose to measure the number of instructions executed by
KLEE in a 15-minute time budget. On the one hand, we do not
use “the time cost of symbolic execution” as the measurement
because KLEE cannot finish analyzing the benchmark programs
due to path explosion. On the other hand, the number of pointers
proved safe is not a proper measurement because symbolic
execution typically is not sound and cannot prove the safety
of pointers.

Table III shows the number of executed instructions for the
largest 10 programs in COREUTILS. We can observe that
KLEE++ executes more instructions in the given time budget,
which is 15 minutes in our experiment settings. Compared to
KLEE, KLEE+ improves efficiency in terms of the number of
executed instructions by 0.0% to 30.6% with 9.5% on average
(see Column 5 in Table III), and KLEE++ improves the effi-
ciency by 1.1% to 61.6% with 20.6% on average (see Column
6 in Table III). Compared to KLEE+ where VFA and NCA are
used independently, KLEE++ takes advantage of the synergis-
tic effects and obtains an efficiency improvement of 0.3% to
23.7%, with 10.2% on average (see Column 7 in Table III).

2) Using BONA With Pinpoint: Similar to the experiments
over KLEE, we integrate BONA and the baseline approach
VFA+NCA into the Pinpoint static analyzer. Table IV shows
the time cost in seconds (including both the preprocessing and

Pinpoint’s cost) for programs in each test suite. We can observe
that Pinpoint++ is much faster than the others, demonstrating
the impacts of our approach again. Compared to Pinpoint, Pin-
point+ improves efficiency in terms of time cost by 1.3x to
3.0x with 1.9x on average (see Column 5 in Table IV), and
Pinpoint++ improves the efficiency by 1.8 to 6.6x with 2.8x
on average (see Column 6 in Table IV). Compared to Pinpoint+
where VFA and NCA are used independently, Pinpoint++ takes
advantage of the synergistic effects and obtains an efficiency
improvement of 1.1x to 3.2x, with 1.8x on average (see Column
7 in Table IV). Such a speedup is significant enough as it allows
us to check more pointer-dereferencing operations in a given
time budget and, thus, discover more NPEs.

D. Detected Real Bugs

As listed below, in the experiments, Pinpoint++ discovered
in real-world projects 12 NPEs that Pinpoint cannot find. All
12 bugs were previously unknown and have been confirmed by
the developers.

tmux shadowsocks transmission
3 4 2

Project | webassembly
NPE 3

While this is not because our approach improves the bug-
finding capability if analysis resources were unlimited, BONA
improves the analysis efficiency and, thus, allows KLEE and
Pinpoint to check more pointer-dereferencing instructions in a
given time budget. For instance, by default, Pinpoint sets the
timeout of analyzing a function to one minute. An NPE not
checked within the time limit will be missed. Fig. 8 illustrates
an NPE we detected in the program shadowsocks. The code in
the figure aims to read a configuration file in JSON and parse the
name-value pairs in the JSON file. At Line 11, the code expects
the value corresponding to the name “plugin” is a character

Authorized licensed use limited to: Purdue University. Downloaded on November 14,2024 at 21:50:38 UTC from IEEE Xplore. Restrictions apply.

3034

1. jconf t*read jconf(const char *file) {
2. .
3. parsing a json object, i.e., a name-value pair, read from file
4. char *name = obj->u.object.values[i].name;
5. json_value *value = obj->u.object.values[i].value;
6. if (...){
7.
8. }elseif ...
9.
10. } else if (strcmp(name, "plugin") == 0) {
11. conf.plugin = to_string(value);
12. if (strlen(conf.plugin) == 0) {
13. ss_free(conf.plugin);
14. conf.plugin = 0;
15. }
16. }elseif ...
17.
18. } else if (stremp(name, "mode") == 0) {
19. char *mode str=to_string(value);
20. if (stremp(mode str, "tcp _only") ==0) // report NPE
21. conf.mode = TCP_ONLY;
22. else if (strcmp(mode_str, "tcp and udp") ==0) // not report NPE
23. conf.mode = TCP_AND UDP;
24. else if (strcmp(mode_str, "udp only") ==0) // not report NPE
25. conf.mode = UDP_ONLY;
26. ssfree(mode_str);
27. }
28. .
29. }
Fig. 8. An example of the detected NPEs in the project shadowsocks.

string. This may not be true if a malformed configuration file
is provided. Hence, Line 11 may return a null pointer to the
variable conf.plugin, which will be dereferenced at Line 12 via
the function strlen, leading to a null pointer exception.

A more interesting case is in the code from Line 19 to Line
26. At Line 19, the code expects that the variable value is a
character string but it is not. Thus, the pointer mode_str is as-
signed a null pointer, which will be dereferenced three times at
Line 20, Line 22, and Line 24 by the function strcmp. Our NCA
strategy will let us skip the pointer-dereferencing instructions
at Line 22 and Line 24, because they are dominated by that at
Line 20. That is, if we can pass Line 20, the pointer mode_str
cannot be a null pointer. Thus, we only report the NPE at Line
20. This does not mean we miss the other two reports but makes
the bug report concise. Developers only need to fix the NPE at
Line 20, e.g., by adding a null check between Line 19 and Line
20, the other two will also be fixed.

V. RELATED WORK

Static bug finding is a classic topic and has been extensively
studied in past decades. Among existing techniques, many
aim to achieve high precision by inferring and solving path
conditions [5], [6], [7], [8], [9], [33], [34], [35], [36]. These
techniques are often very expensive and may have to take a
few hours to check a software system. To speed up, many
optimization techniques have been proposed. First, many static
analyses adopt a compositional design as they produce function
summaries to avoid repetitive analyses of the same function at
different call sites [5], [6], [7], [8], [37], [38], [39]. Second,
abstraction-based approaches such as SLAM [40], BLAST [41],
and SATABS [42], [43] adopt abstract refinement to improve

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 11, NOVEMBER 2024

the scalability. Third, it has been reported sparse dataflow anal-
ysis gains scalability by propagating dataflow facts via data
dependence, thus being capable of skipping unnecessary control
flows [6], [14], [15], [21], [44]. Fourth, it is also effective to
speed up static analysis by utilizing the mutual synergy among
different bug types [35]. Fifth, we can also design parallel or
distributed algorithms to scale static analysis [16], [17], [18].
More recently, Shi et al. [33] proposed an approach to fusing the
static analysis and the constraint solver to save the unnecessary
cost of computing path conditions and optimizing the constraint
solver via program information.

Compared to the aforementioned approaches, it seems to be
straightforward to utilize a lightweight and sound analysis as a
preprocessing procedure to prune easy cases. Thus, all afore-
mentioned works rarely mention their strategies of preprocess-
ing. However, we find that trivially applying preprocessing anal-
yses could significantly limit their effectiveness in improving
the analysis speed. To break out the limits, we propose a more
powerful preprocessing strategy, which utilizes the mutual syn-
ergy among two sound and lightweight analyses. In addition to
KLEE [9] and Pinpoint [6] that have been extensively evaluated
in our experiments, we believe our approach is orthogonal to all
aforementioned existing works and can be directly employed to
accelerate the detection of null exceptions.

In addition to general static bug-finding frameworks dis-
cussed above, there are also a few static analyses specially
designed for detecting null pointer exceptions. SALSA [12]
aims for verification, i.e., to identify all pointer dereferences
that can be concluded to be safe; all remaining dereferences
may cause null exceptions. SALSA also depends on a scalable
imprecise preprocessing analysis, but it does not utilize a syn-
ergistic preprocessing procedure like our approach. XYLEM
[11] aims for bug detection instead of verification. It imple-
ments a backward demand-driven strategy to find the evidence
of null exceptions. Such demand-driven approaches can avoid
demand-irrelevant computations, thus being more scalable than
exhaustive analyses. Similarly, Madhavan and Komondoor [13]
proposed a demand-driven analysis for detecting null excep-
tions. They focus more on how to soundly handle recursive data
structures and perform the strong update for pointer analysis.

NullAway [10] and CheckerFramework [45] are the most
recent null exception detectors based on type-based static anal-
ysis. We do not compare BONA with them in the experiments
due to three reasons. First, our implementation is for C/C++, but
NullAway and CheckerFramework are implemented for Java.
We failed to find their C/C++ version and cannot compare
BONA to them directly. Second, except for being designed for
different languages, NullAway and CheckerFramework heavily
depend on manual annotations on the nullability of program
variables. BONA does not rely on any manual efforts. In this
sense, BONA is orthogonal to them as BONA may be able to
provide automatic annotations: if BONA can annotate nonnull
pointers according to its result. Third, as discussed in the in-
troduction, BONA is designed as a preprocessing procedure to
scale heavy path-sensitive static analysis. NullAway and Check-
erFramework are not heavy path-sensitive analyzers and, thus,
out of the scope of our target static analyses.

Authorized licensed use limited to: Purdue University. Downloaded on November 14,2024 at 21:50:38 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: FAST AND PRECISE STATIC NULL EXCEPTION ANALYSIS WITH SYNERGISTIC PREPROCESSING

VI. CONCLUSION

In this work, we study the potential of utilizing preprocessing
procedures to scale precise yet costly NPE analysis. We argue
that this is an effective method but significantly underestimated
by previous works. Particularly, we propose to utilize the syn-
ergistic effects, which allow us to design more powerful pre-
processing procedures. The evaluation results demonstrate that
we can significantly speed up state-of-the-art static analyzers.
We believe that such a synergistic preprocessing procedure has
great potential for speeding up the detection of other bug types
and other static analyzers, which we leave as our future work.

(1]
(2]
[3]
[4]
(3]

(6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

“Stubborn weaknesses in the CWE top 25,” Accessed: Sep. 18, 2023.
[Online]. Available: https://bit.ly/3Wdmi4E

J. L. Henning, “SPEC cpu2006 benchmark descriptions,” ACM
SIGARCH Comput. Archit. News, vol. 34, no. 4, pp. 1-17, 2006.

B. Meyer, “Ending null pointer crashes,” Commun. ACM, vol. 60, no. 5,
pp- 8-9, 2017.

“CVE - search results,” Accessed: Feb. 6, 2024. [Online]. Available:
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=null+pointer

Y. Xie and A. Aiken, “Scalable error detection using Boolean satisfia-
bility,” in Proc. 32nd ACM SIGPLAN-SIGACT Symp. Princ. Program.
Lang. (POPL), New York, NY, USA: ACM, 2005, pp. 351-363.

Q. Shi, X. Xiao, R. Wu, J. Zhou, G. Fan, and C. Zhang, “Pinpoint:
Fast and precise sparse value flow analysis for million lines of code,” in
Proc. 39th ACM SIGPLAN Conf. Program. Lang. Des. Implementation,
(PLDI), New York, NY, USA: ACM, 2018, pp. 693-706.

D. Babic and A. J. Hu, “Calysto: Scalable and precise extended static
checking,” in Proc. 30th Int. Conf. Softw. Eng. (ICSE), Piscataway, NJ,
USA: IEEE Press, 2008, pp. 211-220.

1. Dillig, T. Dillig, A. Aiken, and M. Sagiv, “Precise and compact
modular procedure summaries for heap manipulating programs,” in
Proc. 32nd ACM SIGPLAN Conf. Program. Lang. Des. Implementation,
(PLDI), New York, NY, USA: ACM, 2011, pp. 567-577.

C. Cadar et al.,, “KLEE: Unassisted and automatic generation of
high-coverage tests for complex systems programs,” in Proc. 8th
USENIX Symp. Oper. Syst. Des. Implementation (OSDI), USENIX, 2008,
pp. 209-224.

S. Banerjee, L. Clapp, and M. Sridharan, “NullAway: Practical type-
based null safety for Java,” in Proc. 27th ACM Joint Meeting Eur. Softw.
Eng. Conf. Symp. Found. Softw. Eng. (ESEC/FSE), New York, NY, USA:
ACM, 2019, pp. 740-750.

M. G. Nanda and S. Sinha, “Accurate interprocedural null-dereference
analysis for Java,” in Proc. 31st Int. Conf. Softw. Eng. (ICSE), Piscat-
away, NJ, USA: IEEE Press, 2009, pp. 133-143.

A. Loginov, E. Yahav, S. Chandra, S. Fink, N. Rinetzky, and M. Nanda,
“Verifying dereference safety via expanding-scope analysis,” in Proc.
Int. Symp. Softw. Testing Anal. (ISSTA), New York, NY, USA: ACM,
2008, pp. 213-224.

R. Madhavan and R. Komondoor, “Null dereference verification via
over-approximated weakest pre-conditions analysis,” ACM Sigplan No-
tices, vol. 46, no. 10, pp. 1033-1052, 2011.

Y. Sui and J. Xue, “SVF: Interprocedural static value-flow analysis in
LLVM,” in Proc. 25th Int. Conf. Compiler Construction (CC), New
York, NY, USA: ACM, 2016, pp. 265-266.

S. Cherem, L. Princehouse, and R. Rugina, “Practical memory leak
detection using guarded value-flow analysis,” in Proc. 28th ACM SIG-
PLAN Conf. Program. Lang. Des. Implementation (PLDI), New York,
NY, USA: ACM, 2007, pp. 480-491.

Q. Shi and C. Zhang, “Pipelining bottom-up data flow analysis,” in Proc.
42nd Int. Conf. Softw. Eng. (ICSE), New York, NY, USA: ACM, 2020,
pp- 835-847.

L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and G. Candea, “Cloud9:
A software testing service,” ACM SIGOPS Oper. Syst. Rev., vol. 43,
no. 4, pp. 5-10, 2010.

A. Albarghouthi, R. Kumar, A. V. Nori, and S. K. Rajamani, “Paralleliz-
ing top-down interprocedural analyses,” in Proc. 33rd ACM SIGPLAN
Conf. Program. Lang. Des. Implementation(PLDI), New York, NY,
USA: ACM, 2012, pp. 217-228.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

3035

B. Steensgaard, “Points-to analysis in almost linear time,” in Proc.
23rd ACM SIGPLAN-SIGACT Symp. Princ. Program. Lang.(POPL),
New York, NY, USA: ACM, 1996, pp. 32-41.

B. Hardekopf and C. Lin, “Flow-sensitive pointer analysis for millions
of lines of code,” in Proc. 9th Int. Symp. Code Gener. Optim. (CGO),
Piscataway, NJ, USA: IEEE Press, 2011, pp. 289-298.

H. Oh, K. Heo, W. Lee, W. Lee, and K. Yi, “Design and implemen-
tation of sparse global analyses for C-like languages,” in Proc. 33rd
ACM SIGPLAN Conf. Program. Lang. Des. Implementation (PLDI),
New York, NY, USA: ACM, 2012, pp. 229-238.

M. N. Wegman and F. K. Zadeck, “Constant propagation with condi-
tional branches,” ACM Trans. Program. Lang. Syst. (TOPLAS), vol. 13,
no. 2, pp. 181-210, 1991.

C. Click and K. D. Cooper, “Combining analyses, combining optimiza-
tions,” ACM Trans. Program. Lang. Syst. (TOPLAS), vol. 17, no. 2,
pp. 181-196, 1995.

C. Chambers and D. Ungar, “Iterative type analysis and extended mes-
sage splitting; optimizing dynamically-typed object-oriented programs,”
in Proc. 11th ACM SIGPLAN Conf. Program. Lang. Des. Implementation
(PLDI), 1990, pp. 150-164.

S. Lerner, D. Grove, and C. Chambers, “Composing dataflow analyses
and transformations,” in Proc. 29th ACM SIGPLAN-SIGACT Symp.
Princ. Program. Lang. (POPL), New York, NY, USA: ACM, 2002,
pp. 270-282.

S.-A.-A. Touati and D. Barthou, “On the decidability of phase order-
ing problem in optimizing compilation,” in Proc. 3rd Conf. Comput.
Frontiers, (CF), New York, NY, USA: ACM, 2006, pp. 147-156.

C. Lattner and V. Adve, “LLVM: A compilation framework for life-
long program analysis & transformation,” in Proc. 2nd Int. Symp.
Code Gener. Optim. (CGO), Piscataway, NJ, USA: IEEE Press, 2004,
pp. 75: 1-75:12.

A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools. Reading, MA, USA: Addison-Wesley, 2007.
[Online]. Available: https://bit.ly/3fkAEKs

Y. Sui, D. Ye, and J. Xue, “Static memory leak detection using full-
sparse value-flow analysis,” in Proc. Int. Symp. Softw. Testing Anal.
(ISSTA), New York, NY, USA: ACM, 2012, pp. 254-264.

Q. Zhang, M. R. Lyu, H. Yuan, and Z. Su, “Fast algorithms for Dyck-
CFL-reachability with applications to alias analysis,” in Proc. 34th
ACM SIGPLAN Conf. Program. Lang. Des. Implementation (PLDI),
New York, NY, USA: ACM, 2013, pp. 435-446.

H. Yildirim, V. Chaoji, and M. J. Zaki, “GRAIL: Scalable reachability
index for large graphs,” Proc. VLDB Endowment, vol. 3, nos. 1-2,
pp. 276-284, 2010.

B. Livshits et al., “In defense of soundiness: A manifesto,” Commun.
ACM, vol. 58, no. 2, pp. 44-46, 2015.

Q. Shi, P. Yao, R. Wu, and C. Zhang, “Path-sensitive sparse analysis
without path conditions,” in Proc. 42nd ACM SIGPLAN Int. Conf.
Program. Lang. Des. Implementation (PLDI), New York, NY, USA:
ACM, 2021, pp. 930-943.

1. Dillig, T. Dillig, and A. Aiken, “Sound, complete and scalable
path-sensitive analysis,” in Proc. 29th ACM SIGPLAN Conf. Program.
Lang. Des. Implementation (PLDI), New York, NY, USA: ACM, 2008,
pp- 270-280.

Q. Shi, R. Wu, G. Fan, and C. Zhang, “Conquering the extensional
scalability problem for value-flow analysis frameworks,” in Proc. 42nd
Int. Conf. Softw. Eng. (ICSE), New York, NY, USA: ACM, 2020,
pp. 812-823.

G. Fan, R. Wu, Q. Shi, X. Xiao, J. Zhou, and C. Zhang, “SMOKE:
Scalable path-sensitive memory leak detection for millions of lines of
code,” in Proc. 41st Int. Conf. Softw. Eng. (ICSE), Piscataway, NJ, USA:
IEEE Press, 2019, pp. 72-82.

Y. Xie and A. Aiken, “Context- and path-sensitive memory leak detec-
tion,” in Proc. 10th Eur. Softw. Eng. Conf. (ESEC/FSE), New York, NY,
USA: ACM, 2005, pp. 115-125.

S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith, “Modular
verification of software components in C,” IEEE Trans. Softw. Eng.,
vol. 30, no. 6, pp. 388-402, Jun. 2004.

C. Y. Cho, V. D’Silva, and D. Song, “BLITZ: Compositional bounded
model checking for real-world programs,” in Proc. 28th Int. Conf.
Automated Softw. Eng. (ASE), Piscataway, NJ, USA: IEEE Press, 2013,
pp. 136-146.

T. Ball, V. Levin, and S. K. Rajamani, “A decade of software model
checking with slam,” Commun. ACM, vol. 54, no. 7, pp. 68-76,
2011.

Authorized licensed use limited to: Purdue University. Downloaded on November 14,2024 at 21:50:38 UTC from IEEE Xplore. Restrictions apply.

https://bit.ly/3Wdmi4E
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=null+pointer
https://bit.ly/3fkAEKs

3036

[41] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Lazy abstrac-
tion,” in Proc. 29th ACM SIGPLAN-SIGACT Symp. Princ. Program.
Lang. (POPL), New York, NY, USA: ACM, 2002, pp. 58-70.

[42] E. Clarke, D. Kroening, and K. Yorav, “Behavioral consistency of C and
verilog programs using bounded model checking,” in Proc. 40th Des.
Automat. Conf. (DAC), New York, NY, USA: ACM, 2003, pp. 368-371.

[43] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav, “Predicate abstrac-
tion of ansi-C programs using SAT,” Formal Methods Syst. Des., vol. 25,
no. 2, pp. 105-127, 2004.

[44] Y. Sui, D. Ye, and J. Xue, “Detecting memory leaks statically with full-
sparse value-flow analysis,” IEEE Trans. Softw. Eng., vol. 40, no. 2,
pp. 107-122, 2014.

[45] M. Kellogg, D. Daskiewicz, L. N. Duc Nguyen, M. Ahmed, and M. D.
Ernst, “Pluggable type inference for free,” in Proc. 38th IEEE/ACM Int.
Conf. Automated Softw. Eng. (ASE), 2023, pp. 1542-1554.

Yi Sun received the bachelor’s degree from Nanjing
University, China. He is currently working toward
the Ph.D. degree with the Computer Science De-
partment, Purdue University. His research focuses
on developing techniques using program analysis,
particularly static analysis, to detect bugs in tradi-
tional software systems, mobile applications (such
as Android apps), and blockchain applications. He
has contributed to research published at leading
software engineering and security conferences such
as ICSE, NDSS, and USENIX Security.

Chengpeng Wang received the bachelor’s and mas-
ter’s degrees from Tsinghua University, in 2016
and 2019, respectively, and the Ph.D. degree from
Hong Kong University of Science and Technology,
in 2023. He is a Postdoctoral Research Fellow
with the Computer Science Department of Purdue
University. His research mainly focuses on the use
of program analysis, especially static analysis, to
improve software reliability and performance. He
is also interested in the intersection of machine
learning techniques, such as Large Language Mod-
els, and symbolic analysis techniques, with the aim of establishing neuro-
symbolic program analysis. His contributions to the field have been recognized
through publications in esteemed conferences and journals on programming
languages, software engineering, and systems. He has been awarded the
SIGPLAN Distinguished Paper Award (2022) and the ASPLOS Best Paper
Award (2024).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 11, NOVEMBER 2024

Gang Fan received the Ph.D. degree from Hong
Kong University of Science and Technology
(HKUST). He is a seasoned Software Analysis
Researcher with over 13 years of experience. He
currently works at Huawei Research. Previously, he
led a team at Ant Group focusing on creating a
cutting-edge big code analytic platform. His journey
includes co-founding Sourcebrella Inc., a trailblaz-
ing firm known for its advanced software analyzer,
which was subsequently acquired by Ant Group. He
has a strong publishing record, including a paper
that received the ACM Distinguished Paper Award. His expertise extends to
training CodeFuse, Ant Group’s specialized Large Language Model for coding
tasks. This blend of experience and ongoing research contributions continues
to fuel his commitment to technological innovation. This work was done when
he was with HKUST.

Qingkai Shi (Member, IEEE) received the Ph.D.
degree from Hong Kong University of Science and
Technology. He was a Postdoctoral Researcher at
Purdue University, West Lafayette, IN, USA. He is
an Associate Professor with the School of Computer
Science, Nanjing University. His research focuses
on the use of compiler techniques, especially static
program analysis, to rigorously ensure software
security. He has published extensively at premium
venues of programming languages, cybersecurity,
and software engineering. His research received
many awards, including an ACM SIGPLAN Distinguished Paper Award,
an ACM SIGSOFT Distinguished Paper Award, a Google Research Paper
Reward, and the Hong Kong Ph.D. Fellowship. He co-founded Sourcebrella
LLC, where his research was commercialized. He then moved to Ant Group
as Sourcebrella was acquired.

Xiangyu Zhang (Member, IEEE) is a Professor
specializing in Al security, software analysis, and
cyber forensics. His work involves developing tech-
niques to detect bugs, including security vulnera-
bilities, in traditional software systems as well as
Al models and systems, and to diagnose runtime
failures. He has served as the Principal Investigator
N (PI) for numerous projects funded by organizations
such as DARPA, TARPA, ONR, NSF, AirForce, and
f / ; 4\(l industry. Many of the techniques developed by his
o team have successfully transitioned into practical
applications. His research outcome has been published on top venues in the
areas of Security, Al, software engineering, and programming languages, and
recognized by various distinguished paper awards including the prestigious
ACM Distinguished Dissertation Awards. He has mentored over 30 Ph.D.
students and postdoctoral, with fifteen securing academic positions in various
universities. Many of them have been honored with NSF Career Awards or
comparable recognitions.

Authorized licensed use limited to: Purdue University. Downloaded on November 14,2024 at 21:50:38 UTC from IEEE Xplore. Restrictions apply.

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

