
ENHANCING RELIABILITY AND
PERFORMANCE OF DATA-CENTRIC SYSTEMS

WITH STATIC ANALYSIS

by

CHENGPENG WANG

A Thesis Submitted to
The Hong Kong University of Science and Technology

in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy

in Computer Science and Engineering

December 2023, Hong Kong

Copyright © by Chengpeng WANG 2023

Authorization

I hereby declare that I am the sole author of the thesis.

I authorize the Hong Kong University of Science and Technology to lend this thesis to

other institutions or individuals for the purpose of scholarly research.

I further authorize the Hong Kong University of Science and Technology to reproduce

the thesis by photocopying or by other means, in total or in part, at the request of other

institutions or individuals for the purpose of scholarly research.

CHENGPENG WANG

ii

ENHANCING RELIABILITY AND
PERFORMANCE OF DATA-CENTRIC SYSTEMS

WITH STATIC ANALYSIS

by

CHENGPENG WANG

This is to certify that I have examined the above Ph.D. thesis

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by

the thesis examination committee have been made.

Prof. Charles ZHANG, Thesis Supervisor

Prof. Xiaofang ZHOU, Head of Department

Department of Computer Science and Engineering

11 December 2023

iii

DEDICATION

To My Family
and

My Friends

ACKNOWLEDGMENTS

First, I would like to express my deepest gratitude to my supervisor, Prof. Charles Zhang,

for his unwavering support and guidance throughout my PhD journey. During my first

year, when I encountered challenges with my initial research project, he always encour-

aged me with the saying: “stay hungry and stay humble.” This phrase helped me stay

calm and persevere through the challenging early stages of my research. Prof. Zhang’s

far-reaching vision has been instrumental in helping me find good research problems and

pursue research with high impact.

I want to express my appreciation for the participation of the committee members of

my thesis defense: Prof. Shing-Chi Cheung, Dr. Shuai Wang, and Prof. Xiangyu Zhang.

Shing-Chi has been a constant support and inspiration throughout my PhD career. His

passion for research and careful attention to detail have left a lasting impression on me.

I am also grateful to him for providing a recommendation letter for my post-doc appli-

cation. Shuai facilitated communication between research groups and drove deep dis-

cussions on software engineering and security. Finally, I would like to thank Xiangyu

for serving as my defense committee member and offering me a post-doc position after

graduation. His open and inclusive research attitude has encouraged me to explore new

directions and produce interesting and practical work.

I am also grateful to several professors in the PL/SE group at HKUST: Dr. Jiasi Shen,

Dr. Lionel Parreaux, and Dr. Amir Goharshady. Jiasi has been consistently supportive,

providing insightful suggestions and comments on my ideas, especially those related to

program synthesis and transformation. I will never forget her guidance on my post-doc

applications and her efforts in organizing SEPL seminars. Lionel and Amir have broad-

ened my perspective on diverse topics within the programming languages community

through their courses, which has greatly benefited my research. I also want to show my

appreciation to Prof Ke Yi and Dr Wei Wang, who served as the committee members of

my qualifying examination, leading meaningful discussions on static analysis from both

theoretical and practical perspectives.

I would like to express my gratitude to the members of our Prism group, includ-

v

ing Rongxin Wu, Gang Fan, Qingkai Shi, Peisen Yao, Wensheng Tang, Yongchao Wang,

Heqing Huang, Yiyuan Guo, Yushan Zhang, Lingjie Huang, Anshunkang Zhou, Yuandao

Cai, Maryam Masoudian, Jiajun Gong, Hao Ling, Kexin Ma, Hung Chun Chiu, Cheng-

peng Li, Xiangzhe Xu, Wei Chen, Bowen Zhang, Chengfeng Ye, Sixiang Peng, Yibo Jin,

Shuhao Fu, Yuzhang Zhu, Yuheng Tang, Jiaxin Song, and Bangyan Du. I am honored to

have worked with them, and their criticism and constructive suggestions in group discus-

sions have helped me reshape and solidify my research ideas before paper submissions. I

also want to express my respect and appreciation for more senior Prismers and the mem-

bers of our start-up Sourcebrella Inc: Xiao Xiao, Jinguo Zhou, Xiaoheng Xie, and Wenyang

Wang. Their efforts in implementing the static analysis infrastructure Pinpoint facilitated

our trials of many early-stage ideas and ultimately led to the success of applying our re-

search outcomes to real-world production.

Thanks also go to several friends in different research groups at HKUST, especially

Huaijin Wang, Zhibo Liu, Yuanyuan Yuan, Zhenlan Ji, Zongjie Li, Dongwei Xiao, Jiarong

Wu, Wuqi Zhang, Jialun Cao, Hengcheng Zhu, Xiao Li, Suyi Li, Jipeng Zhang, Runtao

Liu, Shangyu Li, and Kai Wang. Particularly, I want to thank Kai Wang for his support

and encouragement when I made little progress. His expertise in the database community

also inspired me to form a holistic view of analyzing data-centric systems. Besides, Jipeng

and Runtao led me to the world of large language models, offering valuable suggestions

on applying the new advances in LLMs to static analysis problems.

Finally, I would like to thank my beloved parents, my uncle and aunt, my brother

Qiran, and my friend Jianfeng. Their support has been invaluable in helping me persevere

through difficult times. Without their understanding and tolerance, I would not have

pursued my research dream and produced this work.

vi

TABLE OF CONTENTS

Title Page i

Authorization Page ii

Signature Page iii

Dedication iv

Acknowledgments v

Table of Contents vii

List of Figures xiii

List of Tables xv

Abstract xvi

Chapter 1 Introduction 1

1.1 Motivation 3

1.1.1 Data Organization: Inefficient Container Types 3

1.1.2 Data Propagation: Indirect Value-Flows through Containers 4

1.1.3 Data Manipulation: Store-Load Library APIs 5

1.1.4 Data Validation: Redundant Data Constraints 7

1.2 Contribution 8

1.2.1 Complexity-Guided Container Replacement Synthesis 8

1.2.2 Container-Aware Value-Flow Analysis 8

1.2.3 Documentation-based API Aliasing Specification Inference 9

1.2.4 Data Constraint Equivalence Verification 9

1.3 Outline 10

vii

Chapter 2 Background and Previous Studies 11

2.1 Data-Centric System 11

2.1.1 Container 12

2.1.2 Store-Load API Pair 14

2.1.3 Data Constraint 16

2.2 Related Work 18

2.2.1 Data Structure Synthesis 19

2.2.2 Value-Flow Analysis 20

2.2.3 Library Specification Inference 21

2.2.4 Program Equivalence Verification 22

Chapter 3 Complexity-Guided Container Replacement Synthesis 24

3.1 Introduction 24

3.2 Cres in a Nutshell 28

3.2.1 Motivating Example 28

3.2.2 Synthesizing Replacement 30

3.3 Problem Formulation 32

3.3.1 Program Syntax and Concrete State 32

3.3.2 Behavioral Equivalence 34

3.3.3 Problem Statement 35

3.4 Program Abstraction 36

3.4.1 Container Property Abstraction 36

3.4.2 Behavior Constraint 38

3.4.3 Complexity Guidance 42

3.5 Synthesis Algorithm 44

3.5.1 Container Property Analysis 45

3.5.2 Method Candidate Identification 47

3.5.3 Container Replacement Synthesis 48

3.5.4 Summary 52

3.6 Implementation 54

3.7 Evaluation 55

3.7.1 Experimental Setup 56

3.7.2 Answers to Research Questions 57

viii

3.7.3 Ablation Study 61

3.7.4 Discussion 63

3.8 Conclusion 65

Chapter 4 Container-Aware Value-Flow Analysis via Memory Orientation 66

4.1 Introduction 66

4.2 Overview 71

4.2.1 Category of Containers 71

4.2.2 Motivating Example 72

4.2.3 Our Approach 73

4.3 Preliminaries 75

4.3.1 Program Syntax 75

4.3.2 Concrete Memory and Concrete Semantics 76

4.3.3 Value-Flow Graph 78

4.4 Container-Aware Value-Flow Problem 78

4.5 Abstract Memory 80

4.5.1 Abstract Memory State 80

4.5.2 Join Operator and Partial Order 82

4.5.3 Layout Operator for Strong Update 83

4.5.4 Summary 84

4.6 Memory Orientation Analysis 85

4.6.1 Abstract Semantics of Non-Container Operation 86

4.6.2 Partial Abstract Transformer of Container Method Call 87

4.6.3 Witness Operator 89

4.6.4 Abstract Semantics of Container Method Call 91

4.6.5 Semantics of Container Traversal 93

4.6.6 Value-Flow Graph Construction 93

4.6.7 Discussion 95

4.7 Demand-Driven Reachability Analysis 98

4.7.1 Thin Slicing 98

4.7.2 Value-Flow Bug Detection 99

4.7.3 Summary 100

4.8 Implementation 100

ix

4.9 Evaluation 102

4.9.1 Identifying Anchored Containers 103

4.9.2 Constructing Value-Flow Graph 105

4.9.3 Answering Thin Slicing Queries 107

4.9.4 Detecting Value-Flow Bugs 108

4.9.5 Threats to Validity 112

4.9.6 Discussion 112

4.10Conclusion 115

Chapter 5 Inferring API Aliasing Specifications From Library Documentation 116

5.1 Introduction 116

5.2 Background and Overview 119

5.2.1 Library-Aware Alias Analysis 120

5.2.2 Different Perspectives of Inferring API Aliasing Specifications 120

5.2.3 Overview of DAINFER 121

5.3 Problem Formulation 123

5.3.1 Documentation Model 124

5.3.2 API Aliasing Specification 124

5.3.3 Problem Statement 126

5.4 Documentation Model Abstraction 127

5.4.1 API Value Graph 127

5.4.2 Label Abstraction 128

5.4.3 Problem Reduction 130

5.5 Inferring Specification via Neurosymbolic Optimization 133

5.5.1 Overall Algorithm 133

5.5.2 Label Abstraction Instantiation 133

5.5.3 Neurosymbolic Optimization 136

5.5.4 Summary 138

5.6 Implementation 138

5.7 Evaluation 139

5.7.1 Experimental Setup 140

5.7.2 Effectiveness and Efficiency 140

5.7.3 Comparison with Existing Techniques 142

x

5.7.4 Effects on Client Analysis 144

5.7.5 Discussion 146

5.8 Conclusion 147

Chapter 6 Verifying Data Constraint Equivalence in FinTech Systems 149

6.1 Introduction 149

6.2 Background and Motivation 152

6.2.1 Equivalent Data Constraints in FinTech Systems 152

6.2.2 Resolving Equivalent Data Constraints 153

6.3 EqDAC in a Nutshell 154

6.3.1 Motivating Examples 154

6.3.2 Outline of Decision Procedure 155

6.4 Problem Formulation 156

6.4.1 Data Constraint Syntax 156

6.4.2 Data Constraint Equivalence Problem 157

6.5 Semantic Encoding 159

6.5.1 Symbolic Representation 159

6.5.2 Symbolic Evaluation 160

6.5.3 Summary 163

6.6 Decision Procedure 163

6.6.1 Divergence Analysis 163

6.6.2 Isomorphism Analysis 166

6.6.3 Equivalence Verification with EqDAC 168

6.7 Implementation 173

6.8 Evaluation 173

6.8.1 Equivalent Data Constraint Identification 174

6.8.2 Performance Evaluation 175

6.8.3 Ablation Study 177

6.8.4 Discussion 179

6.9 Conclusion 180

Chapter 7 Conclusion and Future Works 181

7.1 Conclusion 181

7.2 Future Works 182

xi

References 186

xii

LIST OF FIGURES

1.1 Main components of a data-centric system 2

1.2 Inefficient container type usage in google-http-java-client 4

1.3 An example of container usage in Hibernate-ORM 5

1.4 Examples of store/load library APIs 6

1.5 The workflow of data validation in the database side 7

2.1 An example program using the class android.content.Intent 15

2.2 An example of a data constraint 17

3.1 An efficient usage of ArrayList in the project IoTDB 26

3.2 A program accessing the available and visible files in a specific directory 28

3.3 Schematic overview of our approach 31

3.4 The syntax of the language. 33

3.5 Two behaviorally equivalent programs 34

3.6 Abstract transformers in the container property analysis. 45

3.7 Examples of inefficient usage of containers. 59

3.8 Time and memory overheads of CRES 61

3.9 An example in which CRES fails to synthesize the optimal replacements 64

4.1 Examples of a programming idiom 67

4.2 A motivating program1 69

4.3 The value-flow graph (VFG)2of Figure 4.2. A node represents a value at a
program location, and an edge from a@ℓ1 to b@ℓ2 indicates that the value
a flows to the value b between the program locations ℓ1 and ℓ2. The nodes
hs_arg1, ids_arg1, and hs_arg2 represent the auxiliary parameters [1, 2, 3],
which indicate the elements accessed at lines 17, 18, and 19, respectively. 70

4.4 Schematic overview of our approach 73

4.5 The syntax of the language 75

4.6 Concrete semantics of container-manipulating programs 77

4.7 Abstract transformer of allocation and assignment 86

4.8 Abstract transformer of sequencing and branch 86

4.9 Partial abstract transformers of container method call 88

4.10 Witness operator of container method call 90

xiii

4.11 Abstract transformer of container traversal 93

4.12 The interactions between the subdomains and the corresponding rules 96

4.13 Proportions of different kinds of containers. (a): Proportions of position-
dependent and value-dependent containers; (b): Proportions of anchored
position-dependent and anchored value-dependent containers; (c), (d), and
(e): Proportions of anchored and non-anchored containers in different frame-
works. 103

4.14 Scalability of the VFG construction under the configuration VFG-O 106

4.15 Decrease ratio of slice sizes under TS-O over TS-S 107

4.16 A confirmed NPE in the project dubbo 110

4.17 Two false positives in NetBeans reported under the configuration NPE-S 111

5.1 Library documentation example. mi denotes the API with the ID i. 118

5.2 Workflow of DAINFER 122

5.3 The API value graph of the documentation model induced by the docu-
mentation in Figure 5.1 128

5.4 An optimal solution to the problem instance induced by the API value
graph shown in Figure 5.3 132

5.5 Instantiate the memory operation abstraction via two-staged prompting 136

5.6 The results of alias analysis 144

5.7 The results of taint analysis 145

6.1 Examples of data constraints 151

6.2 The workflow of equivalence searching and clustering 153

6.3 Schematic overview of our decision procedure EQDAC 155

6.4 The syntax of data constraints 157

6.5 Evaluation rules of statements 162

6.6 Helper rules evaluating expressions 162

6.7 Two isomorphic parse trees 168

6.8 The counts and sizes of clusters 174

6.9 Time and memory cost of equivalence clustering 176

6.10 Time and memory cost of EQDAC, EQDAC-NI, and EQDAC-NS 177

6.11 An example of case study 178

xiv

LIST OF TABLES

2.1 Examples of containers in Java 13

3.1 Examples of container properties 37

3.2 The medium ratio of reduced and original execution time and 95% confi-
dence interval of the ratio. 57

3.3 The counts of different replacements. 59

3.4 The counts of different replacements synthesized by the ablations 62

4.1 Rules of computing value-flow edges 94

4.2 List of containers 101

4.3 The numbers of anchored containers and overhead of building the VFG 105

4.4 NPE detection result 108

5.1 Efficiency of DAINFER and its ablations 141

6.1 The statistics of the equivalence clustering 177

xv

ENHANCING RELIABILITY AND
PERFORMANCE OF DATA-CENTRIC SYSTEMS

WITH STATIC ANALYSIS

by

CHENGPENG WANG

Department of Computer Science and Engineering

The Hong Kong University of Science and Technology

ABSTRACT

In the era of big data, data-centric systems have emerged as the fundamental infras-

tructure for processing, storing, and transmitting various forms of data, providing diverse

services in our daily lives. The widespread adoption of data-centric systems highlights

the critical need for enhancing their reliability and performance. Unreliable or inefficient

data-centric systems can result in unanticipated economic losses and unnecessary con-

sumption of computational resources, jeopardizing property safety and compromising

the overall service experience.

This thesis provides a comprehensive analysis of data-centric systems using static anal-

ysis techniques. The research is centered around three critical components, namely the

application, library, and database sides of the systems. By delving into data organization,

propagation, manipulation, and validation, our techniques can successfully identify vul-

nerabilities and optimize computation, leading to enhanced reliability and performance

of data-centric systems in a holistic manner.

The first part of our research focuses on ubiquitous data structures, called containers,

xvi

and improves the system performance by organizing data with efficient container types.

We introduce CRES, a synthesizer designed to replace inefficient container types for a

given program. CRES statically identifies container usage and selects methods with lower

time complexity for each container method call, ultimately discovering a more efficient

container type for each container object. CRES reduces execution time by 8.1% on average

in our experimental subjects while theoretically preserving program behavior.

The second aspect of our research investigates the data propagation in the application

code to improve the system reliability. The erroneous values through containers neces-

sitate precise and efficient reasoning about container memory layout. To address this,

we introduce ANCHOR, which utilizes memory orientation analysis to apply strong up-

dates to container memory layouts and conducts reachability analysis. It is shown that

ANCHOR detects 20 null pointer exceptions with only 9.1% as its false-positive ratio and

finishes analyzing 5 MLoC within five hours. Its high precision and efficiency of bug de-

tection demonstrate its potential to improve system reliability from the application side.

The third part of our research investigates the data manipulation conducted by library

APIs. We propose DAINFER, an algorithm that identifies store-load APIs and derives

API aliasing specifications from library documentation. Equipped with NLP models,

DAINFER effectively interprets informal semantic information and achieves an efficient

API aliasing specification inference with a precision of 79.78% and a recall of 82.29%. The

inferred specifications can effectively benefit downstream analyses to derive fundamental

program facts, such as value-flow and alias facts, further promoting bug detection and

program optimization.

The final part of our research shifts to domain-specific programs, named data con-

straints, to investigate data validation upon databases. While data constraints play a cru-

cial role in ensuring data correctness, the presence of equivalent ones can result in the

waste of computational resources. To tackle this issue, we present EQDAC, an efficient

decision procedure that utilizes two lightweight analyses to refute or prove the data con-

straint equivalence in polynomial time. It is demonstrated that EQDAC discovers 11,538

equivalent pairs from 30,801 data constraints in the Ant Group and uncovers 7,842 redun-

dant data constraints. It successfully alleviates redundant data validation and reduces the

CPU time by 15.48% from the database side.

xvii

CHAPTER 1

INTRODUCTION

In recent years, data-centric systems have gained significant popularity, particularly in

industrial production settings. These systems serve as the backbone of modern com-

puting infrastructure by enabling people to process, store, and transmit data. Common

examples of data-centric systems include electronic health record (EHR) systems, geo-

graphic information systems (GIS), and financial technology (FinTech) systems. For ex-

ample, Ant Group, a prominent FinTech company in China, has developed and deployed

a wide range of FinTech systems to provide financial services to both individuals and

small/medium-sized enterprises.

The widespread adoption of data-centric systems is considered a defining characteris-

tic of the big data era. Unfortunately, it is far from trivial to develop a data-centric system

in real-world scenarios. On the one hand, an unreliable data-centric system would cause

data corruption and even yield non-estimable economic loss, for instance, in FinTech sys-

tems. On the other hand, an inefficient system would degrade the experience of users and

also introduce a large amount of computation resource consumption. Thus, it is of critical

importance to improve the reliability and performance of data-centric systems.

Notice that the instrumentation, deployment, and execution of data-centric systems

are often fraught with substantial difficulties. In this context, static analysis emerges as a

promising approach to achieving our goals. As an important program analysis method-

ology, static analysis has succeeded significantly in different problem domains, includ-

ing static bug hunting [3, 4], program optimization [5, 6], and program refactoring [7, 8].

However, existing techniques are still inadequate for effectively analyzing data-centric

systems. Specifically, there are several unique characteristics of the systems that are paid

little attention to by existing static analysis techniques. For illustrative purposes, we

present the main components of a data-centric system in Figure 1.1, which exemplifies

the following characteristics.

1

Applications DatabasesLibraries

invoke

Memory

organize
manipulate
(store)

CURD operations

propagate

Data Constraints

Data Validation
Platform

validate validate

manipulate
(load)

organize

containercontainerobject

Figure 1.1: Main components of a data-centric system

• First, the application code of the systems can organize the data as memory objects

with various data structures and propagate the data via the methods of data struc-

tures. Typically, after retrieving data records from databases or receiving inputs from

users, the applications can store them in specific fields of user-defined classes and

organize them with specific abstract data types, such as lists and other kinds of con-

tainers [9, 10, 11]. Any abnormal data propagation and inefficient data organization

can introduce the reliability and performance issues of the systems, respectively.

• Second, data-centric applications can heavily rely on third-party libraries [12, 13].

Concretely, library APIs enable the developers to manipulate data upon memory with

load and store operations. By storing and loading data at the same memory location,

library APIs can make the application code propagate data within memory, which

further affects the behavior of applications. Hence, it is crucial to investigate how

library APIs manipulate data upon memory if we want to obtain fundamental pro-

gram facts of applications to enhance reliability and performance.

• Third, data-centric systems often leverage domain-specific programs, called data

constraints, to facilitate data validation to ensure data correctness [14, 15, 16]. These

programs are typically executed on database tables, scrutinizing substantial data

during the system runtime. However, the absence of practical techniques for manag-

ing data constraints can result in redundant computations on the database side, lead-

ing to increased resource consumption and potential impacts on system throughput.

2

To tackle the aforementioned characteristics of data-centric systems, we put forward

a set of novel static analysis techniques that examine data organization, propagation,

manipulation, and validation from the vantage points of applications, libraries, and

databases. Through our research, we can effectively identify vulnerabilities and enhance

the computational efficiency of these systems, ultimately resulting in data-centric systems

that are more reliable and efficient.

1.1 Motivation

As stated earlier, a data-centric system can consist of various components such as appli-

cations, libraries, and databases. In the following sections, we present four observations

related to data organization, propagation, manipulation, and validation within the sys-

tems. These observations serve as motivation for designing new static analysis techniques

aimed at enhancing system reliability and performance.

1.1.1 Data Organization: Inefficient Container Types

A data-centric application often interacts with other applications or database engines to

exchange data, and then organizes the data as objects in the memory with a specific kind

of data structures, namely containers. There are a large number of libraries providing

different implementations of containers, such as Java Collections Framework [10], Apache

Commons Collections [11], Eclipse Collections [17], and Fastutil [18] in Java open-source

community. Although different containers and their methods may have similar and even

the same functionalities, they can differ greatly in terms of performance. Figure 1.2 shows

a typical example of inefficient container usage in the project google-http-java-client. Ob-

viously, the same functionality can be implemented by using LinkedList, which can avoid

the overhead introduced by memory reallocation. As reported by previous study [19], re-

placing the ArrayList object with a LinkedList one achieves 46% speed-up against the same

test set, showing the great potential of container type optimization in enhancing the per-

formance of a data-centric system.

Inefficient container types widely exist in real-world data-centric applications. Devel-

opers are often not familiar with all the available container types and their methods, and

3

1 <T> List<T> getAsList(T value) {
2 if (value == null)
3 return null;
4 List<T> result = new ArrayList<T>();
5 result.add(value);
6 return result;
7 }

Figure 1.2: Inefficient container type usage in google-http-java-client

particularly, unaware of exchangeable container types and their performance difference,

which can introduce inefficient container types in the development. To avoid inefficient

container types, we need to propose a systematic solution to detect inefficient container

types and optimize them with container replacement, which eventually yields a more effi-

cient way of organizing memory objects. Concretely, we have to guarantee the behavioral

equivalence of the programs during the container replacement and try to reduce the com-

putation resource consumption of the program for large inputs.

1.1.2 Data Propagation: Indirect Value-Flows through Containers

As illustrated above, containers are widely utilized in data-centric application code, which

convenience developers to implement the application logic without implementing low-

level memory operations. More specifically, leveraging the methods offered by the con-

tainers, developers can propagate the stored objects across different functions and mod-

ules in the applications. Figure 1.3 shows a typical example extracted and simplified from

the code in the project Hibernate-ORM. The method performList fetches a list from each

SelectQueryPlan object and then inserts all the elements to the ArrayList results. Then, the

method doList traverses the list returned by the method performList and collects a bounded

number of non-redundant elements. The data in each collected element is stored in the list

tmp. Actually, the code example demonstrates the common phenomenon that the values

in the data-centric systems can be propagated by the container methods, such as the meth-

ods add and get of ArrayList. The objects retrieved from the query at line 4 are propagated

across the functions and finally returned to the caller function of the method doList.

The indirect value flows induced by containers can cause vulnerabilities in the appli-

cations, demonstrating the necessity of understanding data propagation introduced by

containers. In Figure 1.3, if there is a null element stored in the list at line 5, the invo-

4

1 public List<R> performList(Context ctx) {
2 List<R> results = new ArrayList<>();
3
4 for (SelectQueryPlan<R> plan : Plans) {
5 List<R> list = plan.getList(ctx);
6 int size = list.size();
7 if (size <= maxRowsJpa) {
8 for (int i = 0; i < size; i++) {
9 results.add(list.get(i));
10 }
11 }
12 }
13 return results;
14}

15 List<D> doList(Context ctx) {
16 List<R> list = performList(ctx);
17 List<D> tmp = new ArrayList<>();
18 Set<Object> distinct = new HashSet<>();
19 for (R r : list) {
20 if (distinct.add(result)) {
21 includedCount++;
22 if (includedCount > bound)
23 continue;
24 tmp.add(r.getData());
25 }
26 }
27 return tmp;
28}

Figure 1.3: An example of container usage in Hibernate-ORM

cation of the method getData at line 24 can introduce the null pointer exception (NPE).

Meanwhile, the sensitive data stored in the elements of list at line 5 can be propagated to

the returned list of the method doList, which may cause sensitive information leakage in

the caller of the method doList. Therefore, Identifying value flows through containers is

important for detecting a wide range of vulnerabilities, including but not limited to mem-

ory corruption and sensitive information leaks. However, it is stunningly challenging to

reason such value flows with high precision and efficiency. Because the elements in the

containers are stored in a sequence or as key-value pairs, reasoning value flows through

containers requires precise modeling of container memory layouts, which can not be effi-

ciently achieved by existing static analysis techniques [20, 21].

1.1.3 Data Manipulation: Store-Load Library APIs

Data-centric applications often rely heavily on various libraries to process the data with

library APIs [12, 13]. Although library APIs significantly convenience the development

process, their prevalence highlights the necessity of understanding library semantics in

analyzing the application code. Notably, there exists a particular class of library APIs that

store or load the data in the memory. When two specific methods conduct the load and

store operations over an inner field of the data structure, they can introduce the aliasing

relations between their parameters and return values [22, 23]. We show several examples

in Figure 1.4. The first example is ArrayList in Java Collections Framework. If we invoke

the add before the get upon the same ArrayList object, the return value of the latter may be

aliased with the parameter of the former, which is shown in Figure 1.4(a). In more specific-

5

… …

used not used

add(o) a1=get(i) a2=get(i)

(a) java.util.ArrayList

… …

putStringArrayListExtra(name, value) v = getStringArrayListExtra(name)

(b) android.content.Intent

Bundle mExtras

… …

createBitmap(⋯ , config) c=getConfig()

(c) android.graphics.Bitmap
Config config

Figure 1.4: Examples of store/load library APIs

purpose data structures, such as the class Intent and Bitmap offered by Android platform [24],

there are also many APIs conducting the memory store and load operations. In the class

Intent, for instance, the API putStringArrayListExtra stores a pair of name and values into the

Bundle object in the Intent object, while the API getStringArrayListExtra retrieves the value

corresponding to a specific name. As shown in Figure 1.4(b), if their first parameters

are aliased, the return value of the latter may be aliased with the second parameter of

the former when they are invoked upon the same Intent object one after another. Another

similar example is that the API getConfig can return the aliased value of the corresponding

parameter of createBitmap in the class Bitmap, which is demonstrated in Figure 1.4(c).

With a similar motivation of analyzing indirect-value flows through containers, we

have to identify the store-load library APIs and understand induced aliasing relations.

Different from containers, such classes offered by various libraries cover a wide range

of program domains, making it impractical to specify their specifications manually. To

promote downstream clients upon data-centric applications using libraries, we need to

propose an effective solution to infer their API aliasing specifications, which can eventu-

ally benefit bug detection [25, 3] and program optimization [26].

6

Applications Databases Data Constraints
Data Validation
Platform

① Request to update databases
② Validate data ② Validate data

③’ Reject update

Application Side Database Side

③ update databases

Figure 1.5: The workflow of data validation in the database side

1.1.4 Data Validation: Redundant Data Constraints

As security-critical systems, data correctness has always been a central concern of data-

centric systems. In industrial settings, developers often define and execute domain-specific

programs known as data constraints over databases to ensure data correctness during run-

time [14, 15, 16]. Such data constraints can be specified in various languages, including

SQL and other domain-specific languages. Figure 1.5 shows the workflow of data val-

idation in the database side of a system. When an application attempts to update data

in a database, a data validation platform validates whether the update violates any data

constraint or not. If a data constraint is violated, the database update will be rejected.

Otherwise, the update is permitted. It has been recognized that such workflow of data

validation is an effective mechanism for ensuring data correctness in data-centric systems.

As a data-centric system evolves, the system specification becomes increasingly com-

plex, leading developers to write numerous data constraints for data validation [16]. How-

ever, developers often face the difficulty of determining whether a new data constraint has

already been specified. To mitigate the risk of data incorrectness, they tend to execute data

constraints aggressively, even if they may be equivalent to existing ones. The redundancy

in data constraints has become a form of “technical debt” within data-centric systems,

resulting in wasteful consumption of computational resources during data validation.

To resolve equivalent data constraints, we need to introduce a new technique to sup-

port the developers reasoning the equivalence relation among a large number of data

constraints in the system. To be more specific, we need to design an efficient decision

procedure to determine the equivalence relation of data constraints, which can assist the

developers in equivalence clustering and searching over data constraints. Benefiting from

the decision procedure, the data constraint checking engine only needs to examine one

7

data constraint per equivalence cluster, and meanwhile, developers would be notified

with equivalent data constraints upon data constraint submission, which can effectively

reduce resource consumption and improve the performance of the system.

1.2 Contribution

This thesis targets the enhancement of reliability and performance by analyzing data-

centric systems from four aspects, namely data organization, propagation, manipula-

tion, and validation. Specifically, we make four technical contributions, which include

complexity-guided container replacement synthesis, container-aware value-flow analy-

sis, documentation-based API aliasing specification inference, and data constraint equiv-

alence verification. In what follows, we elaborate our contributions in detail.

1.2.1 Complexity-Guided Container Replacement Synthesis

To optimize data organization in the application code, we present CRES, a container re-

placement synthesizer that automatically discovers inefficient container types and re-

places them with efficient ones. Established upon a novel container semantic abstrac-

tion, CRES leverages pointer analysis to identify the container usage intentions, which

guides CRES to narrow down container types and methods preserving program behav-

ioral equivalence. Meanwhile, CRES employs complexity specifications of container meth-

ods to guide an enumerative search during the synthesis process, which makes the new

programs more likely to be more efficient with large inputs. CRES has discovered over

one hundred inefficient container usages in data-centric applications, and the synthesized

replacements can improve the system performance by 8.1% on average.

1.2.2 Container-Aware Value-Flow Analysis

Reasoning container memory layouts is a crucial prerequisite for performing container-

aware value-flow analysis, which uncovers the data propagation within data-centric ap-

plications. In this thesis, we introduce ANCHOR, a fast and precise value-flow analy-

sis framework that incorporates precise container reasoning. Based on given container

8

semantic specifications, ANCHOR effectively models the semantics of container method

calls and seizes the opportunity of applying strong updates to container memory layouts

for precision enhancement. It supports various clients of value-flow analysis, including

program slicing and detecting a wide range of value-flow bugs, significantly improving

system reliability from the application side. Our evaluation demonstrates that ANCHOR

successfully detects 20 null pointer exceptions with only 9.1% as its false-positive ratio and

enables analysis of MLoC within a few hours. To the best of our knowledge, ANCHOR is

the first container-aware value-flow analysis approach that achieves high precision, effi-

ciency, and scalability simultaneously.

1.2.3 Documentation-based API Aliasing Specification Inference

To promote understanding of the behaviors of applications using libraries, we introduce

DAINFER, an algorithm for inferring API aliasing specifications. DAINFER examines the

data manipulation performed by library APIs and infers the aliasing relationships be-

tween API parameters and return values. Unlike existing studies, DAINFER leverages the

library documentation for specification inference instead of any forms of programs. Estab-

lished upon a tagging model and a large language model, DAINFER effectively interprets

the informal semantic specification in the documentation. Besides, the class-hierarchy re-

lation and API type signatures narrow down the aliasing pairs, enabling us to achieve high

efficiency in the inference. It is shown that DAINFER infers the API aliasing specifications

with a precision of 79.78% and a recall of 82.29%. The obtained aliasing specifications fur-

ther facilitate alias analysis, revealing 80.05% more alias facts for API return values, and

meanwhile, support taint analysis, identifying 85 more taint flows in 23 Android apps.

1.2.4 Data Constraint Equivalence Verification

We finally propose an efficient decision procedure EQDAC to verify the data constraint

equivalence, which improves the system performance from the database side by eliminat-

ing redundant computation in the data validation. Although the equivalence verification

problem is NP-hard, EQDAC can verify the equivalence for most real-world instances

with two light-weighted analyses in polynomial time. Equipped with EQDAC, develop-

9

ers can efficiently conduct the equivalence clustering and searching upon data constraints.

Notably, the soundness and completeness of EQDAC enable the system performance op-

timization without sacrificing the system’s reliability. Our effort shows the great potential

value of formal methods in optimizing data-centric systems.

1.3 Outline

The thesis is organized as follows. Chapter 2 introduces the background knowledge of

data-centric systems and discusses the existing efforts, revealing the gap between real-

world demands and existing techniques. Chapter 3 presents our synthesis framework

CRES to identify and replace inefficient container usages, which improves the perfor-

mance of the systems from the application side by optimizing data organization. Chap-

ter 4 presents our value-flow analysis framework ANCHOR to precisely reason the value

flows through containers, which supports value-flow bug detection to improve the relia-

bility. Chapter 5 introduces our inference algorithm DAINFER that derives API aliasing

specifications from library documentation, which promote the bug detection and program

optimization from the perspective of library understanding. Chapter 6 demonstrates our

decision procedure EQDAC that verifies the equivalence of data constraints efficiently,

enabling the elimination of redundant data validation for performance enhancement. We

finally conclude the thesis and discuss several promising future directions in Chapter 7.

The thesis summarizes the research papers published in the top-tier conferences and

journals. The content of Chapter 3 has been published in [27]. The content of Chapter 4 has

been published in [28]. The work demonstrated in Chapter 5 is currently under review.

The content of Chapter 6 has been published in [29].

10

CHAPTER 2

BACKGROUND AND PREVIOUS STUDIES

This chapter presents the background of this thesis and discusses previous studies. First,

Section 2.1 introduces data-centric systems, and especially discusses three important enti-

ties, namely containers, store-load API pairs, and data constraints, to demonstrate the data

organization, propagation, manipulation, and validation from the application, library, and

database sides. Particularly, we highlight the importance of reasoning their semantics of

three entities in enhancing the system’s reliability and performance. Second, Section 2.2

discusses four lines of existing effort, which provides meaningful inspiration on container

replacement synthesis, container-aware value flow analysis, API aliasing specification in-

ference, and data constraint equivalence verification.

2.1 Data-Centric System

Data-centric systems are a common category of systems in industry and play an essential

role in our daily lives. As the backbone of our computing infrastructure, they support

processing, storing, and transmitting various forms of data. Any abnormal or inefficient

computation can degrade the reliability and performance of the systems, which has a sig-

nificant impact on property safety, user experience, and resource consumption. In this

thesis, we aim to ensure the reliability and improve the performance of data-centric sys-

tems. Specifically, we concentrate on three typical characteristics of data-centric systems,

which distinguish them from other kinds of software systems. First, the developers uti-

lize various data structures, especially containers, to organize the data in the memory and

propagate the data across functions and modules by invoking the methods offered by

data structures. Second, data-centric applications often heavily rely on various libraries

to manipulate the memory, for example, conducting the store and load operations, which

introduce indirect data flows in the application code. Third, data-centric systems often

ensure data correctness by dynamically validating data before insertion into the database,

11

while the examined properties can be formulated as domain-specific programs, such as

data constraints. To understand the behavior of the systems, we have to investigate the

following three questions.

• (1) How do the developers organize and propagate the data in the applications?

• (2) How do library APIs manipulate the data in the memory?

• (3) How is the data verified to ensure correctness in the database?

In what follows, we introduce three important entities in the data-centric systems, namely

containers, store-load API pairs, and data constraints, to demonstrate how they support

organizing, propagating, manipulating, and verifying data, respectively. In particular, we

highlight how they affect the system’s reliability and performance, which motivates our

research from the application, library, and database sides, respectively.

2.1.1 Container

Concept. Containers, as abstract data types, are widely used in data-centric application

code. They enable developers to organize memory objects without implementing low-

level memory operations. Apart form Java Collections Framework (JCF) [10], a variety

of Java third-party libraries provide different container implementations, such as Apache

Commons Collections (ACC) [11], Eclipse Collections (EC) [17], and Fastutil [18]. No matter

how container types are defined, they can be formulated as the following structures from

an abstract perspective.

Definition 2.1.1 (Container) A container is a pair (O,M), where

• O is a set of index-value pairs, which indicates the memory layout of inner storage.

• M is a set of methods. For each m ∈ M, the method call of m, denoted by r = O.m(v),

induces an manipulation over O and yields (O ′, r), where v indicates the parameters, O ′ is

a new memory layout, and r is the return value.

12

Table 2.1: Examples of containers in Java

Containers Frameworks Layouts Examples of Methods

ShortArrayList High Performance Primitive Collections list short remove(int), void add(short)
LinkedList Java Collections Framework list boolean offerLast(O)

HashSet Java Collections Framework set boolean add(O), boolean contains(O)
TreeSet Java Collections Framework set boolean add(O), boolean remove(O)

HashMap Java Collections Framework map O put(O, O), boolean containsKey(O)
CollectionBag Apache Commons Collections map O get(O), int getCount(O)

Definition 2.1.1 provides a uniform formulation for different container types. Accord-

ing to different forms of the indexes, the container types can be further categorized into

three kinds, namely lists, sets, and maps. Specifically, we have

• A list takes non-negative integers as indexes showing the elements’ positions.

• A set takes the stored elements as the values and their hash codes as the indexes.

• A map takes hashable objects as the indexes and the paired objects as the values.

Other container types can be regarded as instantiations of lists, sets, or maps. For exam-

ple, a bag can be regarded as a specific form of a map, of which the indexes are the stored

elements, and the values are the multiplicities of the elements. Besides, several data struc-

tures are essentially containers, even if their names do not indicate that they are lists, sets,

or maps. For instance, the class HttpSession in the JavaEE framework is essentially a map

as it organizes its elements as a key-value pair. From a concrete perspective, such data

structures provide the methods to instantiate the set of methods M in Definition 2.1.1,

which supports programmers in conducting desired operations over memory.

Example 2.1.1 Table 2.1 shows the container examples in Java. ShortArrayList in the High Per-

formance Primitive Collections (HPPC) library and LinkedList in the JCF store their elements in

the lists and provide a series of operations over lists, such as remove, add, and offerLast. Besides,

JCF also provides HashSet, TreeSet, and HashMap to store hashable objects. Moreover, the ACC

library offers CollectionBag, which is essentially a map mapping its elements to the multiplicities.

Relevance to System Reliability. As shown in Figure 1.3 in Section 1.1, data can be

propagated through container objects, forming value flows in the application code. Any

13

erroneous value flow can cause the system to behave abnormally and even crash. For

example, a null value flowing to the dereferenced operand can introduce a null pointer

exception (NPE) in the application code. Other typical value-flow bugs include memory

leaks [4], use-after-free [30], and taint vulnerabilities [25]. The existence of value-flow

bugs greatly affects the reliability of the data-centric systems, introducing memory safety

issues or the leak of sensitive information.

To detect value-flow bugs precisely and effectively, we need to consider the semantics

of each container method and reason how each element is organized in a container. We

will demonstrate the related works on different memory models of value-flow analysis in

Section 2.2.2, which shows the research gap between existing efforts and the container-

aware value-flow analysis we need in the presence of data-centric systems. Our solution

will be demonstrated in Chapter 4.

Relevance to System Performance. A large number of third-party libraries provide

a wide range of containers with similar functionalities, while their performance profiles

can differ greatly. As demonstrated by Figure 1.2, choosing a proper container type may

accelerate the execution by around 50% upon a workload in a test case. However, the

developers are often unaware of alternative container types under their programming

context and, thus, can hardly choose the optimal container type and their methods to

organize and manipulate the objects in the memory efficiently, which slows down the

execution of the application code in the system.

To optimize container usage for performance enhancement, we should replace ineffi-

cient containers without changing the program behavior. We will recap existing efforts on

data structure synthesis in Section 2.2.1 and present our solution in Chapter 3.

2.1.2 Store-Load API Pair

Concepts. Libraries offer a variety of APIs for the developers of data-centric systems to

implement their application modules, permitting them to concentrate on high-level logic

only. Apart from the libraries providing different implementations of containers, typical

libraries also include Android platform [24], Java EE framework [31], and various object-

relational-mapping frameworks [32]. Among the library APIs with diverse functionalities,

14

// Store data in an Intent
Intent intent = new Intent();
intent.putExtra("name", null);
intent.putExtra("age", 25);
intent.putExtra("isStudent", true);

// Load data from the Intent
String name = intent.getStringExtra("name");
int age = intent.getIntExtra("age", 0);
boolean isStudent = intent.getBooleanExtra("isStudent", false);

Figure 2.1: An example program using the class android.content.Intent

there exist one particular class of library APIs that store its parameters to inner fields or

load the value of inner fields as return values. As generalized store and load operations,

such APIs can form store-load API pairs, which are formulated formally as follows.

Definition 2.1.2 (Store-Load API Pair) Given a library class c, two methods m1 and m2 offered

by c form a store-load API pair (m1,m2) if and only if the return value of m2 can be aliased with

a parameter ofm1 whenm2 is invoked afterm1 upon the same object of the class c.

Store-load API pairs are prevalent in the libraries written by modern programming

languages, such as C++, Java, and Python. To protect the data stored in the inner fields,

the classes may set the fields as non-public and only permit the access and modification

via specific APIs. When two APIs store and access the same inner field respectively, they

actually form the store-load API pairs, which can achieve the similar functionality to the

store-load operations with the same pointers.

Example 2.1.2 Consider the APIs shown in Table 2.1. The methods put and get of the classes

HashMap and CollectionBag form a store-load API pair. Consider the program shown in Fig-

ure 2.1. The class Intent in Android platform offers four methods, namely putExtra, getStringEx-

tra, getIntExtra, and getBooleanExtra. The method putExtra can form three store-load API pairs

with the last three methods.

Relevance to Reliability and Performance of Systems. With a similar motivation to

container reasoning, we need to understand the data manipulation conducted by library

APIs and discover the store-load API pairs. More specifically, we have to discover the

possible aliasing relations between API parameters and return values, which enable us

15

to identify indirect value flows induced by library API calls in the application code. For

example, the null value inserted by putExtra can be aliased the return value of getStringEx-

tra in Figure 2.1, and thus, the variable name can be null. If we conduct any dereference

upon name, the program can crash with the null pointer exception. Meanwhile, obtain-

ing the aliasing facts induced by store-load API pairs support better understanding of

application code, which has critical importance in the performance enhancement, such as

program debloating [33] and data structure optimization [34]. We will summarize existing

trials on library specification inference in Section 2.2.3 and demonstrate our API aliasing

specification inference algorithm in Chapter 5.

2.1.3 Data Constraint

Concept. Data correctness has critical importance to the reliability of data-centric systems.

For example, FinTech systems process sensitive financial data of their users. Any erro-

neous data manipulation would cause inestimable economic loss. To improve the system

reliability, the developers of data-centric systems, especially database-backed systems, of-

ten specify data constraints and check them in the runtime. The violation of data con-

straints would prevent the applications from conducting abnormal data manipulations

that trigger the system’s alarms with error messages, which can guide the developers to

system diagnosis. As important domain-specific programs for data validation, data con-

straints have been widely studied in recent years [15, 35, 36, 37, 14]. We can provide its

formal definition as follows.

Definition 2.1.3 (Data Constraint) Given a set of database tables T, a data constraint is a first-

order logic formula over the attributes of several tables t ∈ T, which should be satisfied during the

system execution.

A data constraint can be instantiated in different domain-specific languages. For ex-

ample, developers can encode the negation of the first-order logic formula as a where

clause in a SQL query and check the emptiness of the querying result. Besides, develop-

ers can also use several light-weighted languages, such as Google Aviator [38], or design

new languages and evaluation engines to achieve high efficiency in the runtime checking.

16

s = ’IN’;
if(contains(t.ty,s))

assert(t.in > 0);
else

assert(t.out > 0);
assert(t.amt > 0);
assert(t.oid != 0);

Figure 2.2: An example of a data constraint

Example 2.1.3 Figure 2.2 shows an example of data constraints, which is a simplified data con-

straint in Ant Group. Similar to C/C++/Java programs, the assertions in the data constraints are

expected to hold over the database table t in the runtime. Specifically, the attribute ty of the table t

is a string attribute. When it contains ’IN’ as its substring, the attribute in should be greater than

0, and otherwise, the attribute out should be greater than 0. Also, the attribute amt of the table t

should be greater than 0, while the attribute oid cannot be 0.

Relevance to System Reliability. Data constraints play a critical role in validating

the data correctness in the database, which improves the reliability of data-centric sys-

tems. As long as developers formulate the system specification formally with data con-

straints, the checking engine would protect the data from being incorrectly modified if

any data constraint was violated. Thus, the developers of a data-centric system configure

the list of data constraints during the development cycle. When the system supports a

new functionality, several new data constraints may need to be specified and examined.

Any incomplete configuration of data constraints would threaten the system’s reliability,

degrading the effectiveness of the runtime checking.

Relevance to System Performance. In a very large database, the runtime checking

of data constraints demands loading incredibly huge data. Also, a data-centric system

can be equipped with thousands of data constraints. The two factors make the runtime

checking of data constraints consume fairly large computation resources. Particularly, the

response time of the system can be increased due to the checking of data constraints, af-

fecting the system throughput in the deployment environment. To promote the system’s

performance, the developers leverage various caching strategies and deploy highly effi-

cient machines in industrial scenarios.

Although specifying and examining data constraints has become a common practice in

production, data-centric systems still suffer from performance issues caused by redundant

17

checking of data constraints. According to our experience, the developers often specify the

data constraints equivalent to the ones submitted by others. The key reason is that they

are unaware of whether there are any existing data constraints equivalent to their new

ones. In this case, they prefer to specify as many data constraints as possible aggressively

without sacrificing data correctness. Thus, equivalent data constraints can aggregate in

the systems and introduce redundant data validation, gradually forming the technical

debt of the systems.

To improve the performance without compromising reliability, we need an effective

decision procedure to verify the data constraint equivalence. We will summarize pre-

vious studies on program equivalence verification in Section 2.2.4 and demonstrate our

approach in Chapter 6.

2.2 Related Work

Starting from the four features of data-centric systems demonstrated in Section 1.1, we

target four subproblems relating to containers, store-load API pairs, and data constraints:

• (1) How to identify inefficient container types and synthesize efficient ones?

• (2) How to identify value flows through containers in the application code?

• (3) How to infer API aliasing specifications for the libraries used by application code?

• (4) How to identify equivalent data constraints to avoid redundant data validation?

The effective solutions to the four problems would promote overall reliability and perfor-

mance of the systems.

Notice that data-centric systems are often difficult to instrument, deploy, and execute

with real-world inputs during the analysis phase. Hence, we choose static analysis as our

technical scope to resolve the above problems. Specifically, we conduct a comprehensive

study of previous program analysis techniques, especially static analysis, and summarize

four relevant lines of literature, namely data structure synthesis, value-flow analysis, li-

brary specification inference, and program equivalence verification. Particularly, we will

18

highlight the research gap and the drawbacks of existing techniques, which further moti-

vates our solutions in the subsequent chapters.

2.2.1 Data Structure Synthesis

There is an extensive body of literature on data structure synthesis, targeting optimiz-

ing data organization for performance enhancement. Specifically, existing studies can be

divided into two categories. The first category conducts a conservative program transfor-

mation, which only replaces original data structures with alternative ones. Most of the

works in this category share similar motivations to ours, aiming to reduce computation

resource consumption via data structure replacement. For example, ARTEMIS [19] and

SEEDS [39] search container types to minimize resource consumption when executing the

program with the given test suite. However, they execute the program thousands of times

over the test suite to search for the optimal selection, introducing a heavy time burden.

BRAINY [40] and CHAMELEON [41] utilize dynamic profiling to obtain the heap informa-

tion and predict the best container types with a prediction model, which is specified by

expertise or obtained in the training process. However, the model can be restrictive when

the expert knowledge is unavailable or the training data is not general enough. Different

from the dynamic profiling-based approaches, CT+ [42, 43] attempts to reduce resource

consumption by analyzing container usage statically, and replace container types based on

the class hierarchy diagram. Unfortunately, CT+ can not synthesize more general replace-

ments, such as replacing ArrayList with HashSet, because of the restrictive assumptions

on interchangeable container types.

The second line of the works targets composing data structure designs out of existing

data structures. Motivated by various scenarios, data structures are supposed to satisfy

different constraints. For example, VOLT [7] is the latest data structure synthesizer, which

aims to refine the data structure satisfying integrity constraints when introducing auxil-

iary fields. MASK [8] replaces outdated data structures by synthesizing their methods

with the latest ones. The two synthesizers assure functional correctness while do not

concern efficiency. Other works, such as COZY [44], RELC [45, 46], and DATA CALCU-

LATOR [47], combine static cost models with operational semantics and synthesize data

structures with an excellent performance to alleviate the human burden in designing data

19

structures. A recent work SOLIDARE refactors data types in real-world smart contracts to

save the gas usage [6], which exhibits the closest motivation to ours.

According to the investigation of existing literature, we find that few studies focus

on finding more efficient container types in real-world programs without changing pro-

gram semantics. Although the second line of the works can synthesize more efficient data

structures conforming to specific functional specifications, their solutions do not target

the client programs using data structures, and instead, try to optimize the program from

the data structure side. It should be noted that a variety of container types are provided

by third-party libraries, which can be directly used in our program. Therefore, we want to

optimize the application code by choosing better container types, and meanwhile, ensure

the program behavioral equivalence during the optimization.

2.2.2 Value-Flow Analysis

Value-flow analysis resolves the program dependencies to improve the effectiveness of

static analyses [4, 3, 25]. It was initially applied in program optimization and debugging

by offering def-use relations. With the promotion of the research communities, it has

become a fundamental technique of static program analysis and verification [5, 48, 49]. In

our problem, it is actually a powerful technique to investigate the data organization and

propagation in the application code.

A critical component of value-flow analysis is pointer analysis, which can greatly af-

fect the precision and efficiency of the overall analysis. In order to achieve better precision

with lower overhead, many value-flow analyses adopt on-demand pointer analyses so

that unnecessary pointer facts are not calculated in the value-flow propagation [50, 51, 3].

To handle potentially unbounded heap memory, most of the value-flow analyses adopt a

bounded abstract memory model [52], which summarizes the memory objects allocated

by the same statement into an abstract object [53, 50, 51]. Thus, the number of memory

objects is bounded by the program size. To support analyzing structural memory objects,

such as arrays and containers, existing value-flow analyses do not conduct precise rea-

soning of how each element is stored in specific positions or corresponds to keys, and in-

stead, just smash memory regions into the sets of objects [54, 55]. The strategy of memory

smashing would introduce spurious program dependencies and conservatively identify

20

the value flows that cannot occur in actual program executions [54, 55], which can cause

high false positives in static bug hunting [25].

In the community of program verification, a wide range of studies propose various

memory abstractions for data structure verification. One common abstraction is based on

generic predicates, merging the objects which satisfy certain predicates [56, 57, 58, 59, 60].

A typical instantiation is the three-valued logic analyzer (TVLA) [56, 57]. Equipped with

a finite number of predicates, it establishes a bounded abstract domain and defines fo-

cus and coerce operators for semantic reduction [61], which can yield precise three-valued

structures depicting the memory state. Another line of studies proposes a symbolic mem-

ory model and encodes memory states with logic formulas [62, 63]. Specifically, COMPASS

depicts a container memory layout with a logical formula in the combined theory of linear

integer arithmetic and uninterpreted functions [63]. Existing trials on the data structure

verification may benefit the value-flow analysis in precise reasoning of containers, which

further supports precise value-flow analysis for the programs using containers.

2.2.3 Library Specification Inference

The inference of library API specifications has always been a central topic in program

analysis. Motivated by various downstream clients, existing specification inference tech-

niques can target different forms of library specifications, including points-to [22], alias-

ing [23], taint [64], and commutativity specifications [65]. From the perspective of tech-

nical design, previous studies can be categorized into two major categories. The first line

of studies analyzes the library implementations to abstract the semantics of library APIs.

Typically, IFDS/IDE-based approaches summarize the data-flow facts of libraries using

summary edges in exploded super graphs as their semantic abstractions [66, 67], which

can be reused across various clients of data-flow analysis. Established upon a symbolic

memory model, shape analysis computes the memory state for each statement of a library

API as invariants, and derives the pre/post conditions of each library API as its specifi-

cation [56, 57, 68]. While the inferred specification accurately depicts the semantics of the

library API, the analysis suffers from scalability problems, especially in the presence of

complex program structures [69].

The other line of existing techniques is mining-based approaches [22, 23, 64, 65]. Specif-

21

ically, they deduce the library API specifications from the program facts of the code using

libraries, which can be obtained by static or dynamic analysis. For instance, ATLAS [22]

enumerates the unit tests using library APIs via active learning and further infers the

points-to specifications by examining whether the assertions hold or not. USPEC [23] de-

duces the potential aliasing facts induced by libraries from object manipulation traces,

which are collected via static analysis techniques. Unlike the first line of studies, mining-

based approaches do not rely on library implementations, which promotes their applica-

bility when the source code is not available. However, the program facts of code using

libraries may not be easily obtained in several scenarios. For example, the big code us-

ing libraries may not be accessible, and the unit tests of library APIs may not be easy to

construct and execute.

In this thesis, we concentrate on the aliasing facts induced by library APIs and at-

tempt to derive their aliasing specifications. To make our solution more applicable to

data-centric systems, we need to tackle the drawbacks of existing studies and propose a

new perspective to infer the specifications. We notice that the developers of data-centric

systems often refer to library documentation, which offers critical knowledge of library

APIs and effectively guides the development process. Compared with unit tests and other

applications using libraries, library documentation is more likely to be available for anal-

ysis. Hence, we want to infer library API aliasing specifications for store-load API pairs

from library documentation.

2.2.4 Program Equivalence Verification

Program equivalence verification is a crucial building block for many clients, such as

translation validation [70, 71], program synthesis [72, 8, 73], and program optimization [74,

75]. To resolve redundant data validation on the database side, we prepare to leverage the

equivalence verification technique to identify equivalent data constraints.

According to our investigation, there are two lines of studies focusing on program

equivalence verification. One line of studies reduces equivalence checking to proving

specific verification conditions, such as relational verification [76, 77, 78, 79, 80, 81]. Similar

approaches include using symbolic execution for loop-free programs [82, 83, 8, 84, 85].

Another line of studies proves program equivalence via term rewriting [70, 86, 87, 88].

22

The effectiveness relies heavily on the quality of rewrite rules. First, they may sacrifice

soundness or completeness if the rule set contains an incorrect rule or misses the right

one [89]. Second, they may suffer from the phase ordering problem [90] in the presence

of many rewrite rules. To obtain better complexity, [91] restricts the form of rewrite rules,

and adopts tree isomorphism algorithms to check syntactic isomorphism, which ensures

that the equivalence relation can be proved in polynomial time.

There has also been a wide range of literature concentrating on the equivalence ver-

ification of domain-specific programs. One typical line is SQL query equivalence verifi-

cation, which is an essential topic in academia and industrial communities. The state-of-

the-art approaches focus on specific forms of SQL queries [92] and apply either algebraic

reasoning techniques [87, 93, 88] or symbolic reasoning [94, 75, 95] for equivalence ver-

ification. Typically, UDP [88] utilizes U-semiring to encode the bag semantics of SQL

effectively and checks the isomorphism between two algebraic structures. However, it

fails to handle advanced features, e.g., three-valued logic, and suffers from the inefficient

chase procedure in the isomorphism checking [96]. In contrast, EQUITAS [75] encodes

the semantics with a FOL formula and leverages a solver to determine the equivalence,

handling more SQL features [97] than UDP.

Overall, existing efforts mainly explore the verification of the programs with more ex-

pressive program constructs, such as loops in imperative programs and three-valued logic

in SQL queries, or try to verify large-scale programs with better scalability. However, in

data-centric systems, we have to determine the equivalence relations upon thousands of

data constraints. To resolve equivalence data constraints, we need to design a new deci-

sion procedure to achieve high efficiency in analyzing a large number of data constraints.

23

CHAPTER 3

COMPLEXITY-GUIDED CONTAINER
REPLACEMENT SYNTHESIS

3.1 Introduction

General-purposed programming languages, including Java and C++, support a variety

of containers, which creates great convenience of developing software systems with com-

plex service logics, such as a variety of data-centric systems. Unfortunately, performance

issues often emerge because of inefficient usage of container types. Programmers are often

unaware of more efficient container types under their development context and tend to

choose the container types that they are most familiar with. For example, in the program

shown in Figure 3.1, the use of the container type ArrayList introduces unnecessary time

overhead because the method, ArrayList.contains, performs linear searching. The same

functionality can be supported efficiently by the class HashSet. It is quite surprising to

find that 16% of execution time of the 3D design software, Raytrace, is introduced by

inefficient container types [40], affecting the performance of ray tracing greatly. More-

over, there is abundant evidence that inefficient containers also increase other resource

consumption, including memory [40, 19], energy [39, 98, 43], and CPU usage [19].

Goal and Challenge. Given a set of container types, our goal is to synthesize alterna-

tive container types and the associated methods at the container allocation sites and the

container method call sites, respectively, such that the program after replacements pre-

serves the original semantics and executes more efficiently for large inputs. In this way,

our synthesis algorithm can optimize data organization to accelerate the execution of a

given program. We also expect our synthesis algorithm to be general enough, supporting

the program optimization to decrease other kinds of resource consumptions, such as the

memory and CPU usage.

However, it is far from trivial to achieve the goal. First, we can not determine the con-

tainer types to replace the original ones without violating the behavioral equivalence [99]

24

if we do not know how container objects are manipulated. Although several container

types are interchangeable, e.g., ArrayList and LinkedList, the replacement patterns might

be quite restrictive. Second, it is far from practical to derive a tight bound of the time

complexity for a general container-manipulating program [100, 101, 102], especially data-

centric applications in the wild, so we can not explicitly compare the complexity of the

program before and after replacements to guide the synthesis.

Existing Effort. The existing works attempt to tackle the problem from two perspec-

tives. One line of the existing approaches attempts to find optimal container usage by

minimizing the resource consumption upon a given test suite [39, 19]. They mutate con-

tainer types and evaluate the resource consumption via dynamic profiling until the mini-

mal consumption is reached. The other line of the works selects better container types by

performing a prediction task [41, 40, 103]. Based on the heap information and container

usage patterns in a specific execution, they predict optimal container types by utilizing a

prediction model, which is specified manually or obtained in a training process. Unfortu-

nately, the existing works suffer from three drawbacks:

• Huge time overhead. They rely on the execution of the test suite, making the whole

process quite time consuming [40, 39]. Particularly, the first line of the works exe-

cutes the test suite iteratively to find the optimal selection and suffer the huge time

overhead. For example, [19] takes 3.1 hours optimizing a project on average, which

poses an enormous obstacle to large-scale adoption.

• Unsoundness. They can not guarantee the semantic equivalence of the program, as

they can not discover how each container object is manipulated and determine the

equivalent container types soundly. Although several approaches assume several

container types are interchangeable [40, 19], the assumptions do not hold in cer-

tain cases, such as transforming LinkedHashMap to HashMap in the presence of map

traversal.

• Overfitting. The effectiveness of the optimization can be degraded when the test suite

or the training data does not provide general inputs. The program after replace-

ments can execute slower when the inputs exercise the program along previously

uncovered paths [104].

25

public List load(String[] a, int n) {
List<String> u = new ArrayList<>();
for (int i = 0; i < n; i++)

if (!u.contains(a[i]))
u.add(a[i]);

return u;
}

public void check(String[] a, String s) {
List v = load(a, a.length);
if (v.contains(s)) {
return true;

}
return false;

}

Figure 3.1: An efficient usage of ArrayList in the project IoTDB

Insight and Solution. We observe that container method calls reveal the intention of

the programmers for which they use the containers. Specifically, programmers concern

with specific container properties, such as the size, index or value-ownership, and index-

value correlation. Container methods allow programmers to manipulate a container ob-

ject by querying and modifying container properties. Our insight is that we can optimize a

container-manipulating program if the intention can be achieved by other container types

and methods with lower time complexity. In Figure 3.1, for example, the ArrayList ob-

ject allocated in the method load is only manipulated by the methods ArrayList.add and

ArrayList.contains. The programmers only wish to know whether an element is stored in

the list, i.e., the value-ownership property of the ArrayList object. Thus, we can replace

ArrayList with HashSet to avoid linear searching caused by ArrayList.contains, thereby im-

proving program efficiency.

Based on the insight, we present CRES, a container replacement synthesizer to improve

program efficiency. CRES synthesizes container replacements preserving program behav-

ior and achieves the optimization for general inputs.

• To assure the behavioral equivalence, we propose the notion of container behavioral

equivalence to determine the method candidates. Specifically, CRES analyzes con-

tainer method calls to determine the concerned container properties. A method is

a candidate of a container method call if it queries and modifies the concerned con-

tainer properties in the same way as the original one.

• To achieve the optimization, we introduce the concept of container complexity superi-

ority to constrain the complexity of container methods in the replacements. Specif-

ically, CRES selects methods with low complexity from candidates so that the total

complexity of the container method calls manipulating the object is lower than the

one in the original program.

26

With the benefit of our insight, CRES can find the opportunity of achieving input-

agnostic optimization and improve program efficiency significantly. To the best of our

knowledge, CRES is the first work to guarantee the behavior equivalence without any as-

sumption on interchangeable container types. Moreover, CRES escapes from the burden

of huge overhead because it does rely on program execution and performs efficient static

reasoning.

We evaluate CRES upon 12 real-world data-centric applications with intensive usage of

containers in Java Collections Framework (JCF), of which the sizes range from 18.6 KLoC

to 384.2 KLoC. CRES synthesizes 107 replacements covering six categories [105], such as

replacing ArrayList with HashSet, replacing TreeMap with HashMap, etc. Particularly, 71 re-

placements in six projects have been confirmed by the developers. The time consumption

of each project is decreased by 8.1% on average after replacements. Moreover, CRES fin-

ishes analyzing any project in 14 minutes, which distinguishes it from existing approaches

suffering from the heavy time burden [39, 19]. We also prove its soundness theoretically

to guarantee the behavioral equivalence. CRES has been integrated into the static analysis

platform in the Ant Group, an international IT company providing the financial service

for over 1 billion global users. In summary, we make the following main contributions:

• We propose a novel abstraction of containers and introduce two principled notions,

namely container behavioral equivalence and container complexity superiority, to guide

the synthesis.

• We establish an abstract domain and propose the container property analysis to guar-

antee the behavioral equivalence of the programs.

• We implement a synthesis framework CRES and evaluate it on data-centric appli-

cations, showing that it synthesizes replacements efficiently and significantly im-

proves program efficiency.

The sections of this chapter are organized as follows. We first demonstrate the key

idea of our synthesizer CRES with a motivating example in Section 3.2 and then provide

a formal statement of our problem in Section 3.3. After illustrating the abstraction for

container-manipulating program in Section 3.4, we detail the synthesis algorithm CRES to

27

1 public List getResources(String dir) {
2 List r = new ArrayList<File>(); //o2
3 for (int i = 0; i < RES_NUM; i++) {
4 File s = getFile(dir, i);
5 if (!r.contains(s))
6 r.add(s);
7 }
8 return r;
9 }
10 public List getPrivate(String dir) {
11 List p = new ArrayList<File>(); //o11
12 for (int i = 0; i < N_PRIVATE; i++)
13 p.add(getPrivateFile(dir, i));
14 return p;
15 }
16 public List getProtected(String dir) {
17 List q = new ArrayList<File>(); //o17
18 for (int i = 0; i < N_PROTECTED; i++)
19 q.add(getProtectedFile(dir, i));
20 return q;
21 }
22 public boolean invisible(ArrayList l) {
23 return l.contains(INVISIBLE_FILE);
24 }

25 public List getAllFiles(String dir) {
26 List f = new ArrayList<File>(); //o26
27 for (int i = 0; i < N_FILE; i++)
28 f.add(getFile(dir, i));
29 return f;
30 }
31 public void access(String dir, int token) {
32 List f = getAllFiles(dir);
33 List r = getResources("/OOPSLA");
34 List p = getPrivate("/Data");
35 List q = getProtected("/Data");
36 for (File file : f) {
37 if (!invisible(p)
38 && p.contains(file))
38 continue;
39 if (!invisible(q)
40 && q.contains(file)
41 && q.indexOf(file) > token)
42 continue;
43 if (r.contains(file))
44 System.out.println("Access");
45 }
46 }

Figure 3.2: A program accessing the available and visible files in a specific directory

generate container replacement for program efficiency improvement in Section 3.5. Sec-

tion 3.6 and Section 3.7 show the details of the implementation and evaluation results.

Finally, we summarize CRES in Section 3.8.

3.2 Cres in a Nutshell

In this section, we present a motivating example to state the importance of replacing ineffi-

cient containers for program efficiency improvement (Section 3.2.1), and illustrate the key

idea of our approach to solving the problem of complexity-guided container replacement

synthesis (Section 3.2.2).

3.2.1 Motivating Example

Figure 3.2 presents the example extracted and simplified from the projects iotdb and

google-http-java-client, which are two popular open-source data-centric applications. The

container objects o2, o11, o17, and o26 are allocated by the allocation statements at lines

2, 11, 17, and 26, respectively. The methods getAllFiles and getResources collect the files

in the directories named dir and OOPSLA, and store them in o26 and o2, respectively.

28

The methods getPrivate and getProtected collect the files demanding two different access

privileges and store them in two ArrayList objects o11 and o17, respectively. We can obtain

three observations as follows.

• The ArrayList object o2 is manipulated by ArrayList.add and ArrayList.contains, so the

programmers only wish to know whether an element is stored in o2, i.e., the value-

ownership of o2. Notice that a HashSet object also supports the value-ownership

checking and returns the same result. Besides, the method HashSet.contains works

with amortized constant time. Therefore, the program will be more efficient if we

replace ArrayList with HashSet at line 2.

• The ArrayList object o26 is manipulated by the insertions and traversal. The methods

of LinkedList also support the same functionalities. Besides, the method LinkedList.add

runs in constant time complexity while the method ArrayList.add works with amor-

tized constant time because of memory reallocation. Thus, we can replace ArrayList

with LinkedList to reduce time consumption.

• The ArrayList object o11 is created for the value-ownership checking. However, o11

and o17 are provided as the parameters of the method invisible. The programmers are

concerned about the index-value correlation of o17 in the invocation of the method

ArrayList.indexOf. If we replace the type of o11 with HashSet, the code cleanliness can

be degraded, as the method invisible should be inlined at two call sites. Thus, we

only leverage LinkedList to avoid memory reallocation.

The replacements can bring a significant improvement in program efficiency. For ex-

ample, the total execution time of the corresponding test cases in google-http-java-client

can be reduced by 27.1% if we replace an ArrayList object with a LinkedList object. A large

body of literature also reveals that inefficient container types can introduce unnecessary

time consumption and even increase time complexity [41, 40, 19]. Thus, it is meaningful

to synthesize container replacements to improve program efficiency.

29

3.2.2 Synthesizing Replacement

The synthesized container replacements should preserve the program behavior and achieve

the optimization for large inputs. Unfortunately, it is non-trivial to find the replacements

satisfying the two constraints. First, we can not determine which container types can

guarantee the behavioral equivalence after replacements if we do not know how container

objects are manipulated. Even if several container types are interchangeable in any usage

context, such as LinkedList and ArrayList, more general replacements, such as transforming

the type of o2 to HashSet, can not be discovered [41, 19, 43]. Second, it is far from practical

to derive a tight bound of the time complexity for a real-world program [100, 101, 102]. We

need an effective and computable measure to guide the synthesis such that the synthesis

can achieve the input-agnostic optimization for large inputs.

The key idea of our approach comes from the observation about the intention of con-

tainer usage. We realize that the purpose of programmers is to utilize specific facts about

containers, which we call container properties. Programmers can query and update the

container properties by invoking container methods. In Figure 3.2, for example, the pro-

grammers are concerned about the value-ownership of o2, i.e., the fact that whether an

object is stored in o2. The methods ArrayList.contains and ArrayList.add query and update

the value-ownership, respectively. When the concerned properties can be updated and

queried by more efficient methods in the same way, we can replace the types and meth-

ods to improve program efficiency. Specifically, we propose two concepts to address the

challenges:

• We introduce container behavioral equivalence to determine the methods that query

and update the concerned properties in the same way as the original ones. For in-

stance, only the value-ownership of o2 is concerned in Figure 3.2, and the methods

of HashSet guarantee the container behavioral equivalence. Thus, replacing it with

a HashSet object preserves the behavioral equivalence.

• We propose container complexity superiority to measure whether the methods ma-

nipulating a container object are more efficient after replacements. In Figure 3.2,

HashSet.contains has much lower time complexity than ArrayList.contains, and Hash-

Set.add and ArrayList.add do not have significant difference in complexity. After

30

Program P P'

Container Property
Analysis

Method Candidate
Identification

Synthesizer Verifier

Method
Specification

Container
Properties

Method
Candidates

Figure 3.3: Schematic overview of our approach

transforming the type from ArrayList to HashSet, the new program has container

complexity superiority.

Based on our insight, we can improve the program efficiency for general inputs if the

replacements guarantee the container behavioral equivalence and the container complex-

ity superiority simultaneously. Figure 3.3 shows the workflow of our approach, which

consists of three stages.

• In the first stage, the container property analysis identifies which container proper-

ties are queried and how they are updated upon each container object in the pro-

gram. For example, it can discover that only the value-ownership is queried upon

o2 and o11 in Figure 3.2.

• In the second stage, the methods are identified as the method candidates if they

the preserve container behavioral equivalence. For instance, the methods Hash-

Set.contains and HashSet.add are the candidates of the container method calls at

line 5, 6, and 43, as they query and update the value-ownership in the same way as

the methods ArrayList.contains and ArrayList.add.

• In the third stage, we instantiate a CEGIS paradigm [106, 107, 108] to synthesize

container types and methods. A synthesizer selects efficient method candidates and

resolves the counterexamples in the consequent rounds if type checking fails in the

verification. For instance, the actual parameters of the method invisible are incon-

sistent at lines 37 and 39 if we replace o11 with a HashSet object, so the synthesizer

refines the type of o11 by selecting another type LinkedList in a consequent round.

Specifically, the generation and selection of method candidates both rely on sound rea-

soning about the queried container properties and how they are updated in the program.

31

Technically, we establish an abstract domain to abstract the container-property queries in

the program, which guide the generation of method candidates and further guarantee the

container behavioral equivalence.

With the benefits of our insight, our approach stands out due to the following three

perspectives.

• The low overhead introduced by the synthesis. The synthesis algorithm does not rely on

any input and execution of the program, and static reasoning of container properties

is sufficient to identify candidates with quite low overhead.

• Sound and various replacements. The algorithm analyzes the concerned container

properties to guide method candidate identification, which not only guarantees the

behavioral equivalence but also discovers the replacements uncovered by existing

approaches, such as replacing ArrayList with HashSet, and replacing LinkedHashMap

with HashMap.

• Input-agnostic optimization. The algorithm utilizes the complexity specification of

container methods to guide the synthesis so that the replacements are insensitive

to the program inputs, and the time complexity of the program is more likely to be

decreased.

3.3 Problem Formulation

In this section, we first present the language used in this paper and its concrete state

(Section 3.3.1). We then define the behavioral equivalence (Section 3.3.2) to constrain

the program behavior after container replacements. Finally, we formalize the problem

of complexity-guided container replacement synthesis (Section 3.3.3).

3.3.1 Program Syntax and Concrete State

Let C and M denote the family of the container types and their methods, respectively.

Also, we let method denote the function mapping a container type τ to the set of container

methods supported by τ. Figure 3.4 shows the syntax of the language. The expressions

32

Program P := F+

Container method FC := fC(v1, . . . , vm)
Function F := f(v1, . . . , vn){S; return e}

Statement S : = v = new τ | v = e | S1;S2 | return e
| if (e) then S1 else S2 | while (e) do S od
| v = c.fC(v1, . . . , vm) | v = f(v1, . . . , vn)

Expression e := a | v | u1 ⊕ u2 | ⊗ u
Variable v := c | u

Operator ⊕ := ∧ | ∨ | + | − | = | · · · ⊗ := ¬ | − | · · ·

Figure 3.4: The syntax of the language.

include literals, variable expressions, and unary/binary expressions. A statement can be

an allocation statement, an assignment, a sequencing, a branch, a loop, a function call, or

a return statement. Particularly, a function call is either an invocation of a user-defined

function f or a container method fC with the receiver container c. A program has a unique

function as its entry, which has a unique return statement.

We denote the sets of program variables and values by Var and Val := Addr ∪ OVal,

respectively. Specifically, Addr is a set of addresses of objects, OVal is a set of non-address

values, and Idx ⊆ Val includes the index values of the containers. Formally, we can define

the concrete state as follows.

Definition 3.3.1 (Concrete State) A concrete state s ∈ State is a 3-tuple (ε,µ,β), where

• An environment ε ∈ Env := Var→ Val maps a set of variables Var to a set of values Val.

• A memory µ ∈ Mem := (Addr, Idx) → Val maps a pair of an address and an index to a

value, which is the value stored at the index of a container object.

• A base β ∈ Base := Addr → U, where U := {((A,⪯1), . . . , (A,⪯k)) | A ⊆ Idx}, maps

an address to a k-tuple, of which the entry is a partially ordered set. Each partial order ⪯i
determines a specific order of the indexes of the container object stored at the address.

The concrete state supports the semantics of container methods with various features.

In JCF, for instance, TreeMap supports accessing the value associated to the largest key,

33

public boolean foo1(String a) {
List<String> l = new ArrayList<>();
l.put("PL"); l.put("SE");
boolean b1 = l.contains(a);
return b1;

}

public boolean foo2(String a) {
Set<String> s = new HashSet<>();
s.add("PL"); s.add("SE");
boolean b2 = s.contains(a);
return b2;

}

Figure 3.5: Two behaviorally equivalent programs

and LinkedHashMap supports iterating according to the insertion order. These advanced

features can be expressed by specific partial orders in the base.

Example 3.3.1 Consider the function foo1 in Figure 3.5. At the exit of the function, we have

ε(l) = al, µ(al, 0) = “PL” and µ(al, 1) = “SE”, where al is the address where the ArrayList

object is allocated. Particularly, we enforce β(al) equal to ∅, as its semantics does not rely on any

order of the indexes.

3.3.2 Behavioral Equivalence

The program after the replacements should preserve the semantic equivalence. Based

on the concrete state, we define the behavioral equivalence [99] for two programs to

constrain the input-output relationship, which is a specific form of program behavior.

Definition 3.3.2 (Behavioral Equivalence) P is behaviorally equivalent to P ′, denoted by P ≃

P ′, if and only if for any input, the expressions e and e ′ in the return statements of the entry

functions evaluate to the same value, i.e., [[e]](s) = [[e ′]](s ′). [[e]] is the function mapping a concrete

state to the value of the expression. s and s ′ are the concrete states of P and P ′ at the exits,

respectively.

Example 3.3.2 Suppose that s1 = (ε1,µ1,β1) and s2 = (ε2,µ2,β2) are the concrete states at

the exits of the functions foo1 and foo2 in Figure 3.5, respectively. We have ε1(b1) = T and

ε2(b2) = T iff a is equal to “PL” or “SE”, i.e., [[b1]](s1) = [[b2]](s2), indicating that they are

behaviorally equivalent.

Behavioral equivalence defines an equivalence relation between two programs based

on the input-output relationship, which is a program behavior concerned in many scenar-

34

ios [99]. The program after replacements should be behaviorally equivalent to the original

program, preserving the semantics we are concern about.

3.3.3 Problem Statement

To synthesize container replacements, we identify the allocation statements of container

objects and container method calls as the skeleton of synthesis. Given a program P, we

denote the set of the two kinds of statements by S. In what follows, we let Sa ⊆ S and

Sc ⊆ S denote the sets of container allocation statements and container method calls,

respectively. We state the problem of complexity-guided container replacement synthesis

as follows.

Definition 3.3.3 (Complexity-Guided Container Replacement) Given a program P, synthe-

size the replacement mappings ψc : Sc → M and ψa : Sa → C. For stc ∈ Sc and sta ∈ Sa, we

replace the container method fC invoked by stc with ψc(stc), and replace the container type τ used

in sta with ψa(sta), which should satisfy: (1) Behavioral equivalence: P ′ and P are behavioral

equivalent; (2) Complexity superiority: P ′ consumes no more time than P for any large input.

Intuitively, the behavioral equivalence and the complexity superiority formulate our

expectations on the new program after replacements. To solve the problem, we establish

the abstraction for containers in Section 3.4 and design the synthesis algorithm to synthe-

size the container replacement mappings in Section 3.5.

Remark. We only concentrate on the statement-wise replacements synthesis in our

problem. A major advantage of performing such a form of replacements is that the pro-

gram structure is not affected by the replacements. If we conduct more aggressive changes

to the code, e.g., defining two functions to replace the invocation of the function invisible

at lines 37 and 39 in Figure 3.2, the program after replacements can have a big difference

from the original one, which degrades the code cleanliness and increases the difficulty of

the maintenance.

35

3.4 Program Abstraction

In this section, we first introduce the notion of the container-property query and establish

the abstract states (Section 3.4.1). We then propose the method semantic specification and

define the concept of the container behavioral equivalence to guarantee the behavioral

equivalence (Section 3.4.2). Finally, we define the notion of the container complexity su-

periority as the heuristic guidance to synthesize replacements satisfying the complexity

superiority (Section 3.4.3).

3.4.1 Container Property Abstraction

As explained in Section 3.2.2, we can represent the intention of utilizing containers by

the concerned container properties, which are specific forms of facts about containers.

To show the intention of container usage, we define the container-property query and

establish an abstract domain to abstract the concerned container properties.

Container-Property Query. We introduce the concept of the container property to in-

dicate the intention of container usage. A container property is essentially a numeric

quantity or a predicate upon the indexes and the values of a container object. Intuitively,

it is a specific form of facts about a container object. Table 3.1 shows the typical container

properties of commonly-used container types in JCF, which depict the following facts.

• size shows the size of a container object, i.e., the number of the values in the con-

tainer.

• isIdx(λ) and isVal(v) indicate the index-ownership and value-ownership, respectively.

λ or v is an index or a value of the container iff isIdx(λ) = T or isVal(v) = T .

• isCor(λ, v) indicates the index-value correlation. The index λ is paired with the value

v iff isCor(λ, v) = T .

• InsOrd(λ1, λ2) indicates the insertion order of indexes. λ1 is inserted before λ2 iff

InsOrd(λ1, λ2) = T .

• KeyOrd(λ1, λ2) indicates the order of keys. λ1 is larger than λ2 iff KeyOrd(λ1, λ2) = T .

36

Table 3.1: Examples of container properties

size isIdx(λ) isVal(v) isCor(λ, v) InsOrd(λ1, λ2) KeyOrd(λ1, λ2)

ArrayList ✓ ✓ ✓
LinkedList ✓ ✓ ✓
HashSet ✓ ✓ ✓
TreeSet ✓ ✓ ✓ ✓
LinkedHashSet ✓ ✓ ✓ ✓
HashMap ✓ ✓ ✓ ✓
TreeMap ✓ ✓ ✓ ✓ ✓
LinkedHashMap ✓ ✓ ✓ ✓ ✓

Let Property denote the family of the container properties. Based on the concept of the

container property, we define the container-property query to formalize which container

property is utilized by a container method call.

Definition 3.4.1 (Container-Property Query) A container-property query is a function qmap-

ping a pair of a concrete state and a container variable to a container property p, i.e.,

q : State× Var→ Property

(s, c) 7→ p

Furthermore, we can construct a family of container-property queries Q to represent

all the possible container-property queries induced by container methods.

Example 3.4.1 Consider the container type LinkedHashMap as an example. The methods Linked-

HashMap.containsKey and LinkedHashMap.containsValue induce the queries of the container

properties isIdx(λ) and isVal(v), respectively. Besides, the method LinkedHashMap.get queries the

container property isCor(λ, v). Its iterator also queries the container property InsOrd(λ1, λ2), as

its semantics relies on the insertion order.

Abstract State. Based on container-property queries, we can establish an abstraction

of concrete states in Section 3.3.1. To assure the boundedness of the abstract domain, we

adopt the allocation site-based memory abstraction [52], and introduce an abstract object

to summarize the memory objects allocated by the same allocation statement. Formally,

we define the abstract state for container-manipulating programs as follows.

37

Definition 3.4.2 (Abstract State) Vc is the set of container variables and Oc is the set of abstract

container objects. An abstract state is s̃ = (ε̃, ρ̃), where

• ε̃ : Vc → 2Oc indicates the points-to fact of container variables. For each container variable

c ∈ Vc, ε̃(c) is the set of abstract container objects which c may point to.

• ρ̃ : Oc → 2Q indicates the property-query fact of container objects. For each container object

o ∈ Oc, ρ̃(o) contains the container-property queries occurring upon the object o.

Example 3.4.2 Consider the function foo1 in Figure 3.5. We have Oc = {o2}, where o2 is the

ArrayList object allocated at line 2. The container object is only created for the value-ownership

checking. Before the return statement, the abstract state is (ε̃, ρ̃), where ε̃(l) = {o2}, ρ̃(o2) = {q},

and q(s, c) is isVal(v), indicating that only the value-ownership of o2 is concerned in the program.

Intuitively, an abstract state abstracts away the facts irrelevant to container variables

and objects. Based on the abstract state, we can determine how a container object is uti-

lized in the program by identifying (1) which container objects are manipulated and (2)

which container properties are concerned. The abstract state provides sufficient infor-

mation about the intention of container usage and enables us to examine the behavioral

equivalence.

3.4.2 Behavior Constraint

Based on our insight, the behavioral equivalence must hold if the container properties are

queried and updated in the same way as the original program. To formulate the criteria

explicitly, we first introduce the notion of the container-property modifier and provide a

novel representation of method semantic specification. We then propose the container be-

havioral equivalence to specify the constraints that guarantee the behavioral equivalence.

Method Semantic Specification

To maintain the container content for further queries in the program, each container method

updates the memory µ and base β in the concrete state and modifies the container proper-

ties. To depict the effect of a container method, we define the container-property modifier

formally as follows.

38

Definition 3.4.3 (Container-Property Modifier) A container-property modifier is a function t

mapping a 4-tuple, which consists of a container variable, a tuple of parameter variables, a concrete

state, and a container property, to a container property, i.e.,

t : Var× Var∗ × State× Property→ Property

(c,args, s,p) 7→ p ′

where p and p ′ indicate the container properties before and after applying the modifier, respectively.

Similar to container-property queries, we can construct a family of container-property

modifiers T to enumerate all the possible effects of container methods.

Example 3.4.3 Suppose that the language only supports the usage of LinkedHashMap. A container-

property modifier can be one of the following forms: (1) Increasing or decreasing the size by at most

one; (2) Inserting or removing an index or a value; (3) Inserting or removing a pair; (4) Inserting

or removing an element from the partially ordered set, which preserves the insertion order.

Notice that a container-property modifier can affect several container properties. To

show the effect explicitly, we establish a function ωT : T → 2Q mapping a container-

property modifier to the set of the container-property queries affected by it. For instance,

when t inserts or removes an element in the i-th partially ordered set of the base, it can

affect the query of i-th partial order.

Given a container method, its semantics is essentially a combination of two orthog-

onal parts, namely specific container-property queries and container-property modifiers.

Formally, we can define the method semantic specification as follows.

Definition 3.4.4 (Method Semantic Specification) The method semantic specification is a func-

tion αM : M→ 2Q × 2T. For a given fC ∈M, (Q, T) := αM(fC) indicates the container-property

queries and the container-property modifiers induced by fC, respectively.

Example 3.4.4 The method semantic specification maps LinkedHashMap.get to ({q},∅), where

q(s, c) = isCor(λ, v). Similarly, LinkedHashMap.put is mapped to (∅, {t1, t2, t3, t4, t5}), where

t1 increases the size by at most one, and ti (2 ⩽ i ⩽ 5) insert an element or a pair to update

isIdx(λ), isVal(v), isCor(λ, v), and InsOrd(λ1, λ2), respectively.

39

The method semantic specification describes the semantics of container methods in a

compact way, blurring the details of how the memory is updated and container property

is computed. Using the abstraction, we propose the container property analysis in Section

3.5.1 to compute the abstract states, which maintain the concerned container properties of

each container object. The properties provide sufficient guidance to guarantee the behav-

ioral equivalence in the container replacements.

Container Behavioral Equivalence

To guarantee the behavioral equivalence in the container replacements, the container

methods in the new program P ′ should query and modify the concerned container prop-

erties in the same way as the ones in the program P. Besides, we need to constrain the

types of container objects manipulating by the same container method call, which should

be equal to assure that P ′ is well-typed. To provide the criteria of the behavioral equiva-

lence for our problem explicitly, we define the container behavioral equivalence formally

as follows.

Definition 3.4.5 (Container Behavioral Equivalence) Given two programs P and P ′, where

P ′ is obtained by applying ψa and ψc to P to perform container replacements. P and P ′ have the

container behavioral equivalence relation, denoted by P ≃C P
′, if and only if for any stc ∈ Sc in

the form of v = c.fC(v1, . . . , vm), ψa and ψc satisfy

Q = Q ′ (3.1)

∀o ∈ ε̃stc(c) ∀q ∈ ρ̃e(o), η(T ,q) = η(T ′,q) (3.2)

∀o1 ∈ ε̃stc(c) ∀o2 ∈ ε̃stc(c), alloc(o1, sta1)∧ alloc(o2, sta2)→ ψa(sta1) = ψa(sta2) (3.3)

where (Q, T) := αM(fC) and (Q ′, T ′) := αM(ψc(stc)). (ρ̃e, ε̃e) and (ρ̃stc , ε̃stc) are the program

states at the exit of P and before stc, respectively. The predicate alloc(o, sta) indicates the relation

that o is allocated by sta. η is defined as follows:

η(T ,q) = {t | q ∈ ωT(t), t ∈ T } (3.4)

The intuition behind Definition 3.4.5 is straightforward. The constraints in Equa-

tions 3.1 and 3.2 assure that the returned value of a container method call in P ′ is always

40

the same as the one in P, as the methods in P ′ query and modify the concerned container

properties in the same way as the ones in P. Meanwhile, Equation 3.3 constrains the types

of container objects manipulated by the same container method call, assuring the program

P ′ is well-typed.

Obviously, we can explicitly examine the equations based on the abstract states to de-

termine the methods and types in the replacements. Specifically, we utilize Equations 3.1

and 3.2 to identify possible methods for container method replacements (Section 3.5.2),

and leverage Equation 3.3 to refine the replacements in the synthesis (Section 3.5.3). For-

mally, we state Theorem 3.4.1 to justify that container replacements assuring container

behavioral equivalence finally guarantee behavioral equivalence.

Theorem 3.4.1 Container behavioral equivalence relation is a behavioral equivalence relation, i.e.,

P ≃C P
′ ⇒ P ≃ P ′

Proof. According to Definition 3.4.5, P ′ only differs from P in terms of the container

allocation statements and container method calls. Therefore, we only need to prove that

for each container method call v = c.fC(v1, . . . , vm) in P and the corresponding call v ′ =

c.f ′C(v1, . . . , vm) in P ′, we have the equality relation [[v]](s) = [[v ′]](s ′), where f ′C := ψc(stc).

s and s ′ are the program states after the container method calls in P and P ′, respectively.

If not, we can find a control flow path l in P and l ′ in P ′ containing stc := v =

c.fC(v1, . . . , vm) and st ′c := v ′ = c.f ′C(v1, . . . , vm), respectively, which are the first container

method calls in l and l ′ violating the equality relation. According to Equation 3.1, we have

Q1 = Q ′1, where (Q1, T1) := αM(fC) and (Q ′1, T ′1) := αM(ψc(stc)). Obviously, there exists a

pair of container method calls located not after stc and st ′c in l and l ′, respectively, which

induce different modifiers upon a container property in Q. Denote the two method calls

by stp and st ′p, which invoke gC and g ′C, respectively. Assume that (Q2, T2) := αM(gC) and

(Q ′2, T ′2) := αM(g ′C). Then, we have

∃q∗ ∈ Q, η(T2,q∗) ̸= η(T ′2,q∗)

The method calls manipulate the container object o, of which the properties in Q are

queried by stc and st ′c afterwards. According to the definition of ρ̃e, we have Q ⊆ ρ̃e(o),

41

thus we have

∃q∗ ∈ ρ̃e(o), η(T2,q∗) ̸= η(T ′2,q∗)

This contradicts with Equation 3.2. Q.E.D.

Theorem 3.4.1 enables us to guarantee the behavioral equivalence by examining the

container behavioral equivalence. For each container method call, we can identify its

method candidates which satisfy the constraints in Definition 3.4.5. Finally, we can select

efficient container candidates so that the replacements are likely to satisfy the complexity

superiority.

3.4.3 Complexity Guidance

To achieve the optimization, we expect the new program to satisfy the complexity superi-

ority. Specifically, the synthesis algorithm should be aware of the time complexity of each

container method. To this end, we propose the method complexity specification (Section

3.4.3) and then define container complexity superiority to provide the effective guidance

for the synthesis (Section 3.4.3).

Method Complexity Specification

To depict time complexity of a container method in a fine-grained manner, we define

a family of time complexity functions TC to represent different time complexities, which

include (amortized) constant time complexity, (amortized) linear time complexity, etc. The

functions of amortized time complexity are introduced as symbols to distinguish them

from constant time complexity, linear time complexity, etc. Meanwhile, there exists an

order between several container methods even if they have the same time complexity

function. For example, the method LinkedHashMap.put has to maintain the indexes in

a linked list to preserve the insertion order, and consumes more time than the method

HashMap.put. Based on TC, we can formalize the method complexity specification.

Definition 3.4.6 (Method Complexity Specification) The method complexity specification is

a function CS mapping a container method fC to its complexity score θ · tc(n), indicating its time

complexity and a constant factor.

42

Example 3.4.5 The methods HashMap.put and LinkedHashMap.put are mapped to θ1 · tc(n)

and θ2 · tc(n), respectively, where θ1 < θ2. tc(n) is the function of amortized constant time

complexity. θ1 < θ2 indicates that the method LinkedHashMap.put consumes more time than the

method HashMap.put.

Based on Definition 3.4.6, we can measure the total time complexity score of container

method calls by a function of n. Then we can naturally compare the order of the com-

plexity scores of container method calls in two programs by comparing the coefficients of

tci(n), where tci(n) is the time complexity function occurring in the complexity scores.

Container Complexity Superiority

Although the method complexity specification provides an abstraction of the efficiency of

each container method, we are still unaware of the frequency of container method calls,

and estimating the time complexity for a general program is far from practical. To es-

tablish effective guidance for synthesis, we define the container complexity superiority

formally as the heuristic criteria of the complexity superiority.

Definition 3.4.7 (Container Complexity Superiority) Let P ′ be the program obtained by ap-

plying ψa and ψc to P. P ′ has the container complexity superiority over P iff for any sta ∈ Sa

and o allocated by sta, we have∑
stc∈Sc(o)

CS(ψc(stc)) ⩽
∑

stc∈Sc(o)
CS(fC) (3.5)

where fC is the container method in stc, and Sc(o) contains the container method calls that ma-

nipulate o in an execution of P, i.e.,

Sc(o) = {stc | stc := v = c.fC(v1, . . . , vm) ∈ Sc,o ∈ ε̃stc(c)} (3.6)

ε̃stc indicates the points-to facts before the statement stc.

Example 3.4.6 Assume that we have specified the method complexity specifications as follows:

CS(ArrayList.add) = tc(n) CS(ArrayList.contains) = n

CS(HashSet.add) = 2 · tc(n) CS(HashSet.contains) = 1

43

tc(n) is the time complexity function of amortized constant complexity. In Figure 3.2, the total

time complexity score of the container method calls manipulating o2 is 2n+ tc(n), After replacing

it with a HashSet object, the score is 2 + 2 · tc(n) < 2n + 2 · tc(n), showing the container

complexity superiority of the program after the replacements.

Checking the complexity superiority requires precise reasoning of program complex-

ity. However, deriving a tight bound of program complexity is stunningly difficult [102]

and far from practical for a real-world program [101, 109], especially for programs involv-

ing sophisticated manipulations of data structures [100, 110, 111, 112]. Although the con-

tainer complexity superiority does not imply the complexity superiority, it provides the

effective guidance to find the opportunity of synthesizing the replacements to improve

program efficiency, as evidenced by our evaluation in Section 3.7.

3.5 Synthesis Algorithm

This section presents our synthesis algorithm that achieves the goals described in Section

3.4.2 and Section 3.4.3. It takes as inputs the source code of a program P and the container

method specifications. The algorithm finally computes the container replacement map-

pings ψa and ψc, based on which we can obtain a new program P ′. As shown in Section

3.4.2 and Section 3.4.3, the container behavioral equivalence and the container complex-

ity superiority pose sophisticated constraints for the container replacement mappings ψa

and ψc. To satisfy all the constraints, our synthesis algorithm works with three stages as

follows:

• To understand the intention of container usage, we present the container property

analysis to determine which container-property queries occur upon a container ob-

ject (Section 3.5.1).

• To assure P ′ queries and modifies container properties in the same way as P, we

identify the method candidates for a container method call based on Equations 3.1

and 3.2 (Section 3.5.2).

• A synthesizer selects the methods from the method candidates with lowest time

complexity to guarantee the container complexity superiority. A verifier performs

44

ρ̃ ⊢ S1 ⇝ ρ̃1 ρ̃1 ⊢ S2 ⇝ ρ̃ ′

ρ̃ ⊢ S1;S2 ⇝ ρ̃ ′

(SEQUENCING)

ρ̃ ⊢ S1 ⇝ ρ̃1 ρ̃ ⊢ S2 ⇝ ρ̃2
ρ̃ ′ = ρ̃1[o 7→ ρ̃1(o)∪ ρ̃2(o) | o ∈ Oc]

ρ̃ ⊢ if (e) then S1 else S2 ⇝ ρ̃ ′

(BRANCH)

(Q, T) = αM(fC)
ρ̃ ′ = ρ̃ [o 7→ ρ̃(o)∪Q | o ∈ ε̃(c)]
ρ̃ ⊢ v = c.fC(v1, . . . , vm)⇝ ρ̃ ′

(CONTAINERCALL)

ρ̃ ⊢ S⇝ ρ̃ ′ ρ̃ = ρ̃ ′

ρ̃ ⊢ fix(S)⇝ ρ̃

(FIX-I)

ρ̃ ⊢ S⇝ ρ̃1 ρ̃ ̸= ρ̃1
ρ̃2 = ρ̃1[o 7→ ρ̃(o)∪ ρ̃1(o) | o ∈ Oc]

ρ̃2 ⊢ fix(S)⇝ ρ̃ ′

ρ̃ ⊢ fix(S)⇝ ρ̃ ′

(FIX-II)

ρ̃ ⊢ fix(S)⇝ ρ̃ ′

ρ̃ ⊢ while (e) do S od⇝ ρ̃ ′

(LOOP)

Figure 3.6: Abstract transformers in the container property analysis.

type checking by examining whether Equation 3.3 holds to assure the container be-

havioral equivalence. If the type checking fails, the synthesizer refines the synthe-

sized types and methods in the consequent rounds (Section 3.5.3).

We also state the soundness and complexity of the synthesis theoretically (Section 3.5.4).

The soundness theorem guarantees that the new program P ′ must be behaviorally equiv-

alent to P. For clarity, we use the program in Figure 3.2 to explain each stage of our

approach throughout this section.

3.5.1 Container Property Analysis

According to Definition 3.4.1, we can compute container-property queries to reveal the

intention of container usage. Suppose we have obtained points-to fact ε̃ at each program

location based on an off-the-shelf points-to analysis. Using the method semantic speci-

fication, we can easily compute the property-query fact ρ̃ at each program location. Fi-

nally, we obtain the property-query fact ρ̃e at the exit of the program, indicating all the

container-property queries occurring in the program.

Figure 3.6 defines the abstract transformers of program statements. Specifically, we

45

should handle four program constructs, including a sequencing, a branch, a container

method call, and a loop.

• The rule of sequencing is simple, in which the transformer is exactly the composition

of the transformers of its parts.

• For a branch, the transformer merges the container-property queries occurring upon

a container object along two paths.

• The rule CONTAINERCALL relies on the points-to fact ε̃ before the statement to iden-

tify the container object o manipulated by the container method call. Q indicates

the container-property queries induced by fC. To update ρ̃, we merge ρ̃(o) with Q

directly to show that the container-property queries in Q occur upon o.

• To compute the container-property queries in a loop, we need to calculate the fixed

point by applying the transformer of the loop body iteratively. Due to the finite

sizes of Q and Oc, the fixed point must be reached after applying the rule FIX-II

finite times.

Example 3.5.1 Consider the ArrayList object o11 in Figure 3.2. According to the method semantic

specification, we have ε̃(r) = {o11} and ρ̃(o11) = ∅ before line 23. The method ArrayList.contains

queries the container property isVal(v), i.e., the value-ownership of o11. By applying the rule

CONTAINERCALL, we have ρ̃ ′(o11) = {q}, where q(s, c) = isVal(v), indicating that the value-

ownership query has occurred upon o11 after line 23. Similarly, o11 is also manipulated by the

container method call at line 38, and we can obtain ρ̃e(o11) = {q} at the exit of the program, which

means that only the value-ownership query occurs upon o11.

It is worth noting that the container property analysis collects the queried container

properties interprocedurally. For each function call, the analysis merges the queried con-

tainer properties of its parameters and return value, such that the container properties

queried upon a single container object in different functions can be aggregated. Even-

tually, we can understand the usage intention of each container object according to all

the queried container properties. Besides, the container property analysis reasons how

container objects are utilized in a flow-sensitive manner. Crucially, ρ̃e over-approximates

46

Algorithm 1: Identifying method candidates.
Input: P: A container-manipulating program; αM: Method semantic specification;
Output: ψ̂c: Method candidate mapping;

1 Sa, Sc ← getSkeleton(P);
2 ρ̃e ← getQueryFact(P);
3 ψ̂c ← [stc 7→ ∅ | stc ∈ Sc];
4 foreach stc := v = c.fC(v1, . . . , vm) ∈ Sc do
5 ε̃stc ← getPTFact(P, stc);
6 foreach f ′C ∈M do
7 if isEquivalent (fC, f ′C, ρ̃e, ε̃stc , αM) then
8 ψ̂c(stc)← ψ̂c(stc)∪ f ′C;

9 return ψ̂c;

the container-property queries occurring upon container objects and provides sufficient

guidance for method candidate identification to guarantee the container behavioral equiv-

alence. Notably, pointer analysis affects the precision of the container property analysis.

When the points-to facts are imprecise, the container property analysis can discover that

a container object o is manipulated by a container method call, while o is not pointed

by c in any concrete execution. Therefore, ρ̃e can contain the container-property queries

which do not occur in any execution. We will quantify the effect of pointer analysis in the

evaluation to show that its imprecision degrades the effectiveness of the replacements.

3.5.2 Method Candidate Identification

To guarantee the behavioral equivalence, we have to determine the container methods

preserving the container behavioral equivalence. Specifically, the constraints in Equa-

tions 3.1 and 3.2 should be satisfied so that the concerned container properties can be

queried and modified int the same way as the original program. Formally, we define the

method candidate as follows.

Definition 3.5.1 (Method Candidate) Given a container method call stc ∈ Sc, a container

method f ′C ∈M is a method candidate of stc if and only if it satisfies Equations 3.1 and 3.2.

Essentially, we should compute the method candidate mapping ψ̂c : Sc → 2M to indi-

cate the method candidates of a container method call. At a high level, we can leverage

47

the method semantic specification αM and the property-query fact ρ̃e at the exit to identify

the method candidates.

Algorithm 1 shows the procedure of identifying method candidates. It first utilizes the

points-to fact ε̃stc to identify the container objects manipulated by the container method

call stc. getQueryFact returns the property-query fact ρ̃e at the exit of P, and isEquivalent

checks whether Equations 3.1 and 3.2 hold for a container method call stc. Utilizing the

method semantic specification αM, isEquivalent enumerates each container object o ma-

nipulated by stc and checks whether the method f ′C queries and modifies the concerned

container properties of o in the same way as the original method fC in P. Finally, Algo-

rithm 1 collects the method candidates for each container method call.

Example 3.5.2 Assume that C = {ArrayList, LinkedList, HashSet}. Consider the object o11 in

Figure 3.2. Utilizing the container property analysis, we obtain ρ̃e(o11) = q, where q(s, c) =

isVal(v). The container method calls stc@l23 and stc@l38 manipulate o11 at lines 23 and 38, re-

spectively. The methods HashSet.contains and ArrayList.contains both induce the value-ownership

query and do not induce any container-property modifier, so Equations 3.1 and 3.2 both hold. Sim-

ilarly, we have

ψ̂c(stc@l23) = ψ̂c(stc@l38) = {ArrayList.contains, LinkedList.contains, HashSet.contains}

Theorem 3.4.1 states that container behavioral equivalence implies the behavioral equiv-

alence. According to Algorithm 1, Equations 3.1 and 3.2 must hold if we select the method

for a container method call stc from its method candidate set ψ̂c(stc). Next, we can assure

the container behavioral equivalence as long as the replacements satisfy Equation 3.3, i.e.,

the new program P ′ is well-typed. Therefore, we can obtain a well-typed program P ′ after

the container replacements, which is behaviorally equivalent to P.

3.5.3 Container Replacement Synthesis

To improve program efficiency, we should select the methods from ψ̂c(stc) for each con-

tainer method call stc to satisfy the container complexity superiority in Definition 3.4.7.

Besides, we have to conduct type checking by examining Equation 3.3 to assure the con-

tainer behavioral equivalence.

48

Algorithm 2: Container replacement synthesis.

Input: P: A program; ψ̂c: Method candidate mapping; CS: Method complexity
specification;

Output: ψa,ψc: Container replacement mappings;
1 Sa, Sc ← getSkeleton(P);
2 φa,φc ← getOriginalUsage(P);
3 ψa ← [sta 7→ ⊥ | sta ∈ Sa]; ψc ← [stc 7→ ⊥ | stc ∈ Sc];
4 σ← [sta 7→ ∅ | sta ∈ Sa]; ψ̂a ← [sta 7→ C | sta ∈ Sa];
5 foreach sta ∈ Sa do
6 /* Synthesizer: Guess replacements */
7 min←MAX_CS;
8 Sa ← Sa \ {sta};
9 foreach τ ′ ∈ ψ̂a(sta) do

10 ψ ′c ← ψc;
11 foreach stc ∈ callSites(sta) do
12 ψ ′c(stc)← getMinCS(ψ̂c(stc)∩ method(τ ′),CS);
13 if ψ ′c(stc) = ⊤ then
14 ψ̂a(sta)← ψ̂a(sta) \ {τ

′};

15 cur← getCSSum(callSites(sta),ψ ′c,CS);
16 if cur < min then
17 min← cur;
18 ψc ← ψ ′c;
19 ψa(sta)← τ ′;

20

21 /* Verifier: Type checking */
22 foreach st ′a ∈ Sa do
23 if callSites(sta)∩ callSites(st ′a) ̸= ∅ then
24 σ(st ′a)← σ(st ′a)∪ {sta};

25 CE← {st ′a | st
′
a ∈ σ(sta), ψa(st ′a) ̸= ψa(sta), ψa(st ′a) ̸= ⊥}∪ {sta};

26 if |CE| > 1 then
27 foreach st ′a ∈ CE do
28 Sa ← Sa ∪ {st ′a};
29 ψ̂a(st

′
a)←

⋂
st ′′a∈CE ψ̂a(st

′′
a);

30 ψa(st
′
a)← ⊥;

31 ψc ← [stc 7→ ⊥ | stc ∈ callSites(st ′a)];

32 return ψa,ψc;

49

To meet the two requirements, we instantiate a counterexample-guided inductive syn-

thesis (CEGIS) paradigm [107, 106, 113, 114]. Algorithm 2 shows the procedure of con-

tainer replacement synthesis. At a high level, it processes a container allocation statement

sta in a round and finally synthesizes the container replacement mappings ψa and ψc.

Specifically, each round contains the following two steps:

• Guess replacements: The synthesizer selects the most efficient methods from the can-

didates for the container method calls manipulating o, where o is allocated by sta.

• Type checking: The verifier performs type checking by examining Equation 3.3. The

container allocation statements are reprocessed in the consequent rounds if they vi-

olate Equation 3.3.

Initially, Algorithm 2 sets the types and methods to ⊥ in ψa and ψc to indicate unde-

fined types and methods, respectively. Besides, it introduces the mapping ψ̂a to maintain

feasible types for container allocation statements, and all the types are regarded as feasible

initially. Each round of Algorithm 2 synthesizes the replacements for the container object

o allocated by sta. For clarity, we introduce the function callSites to obtain the container

method calls manipulating o.

Next, to illustrate each step, we use the object o11 in Figure 3.2 as an example. Sup-

pose that sta@l17 has been processed before sta@l11 in the CEGIS loop, where sta@l17

and sta@l11 allocate o17 and o11, respectively. At the beginning of the round, we have

ψa(sta@l17) = LinkedList and HashSet /∈ ψ̂a(sta@l17), as the value-ownership of o17 is

necessary in the program, and LinkedList supports more efficient insertions than ArrayList

by avoiding memory reallocation.

Guess Replacements. The synthesizer enumerates τ ′ ∈ ψ̂a(sta) and utilizes getMinCS

to find the method candidate supported by τ ′ with the lowest complexity (lines 11-14). If

τ ′ does not support any method candidate, getMinCS returns a symbolic method ⊤ with

MAX_CS as its time complexity score, and τ ′ is removed from ψ̂a(sta), indicating that τ ′

is not the feasible type of sta. Finally, the synthesizer selects the container type with the

smallest sum of time complexity scores (lines 15-19).

50

Example 3.5.3 The synthesizer selects the methods HashSet.contains and HashSet.add to ma-

nipulate o11. Because the sum of their complexity scores is smaller than that of any other selection,

the synthesizer enforces ψa(sta@l11) = HashSet.

Type Checking. The verifier performs type checking by examining whether Equa-

tion 3.3 holds (lines 25-26). If type checking fails, it adds the allocation statements to

the set of counterexamples CE, which are refined by being reprocessed in the consequent

rounds (lines 27-31). Moreover, we constrain that the counterexamples have the same set

of feasible container types (line 29), pruning off the type selections causing the failure of

type checking in the consequent rounds.

Example 3.5.4 Before type checking, we have ψa(sta@l17) = LinkedList and ψa(sta@l11) =

HashSet. The container objects o11 and o17 are both manipulated by the container method call

at line 23, violating the constraint in Equation 3.3, so they are refined and reprocessed in the

consequent rounds. At the end of this round, we have HashSet /∈ ψ̂a(sta@l11), as HashSet is

not the feasible container type for sta@l17. Furthermore, their feasible type LinkedList is selected

in the consequent rounds, finally passing type checking.

Particularly, the verifier updates a mapping σ to show the relation between sta and

st ′a that the two allocated objects can be manipulated by the same container method call

(lines 22-24). Intuitively, σ maintains the constraints for type checking, which are refined

and utilized inductively in each round. To improve the efficiency of the synthesis, we

use several data structures to cache the relationships frequently utilized in the synthesis.

For example, we memorize the set of container method calls manipulating the container

object allocated by a specific allocation statement so that we can get the value of callSites

at lines 15, 23, and 31 without unnecessary recomputation.

Algorithm 2 synthesizes the container replacements inductively to guarantee the con-

tainer behavioral equivalence and the container complexity superiority. Specifically, the

counterexample-guided refinement assures that container behavioral equivalence must

hold in the synthesis. Besides, the selected candidates have the lowest complexity among

the method candidates, which assures the container complexity superiority. Even if type

checking fails, the trivial selection, i.e., setting all the types and methods to the origi-

nal ones, is still permissive in the consequent rounds, so the sum of the time complexity

51

scores can not be increased. Obviously, the method complexity specifications determine

the complexity guidance and further affect the synthesized replacements. We will config-

ure different specifications to quantify the influence and demonstrate the advantages of

the form of our method complexity specifications in Definition 3.4.6.

3.5.4 Summary

Based on the sound points-to facts, our approach synthesizes the container replacements

efficiently, which do not change the program semantics. We formulate two theorems to

state the soundness and the complexity of Algorithm 2.

Theorem 3.5.1 (Soundness Theorem) ψa and ψc provide sound container replacements, i.e.,

the program P ′ obtained by applying ψa and ψc for replacements has behavioral equivalence rela-

tion with the original program P.

Proof. Based on Theorem 3.4.1, we only need to prove that for any stc ∈ Sc and

f ′C ∈ ψ̂c(stc), f
′
C and fC satisfy the three equations in Definition 3.4.5, where fC is the con-

tainer method invoked in stc. In Algorithm 1, isEquivalent checks whether Equations 3.1

and 3.2 are satisfied. In Algorithm 2, the verifier performs type checking and examines

whether Equation 3.3 holds. Given sound points-to facts, Equation 3.3 must hold for the

synthesized container replacement mappings. Thus, the soundness of the synthesis totally

relies on the soundness of the container property analysis.

The off-the-shelf points-to analysis provides a sound result ε̃ for the abstract transform-

ers in Figure 3.6. Consider an arbitrary container method call v = c.fC(v1, . . . , vm). For any

concrete execution of the program, the container object manipulated by the method call

can be abstracted by an abstract container object o ∈ ε̃(c). We use a setQ to denote the set

of the container-property queries induced by the call, i.e., (Q, T) := αM(fC).

The rule CONTAINERCALL adds all the container-property queries inQ to ρ̃(o), which

is a subset of ρ̃e(o). Thus, the container-property queries occurring on the concrete con-

tainer object must be included by ρ̃e(o), which means the rule CONTAINERCALL defines a

sound abstract transformer for container method calls. Similarly, we can prove the other

52

three rules, i.e., the rules SEQUENCING, BRANCH and LOOP, define sound abstract trans-

formers. Finally, the soundness of container property analysis assures the soundness of

container replacements. Q.E.D.

Theorem 3.5.2 (Complexity of Synthesis) Assume |Sa| < |Sc|. The time complexity of Algo-

rithm 2 is O(|C|2 · |M| · |Sa| · |Sc|).

Proof. First, consider the guessing process, which corresponds to the steps from line 9

to line 19. The upper bound of the iteration count from line 9 to line 19 is

supsta∈Sa |ψ̂a(sta)| = O(|C|)

Similarly, the upper bound of the iteration count from line 11 to line 14 is O(|Sc|), as

callSites(sta) ⊆ Sc. Notice that the function getMinCS has to find the minimal value from

at most |M| unordered elements, so it runs in O(|M|). The function getCSSum at line 15

also runs in O(|Sc|). In each round, the synthesizer guesses the replacements in

O(|C| · (|Sc| · |M|+ |Sc|)) = O(|C| · |Sc| · |M|)

Second, consider the counterexample generation in the type checking, which corre-

sponds to the steps from line 22 to line 25. The upper bound of the iteration count is

|Sa|. Meanwhile, the disjointness checking at line 23 can be preprocessed in O(|Sa| · |Sc|)

before the synthesis. By looking up the memorization, the step at line 23 can be achieved

in constant time. Also, the construction of CE at line 25 runs in O(|Sa|). Therefore, the

counterexamples are generated in O(|Sa|).

Third, consider the second loop in the type checking, which correspond to the steps

from line 27 to line 31. The upper bound of the iteration count is |CE| = O(|Sa|). The

computation at line 29 can be hoisted out of the loop, which runs in O(|Sa|). The result

can be cached and reused in each iteration in O(1). Therefore, the loop runs in O(|Sa|).

According to the above results, we can conclude that each round of the synthesis runs

in

O(|C| · |M| · |Sc|+ |Sa|+ |Sa|) = O(|C| · |M| · |Sc|+ 2|Sa|)

Finally, consider the upper bound of the number of the rounds in the synthesis. Ac-

cording to the step at line 29, |ψ̂a(st
′
a)| must decrease by at least one, where st ′a will

53

be resolved in the consequent round. On the one hand, |ψ̂a(st ′a)| is bounded by |C|, as

ψ̂a(st
′
a) ⊆ C. On the other hand, |ψ̂a(st ′a)| must be larger than 0 at the end of the synthe-

sis. Therefore, the number of the rounds is bounded by |Sa| · |C|. Assume |Sa| < |Sc|. The

time complexity of Algorithm 2 is

O(|C| · |M| · |Sc|+ 2|Sa|) ·O(|Sa| · |C|) +O(|Sa| · |Sc|)

=O(|C|2 · |M| · |Sa| · |Sc|+ 2|C| · |Sa|2 + |Sa| · |Sc|)

=O(|C|2 · |M| · |Sa| · |Sc|)

Particularly, the assumption is introduced to simplify the estimated complexity of Algo-

rithm 2. In general, the container object allocated by a container allocation statement is

often manipulated by more than one container method call, and a container method call

often only manipulates a single container object. Thus, the assumption holds in almost all

the programs. Q.E.D.

It is worth mentioning that Theorem 3.5.2 does not provide a tight upper bound of

the complexity. Actually, the overhead depends on the multiple aspects of the container

usage. For example, the way of manipulating container objects affects the result of the

container property analysis, and further determines the size of callSites(sta). Besides, it is

more likely to trigger the refinements if a large number of container objects are manipu-

lated by the same container method calls. In practice, the synthesis performs with almost

linear scalability, which is evidenced by our experiments.

3.6 Implementation

We have implemented our approach as a tool named CRES. The inputs of CRES are

the source code and the method specifications, including the method semantic specifi-

cation and the method complexity specification. CRES itself is implemented based on

PINPOINT [3, 115], the static analysis platform in the Ant Group. When analyzing a Java

program, the frontend of PINPOINT transforms the class files to LLVM IR [116], and then

CRES identifies the container allocation statements and container method calls to obtain

the skeleton. In what follows, we discuss more key configurations and designs for the

synthesis algorithm.

54

Method Specifications. In the implementation, we focus on the containers in JCF.

We specify the method semantic specification in the configuration file by assigning a pair

of container-property queries and modifiers to each container method. Particularly, we

adopt the insertion order and the key order as the partial orders to describe the container

properties of LinkedHashMap and TreeMap, respectively. Besides, we provide the method

complexity specification in a fine-grained manner. Specifically, we specify the constant

factor θ along with time complexity to show the difference between the methods with the

same time complexity. For example, the factor θ of LinkedList.add is smaller than that of

LinkedHashSet.add, indicating that the latter consumes more time than the former due to

the extra maintenance of a linked list, although they both run in amortized constant time.

On-demand Points-to Analysis. To support our container property analysis, we uti-

lize PINPOINT to perform flow and context-sensitive pointer analysis. We are only con-

cerned about the points-to facts of container variables, as the points-to facts of other vari-

ables do not affect the result of the container property analysis. Therefore, we query the

points-to facts on demand to avoid unnecessary overhead in the container property anal-

ysis. Besides, the points-to facts at each program location are the prerequisite of exam-

ining the constraints to achieve the container behavioral equivalence and the container

complexity superiority. To avoid redundant points-to query, we memorize the points-to

facts and obtain the grace performance of the synthesis. Moreover, the points-to facts can

also be obtained from other off-the-shelf pointer analyses [117, 50, 118], which means that

CRES can be implemented easily based on other static analysis platforms [25, 54, 3].

3.7 Evaluation

We evaluate the effectiveness and efficiency of CRES by investigating the following three

research questions:

• RQ1: What is the improvement CRES achieves for real-world programs?

• RQ2: Which kinds of container replacements does CRES synthesize?

• RQ3: What is the time and space overhead of CRES?

55

Result Highlights. In summary, CRES is unusually effective and efficient.

• Significant efficiency improvement of experimental subjects: The execution time is re-

duced by 8.1% on average. Particularly, CRES reduces the time consumption of the

project google-http-java-client by 27.1%.

• Various replacement patterns and many confirmations: CRES discovers 107 replacements

in six patterns, and 71 replacements have been confirmed by the developers. Several

patterns, such as replacing ArrayList with HashSet, are uncovered by previous works.

• Ability to scale to large-scale programs: CRES finishes analyzing the project IoTDB with

384.2 KLoC in 14 minutes within 10 GB peek memory. The memory and time over-

head is almost linear with the size of the project.

We also design a group of ablation studies to quantify the influence of the method

complexity specifications and the precision of the pointer analysis. At the end of the eval-

uation, we discuss the quality of the replacements, the limitations of CRES, and several

future directions.

3.7.1 Experimental Setup

Subjects. We evaluate CRES on 12 real-world data-centric applications, which are shown

in Table 3.2. The projects are actively maintained and widely used in both academia and

industry, covering different sizes (ranging from 18.6 KLoC to 384.2 KLoC) and diverse

categories (such as microservice platforms, RPC frameworks, data management systems,

etc.) Besides, the projects contain intensive usage of containers with various types, which

provides more opportunities for CRES to find different patterns of container replacements.

Experimental Setting. For each project, we perform a whole-program analysis to ob-

tain the points-to facts of container variables. Because we can not obtain the inputs for

the projects in the real-world scenario, we follow the existing works and utilize the test

suites of the projects to measure their time consumption [19]. To make the measurement

more convincing, we repeat the execution of the test suite of each project 100 times and

56

Table 3.2: The medium ratio of reduced and original execution time and 95% confidence
interval of the ratio.

Project Description
Size

(KLoC) Medium (%) 95% CI (%)

bootique Microservice platform 18.6 4.5 [4.4, 4.6]
mapper Server application 22.4 7.3 [7.0, 7.6]
incubator-eventmesh Eventing infrastructure 24.9 4.1 [3.9, 4.3]
google-http-java-client Web client 25.2 27.1 [25.9, 28.3]
light-4j Microservice platform 44.3 5.2 [5.0, 5.4]
roller Server application 54.4 9.5 [9.2, 9.8]
IginX Data management system 68.1 3.5 [3.4, 3.6]
sofa-rpc RPC framework 76.4 3.7 [3.4, 4.0]
Glowstone Server application 85.6 13.1 [12.9, 13.3]
dolphinscheduler Eventing infrastructure 89.5 5.3 [5.1, 5.5]
dubbo RPC framework 196.5 7.5 [7.2, 7.8]
IoTDB Data management system 384.2 6.3 [6.2, 6.4]

8.1 [7.8, 8.4]

perform Mann-Whitney U test to examine whether the improvement is statistically signif-

icant [119, 120]. We conduct all the experiments on a 64-bit machine with 40 Intel(R)

Xeon(R) CPU E5-2698 v4 @ 2.20GHz and 512GB of physical memory.

3.7.2 Answers to Research Questions

CRES aims to reduce the execution time of all the evaluated subjects. We quantify the

effectiveness and efficiency of CRES by answering the three research questions.

Study of RQ1

We utilize the test suite of each project to measure the execution time of the test tasks

affected by the replacements. Specifically, we compute the medium value and 95% confi-

dence interval of the ratio between the reduced time consumption and the original one.

Table 3.2 shows the ratio of reduced time consumption and the original one for each

project. The lower bound of 95% confidence interval is positive in each project, which

means that CRES can improve the efficiency of all the projects statistically significantly.

On average, the medium of reduced time cost ratio reaches 8.1%, and the 95% confidence

57

interval is [7.8, 8.4] . This demonstrates the effectiveness of CRES in improving the effi-

ciency of real-world projects.

Particularly, the medium of reduced time ratio reaches 27.1% for the project google-

http-java-client, and its 95% confidence interval is [25.9, 28.3]. The project is the HTTP

client library for Java, supporting the access of the resource on the web via HTTP. Any

project which depends on the library can benefit from the improvement of efficiency,

which shows the significant impact of CRES. Another example is that the medium of

the ratio reaches 13.1% for the project Glowstone. It is a customizable server for the game

Minecraft, and its efficiency improvement promotes the performance of the service, short-

ening the response time of the interactions in the game. Generally, the improvement can

benefit the applications depending on these projects, showing the great impact of CRES

on the performance optimization of real-world programs.

Answer to RQ1: CRES improves the efficiency of all the subjects significantly, and
the medium of reduced time ratio reaches 8.1% on average.

Study of RQ2

Table 3.3 displays the patterns of container type replacements synthesized by CRES. There

are 107 replacements covering six different categories, and 71 replacements in six projects

have been confirmed by the developers. If CRES replaces the container type of a con-

tainer object, the methods in the container method calls manipulating the object are also

replaced, e.g., the invoked container method at line 5 in Figure 3.2 is the method Hash-

Set.contains in the replacements. However, the names of the methods are the same before

and after the replacements in almost all the cases, so we do not discuss how the methods

are replaced in detail.

Case Studies. We show two examples of typical replacement patterns as follows.

Transform ArrayList to HashSet. Figure 3.7(a) shows the container replacement in the

project light-4j. Based on the result of the container property analysis, we find that the

ArrayList object pointed by EXCLUSIONS and exclusions is only created for querying the

value-ownership, as the method calls manipulating the object are the insertions or check-

58

Table 3.3: The counts of different replacements.

Project #Conf/#Total #R1 #R2 #R3 #R4 #R5 #R6

bootique 0/4 4
mapper 0/6 5 1
incubator-eventmesh 19/19 1 16 2
google-http-java-client 0/4 4
light-4j 0/5 2 3
roller 0/6 5 1
IginX 11/11 9 1 1
sofa-rpc 12/12 5 2 5
Glowstone 0/11 6 3 1 1
dolphinscheduler 7/7 6 1
dubbo 12/12 1 3 1 2 5
IoTDB 10/10 2 1 6 1

71/107 4 57 25 4 4 13

R1: LinkedList⇒ArrayList R2: ArrayList⇒LinkedList
R3: ArrayList⇒HashSet R4: TreeMap⇒HashMap
R5: LinkedHashMap⇒HashMap R6: LinkedHashSet⇒HashSet

1 public boolean isExcluded(String s) {
2 List exclusions = new ArrayList<String>();
3 if (EXCLUSIONS != null)
4 exclusions = EXCLUSIONS;
5 return MANAGEMENT.equals(s)
6 || SCALABLE_CONFIG.equals(s)
7 || exclusionList.contains(s);
8 }

(a) An inefficient usage of ArrayList in light-4j

1 public T getPath(T p, T q, T r) {
2 List v = new ArrayList<>();
3 for (T c = p; c != q; c = c.pre())
4 v.add(c.pre().post().indexOf(c));
5 for (Integer i : v)
6 r= r.post().get(i);
7 return r;
8 }

(b) An inefficient usage of ArrayList in mapper

Figure 3.7: Examples of inefficient usage of containers.

ing whether an object is stored in the list. CRES synthesizes the replacement in which

the types of EXCLUSIONS and exclusions are changed to HashSet safely, and the time

complexity of querying the value-ownership can be reduced from linear complexity to

amortized constant complexity.

Transform ArrayList to LinkedList. Figure 3.7(b) shows the transformation from ArrayList

to LinkedList in the project mapper. The ArrayList object allocated at line 2 is manipulated

by the method ArrayList.add and its iterator in the iteration. According to the documenta-

tion, we find that the method ArrayList.add has amortized constant time complexity due to

the memory reallocation, while the method LinkedList.add has constant time complexity,

and no memory reallocation occurs in the insertions. Meanwhile, there is no difference

59

in time complexity between the iterations over these two types of containers. Therefore,

CRES synthesizes the replacement in which ArrayList is replaced with LinkedList to reduce

the time cost of insertions.

Compared with the existing approaches [41, 19, 42], CRES can discover more general

optimization patterns. As shown by the example in Figure 3.2, it can replace an ArrayList

object with a HashSet object if only the method ArrayList.contains is invoked after its in-

sertions. Although we can replace inefficient container types that conform to specific pat-

terns, the way of replacing container types is not general. On the contrary, CRES offers a

general framework for discovering various replacement patterns according to container

method specifications and container usage intention. Meanwhile, we remark that CRES

only aims to discover the replacements that can make the difference in time complexity

and does not consider the environmental factors, such as the microarchitecture, and spe-

cific memory management strategies, such as garbage collection (GC) in JVM, which can

also affect the execution time. Therefore, CRES might miss the opportunity of perform-

ing environment-dependent optimizations. However, Table 3.2 has shown that CRES is

effective enough to improve the efficiency.

Answer to RQ2: CRES synthesizes 107 container replacements in various patterns
without changing the program behavior, 71 of which have been confirmed.

Study of RQ3

We measure the time and memory overhead of CRES in the synthesis, which is shown

in Figure 3.8. Overall, CRES finishes the analysis of the program with 384.2 KLoC in 14

minutes with 9.36 GB peak memory consumption. We adapt the regression analysis to

study the observed complexity of CRES. The R-squared value for time and memory cost

are 0.9796 and 0.9786, respectively, which are pretty close to 1. It indicates that the over-

head of CRES grows nearly linearly at a gentle rate, permitting CRES to efficiently analyze

large-scale programs manipulating containers. Compared with the existing works, CRES

features with its efficiency and only needs 2.5 minutes to analyze per project. However,

ARTEMIS executes the benchmark iteratively to obtain the optimal solution by genetic

algorithm [19], and it spends 3.1 hours optimizing a project on average.

60

50 100 150 200 250 300 350 400
Size(KLoC)

0

2

4

6

8

10

12

Ti
m
e(
m
in
)/M

em
or
y(
G) y=0.03594 x−0.6844

R2=0.9796

y=0.02285 x+0.3509
R2=0.9786

time
memory

Figure 3.8: Time and memory overheads of CRES

Answer to RQ3: CRES features linear scalability and finishes the analysis in 14 min-
utes with 9.36 GB peak memory for the program with 384.2 KLoC.

3.7.3 Ablation Study

CRES leverages an off-the-shelf pointer analysis to identify the manipulated container ob-

jects, so the precision of the pointer analysis can affect the result of the container prop-

erty analysis and the synthesized container replacements further. Besides, the method

complexity specifications are specified manually, and the subjectivity of the specifications

might also affect the replacements synthesized by CRES. Therefore, we set up the follow-

ing ablations to investigate the influence of the pointer analysis and the method complex-

ity specifications.

Ablation Study Setting

We propose two groups of the ablation studies to quantify the impact of pointer analysis

and the method complexity, respectively.

• We use CRES-NS and CRES-RS to synthesize the replacements with different method

complexity specifications. In CRES-NS, the constant factors are all equal to 1. In

61

Table 3.4: The counts of different replacements synthesized by the ablations

Project #R1 #R2 #R3 #R4 #R5 #R6

bootique (4, 4, 3)
mapper (5, 5, 3) (1, 1, 0)
incubator-eventmesh (1, 1, 0) (16, 16, 11) (2, 2, 0)
google-http-java-client (4, 4, 1)
light-4j (2, 2, 2) (3, 3, 1)
roller (5, 5, 4) (1, 1, 0)
IginX (9, 9, 7) (1, 1, 1) (1, 0, 1)
sofa-rpc (5, 5, 4) (2, 0, 2) (5, 0, 3)
Glowstone (6, 6, 6) (3, 3, 2) (1, 1, 1) (1, 0, 1)
dolphinscheduler (6, 6, 5) (1, 1, 1)
dubbo (1, 1, 1) (3, 3, 2) (1, 1, 1) (2, 0, 1) (5, 0, 4)
IoTDB (2, 2, 1) (1, 1, 1) (6, 6, 3) (1, 0, 1)

CRES-RS, the constant factors are randomly generated and conform to the specific

order. For example, the constant factor of the method LinkedHashMap.put is larger

than the one of the method HashMap.put.

• CRES-P leverages a flow and context-insensitive pointer analysis [117] to perform

the container property analysis. Other modules and configurations are not changed.

We evaluate the three ablations upon the projects in Table 3.2. It is worth mentioning

that the complexity function of each container method can be derived from the documen-

tations, not inducing any bias in the manual configuration. Thus, we only quantify the

influence of the constant factors in the method complexity specification.

Ablation Study Result

Table 3.4 shows the numbers of the container replacements synthesized by the three abla-

tions 1, based on which we can obtain the following findings:

• CRES-NS can discover all the replacements synthesized by CRES except for the ones

belonging to R5 and R6. Without the constant factors, CRES-NS can not distinguish

the container methods with the same complexity function, such as the methods

LinkedHashMap.put and HashMap.put.

1A triple shows the numbers of the replacements synthesized by CRES-NS, CRES-RS, and CRES-P.

62

• The replacements synthesized by CRES-RS are the same as the ones synthesized by

CRES. The methods of the selected types have lower time complexity than the origi-

nal ones in the first four patterns. Besides, all the methods of HashMap and HashSet

have smaller constant factors than the ones of LinkedHashMap and LinkedHashSet,

respectively.

• CRES-P synthesizes 74 container replacements out of 107 replacements synthesized

by CRES. The imprecise points-to information yields the spurious container-property

queries of several container objects, which prevents the synthesis algorithm from

seizing the opportunity of optimizing the usage of the objects.

As we can see, the effectiveness of CRES does not largely depend on the manual config-

uration but relies on a precise pointer analysis. It is shown that CRES is easy to be config-

ured by the users, and the documentations of the container methods provide the sufficient

knowledge to specify the specifications, which can support the effective replacement syn-

thesis for CRES.

We also apply the replacements synthesized by the ablations for each project and mea-

sure the improvement of program efficiency. It is shown that the 95% confidence inter-

vals of the reduce time ratio are [7.0%, 7.6%] and [5.3%, 5.7%] on average for CRES-NS

and CRES-P, respectively. We also measure the overhead of the synthesis for the three

ablations. Specifically, CRES-NS and CRES-RS take the similar overhead to CRES, as

the method complexity specifications only affect the selected method candidates and the

types in Algorithm 2. CRES-P is more efficient with the benefit of the light-weighted

pointer analysis, e.g., it finishes analyzing the project IoTDB in 10.3 minutes with 7.1 GB

peek memory. However, CRES is practical enough for the real-world programs, as it does

not suffer from the heavy overhead and synthesizes more replacements than CRES-P.

3.7.4 Discussion

Quality of Container Replacement. As shown by the answer to RQ2, CRES finds 107

replacements covering six categories. Notably, the developers greatly appreciated our

efforts. For example, a developer of the project IoTDB commented that “Since we often pay

less attention to these details, if a tool can be used to do this work, it will be great!” A developer of

63

public Point retrieveValidLastPoint(int n) {
List<IChunkMetadata> seqDataList = new LinkedList<>();
for (int i = 0; i < n; i++)
seqDataList.add(getDataFromDevice());

for (int i = seqDataList.size() - 1; i >= 0; i--) {
Point lastPoint = getChunkLastPoint(seqDataList.get(i));
if (lastPoint.getValue() != null)

return lastPoint;
}
return null;

}

Figure 3.9: An example in which CRES fails to synthesize the optimal replacements

the project sofa-rpc was even inquired about CRES with comments like “Where can I get the

tool?” Particularly, CRES has been integrated into the CI process in the Ant Group, which

is a FinTech company with over one billion global users. The synthesized replacements

can be forwarded to the developers as suggestions during the development cycle, making

the applications deployed and executed economically.

Limitations. Although CRES is shown to be effective and efficient, it also comes with

several limitations. First, the container complexity superiority formulates the complexity

superiority in a heuristic manner. Generally, it is hard to derive a tight bound of the time

complexity for a given program [100, 101, 102]. Meanwhile, our method complexity spec-

ification can not capture dynamic features dependent on the architectures [40] and might

be imprecise for small inputs. However, it is almost infeasible to quantify the time cost of

a container method for any input and execution environment. Fortunately, the experien-

tial results have shown the effectiveness of the guidance provided by method complexity

specification and container complexity superiority. Second, CRES can not always find op-

timal replacements. Consider the program extracted from the IoTDB in Figure 3.9. CRES

can not discover that the random access in the second loop is merely used for traversing

the container, so it replaces the LinkedList object with an ArrayList object, while the optimal

solution should be replacing the random access in the second loop by an iterator.

Future Work. The insight underlying CRES is applicable to reduce other resource con-

sumption and support other kinds of replacements. We only need to provide the method

specifications in which the resource consumption of each container method is specified.

For example, we can extend the method complexity specification to model the energy

cost [98], and then CRES can optimize energy consumption seamlessly. Also, dynamic pro-

64

filing can be integrated to capture the runtime data [121] so that CRES can benefit from the

static complexity model and the runtime overhead model simultaneously. Introducing an-

notations in container implementation can also be a good way of encoding the cost model

to support the optimization. Also, when the libraries are updated, we need to update the

specifications of new versions of container methods. Meanwhile, we can empower CRES

with more container properties, such as boundedness. If only a finite number of inser-

tions occur upon a container object, we can safely replace it with an array to avoid the

memory bloat [33, 34]. Lastly, CRES is language-agnostic. It can easily extended to reduce

inefficient container types in other program languages, such as C++ programs [122]. We

believe that CRES provides a general framework to support the container replacements,

reducing different kinds of resource consumption of a program.

3.8 Conclusion

We have introduced CRES, a novel synthesizer that automatically replaces inefficient con-

tainer usage, optimizing data organization in data-centric application code. It analyzes the

concerned container properties and finds more efficient container methods that preserve

the behavioral equivalence to improve program efficiency. CRES is highly effective and

efficient in analyzing real-world data-centric applications. It synthesizes 107 instances of

container replacements covering six categories, which reduce the execution time by 8.1%

on average. CRES also stands out with its excellent scalability, and finishes analyzing the

project with 384.2 KLoC in 14 minutes. We hope the insight underlying CRES can be ex-

tended to reduce other resource consumption, such as memory, energy, and CPU usage.

65

CHAPTER 4

CONTAINER-AWARE VALUE-FLOW ANALYSIS
VIA MEMORY ORIENTATION

4.1 Introduction

A container, e.g., list, set, or map, is an abstract data type that supports manipulating a

collection of objects by its methods. General-purpose programming languages provide

many implementations, such as the C++ STL containers [9], the Java Collections Frame-

work (JCF) [10], and the specific classes in the Java EE framework (Java EE) [31]. In a data-

centric application, they are pervasively utilized to manage the memory objects. Suppose

we want to understand the data propagation in the systems to support various tasks, such

as program understanding [123, 124, 125], bug detection [126, 127, 128, 129, 130], and de-

bugging [131, 132]. In that case, we have to reason the semantics of containers and identify

the value flows through containers.

Goal and Challenges. Our goal is to establish a fast and precise reasoning of container

memory layouts for value-flow analysis. Unfortunately, the problem is always one of the

“Achilles’ heels” of static analysis [69]. Note that a container modification changes both

which objects are stored, i.e., the ownership, and which indexes are associated with the

objects, i.e., the index-value correlation. The precise reasoning of containers requires the

strong updates upon container memory layouts, involving the program facts in multiple

domains. First, we require a precise pointer analysis [133, 134, 135] to identify the manip-

ulated objects, including both the containers and the elements. Second, applying strong

updates to a list-like container relies on numeric analyses [136, 137, 138] to determine the

relational positions of the manipulations. Third, the indexes of map-like containers are

general comparable objects, and its strong updates often depend on complex relational

properties of strings [139, 140, 141, 142] and user-defined data structures [58, 59]. More

importantly, the prerequisites are closely intertwined, demanding a solution to address

66

Queue<Pr> ps = new LinkedList<Pr>();
Pr p = Space.getProject(dir);
ps.offer(p);
ps.offer(new Proj(newDir, arg));
executeProject(ps.peek());

(a) Example code in Hibernate-ORM

HttpSession<String,Object> s = new HttpSession<>();
s.put(Support.FIND_BLOCK, Boolean.FALSE);
s.put(Support.FIND_WHAT, searchWord);
String word = (String) s.get(Support.FIND_WHAT);
addToHistory(new EditorFindSupport(block, word));

(b) Example code in NetBeans

Stack<State> s = new Stack<>();
s.addElement(otherStateElem);
s.push(new State(cursor));
State state = includeStack.pop();

(c) Example code in Struts

Dictionary<String, String> config = new Hashtable<>();
config.put(Factory.CLASS, Driver.getName());
config.put(Factory.NAME, "iotdb");
String name = config.get(Factory.NAME);

(d) Example code in IoTDB

Figure 4.1: Examples of a programming idiom

them simultaneously. The overall quality of the results would collapse if any one of these

analyses became imprecise.

Existing Effort. Reasoning container memory layouts is theoretically an undecidable

problem [143]. Existing approaches mainly adopt two different strategies to achieve the

over-approximation. One line of the techniques smashes a container and only reasons

about the ownership without analyzing the indexes [144, 25, 51, 55, 12]. Although the

analyses scale to large programs, the spurious value flows plague the analysis results such

that 75.2% of the client analysis are false positives [13]. The other line of the techniques

encodes the program values by logical formulae and applies strong updates by enforcing

the container axioms [62, 63]. Despite the high precision, the exhaustive symbolic reason-

ing introduces a significant number of case analyses, causing the disjunctive explosion

problem [145] and degrading the scalability significantly. For example, COMPASS only

scales to 128 KLoC even when the solving procedure is optimized [146, 63].

Insight. Although analyzing generic containers is pie in the sky, there exists a partic-

ular class of containers, of which the memory layouts can be precisely tracked by deter-

ministic indexes. As shown in Figure 4.1, for example, the modifications of the container

objects always occur at the end or use constant keys, which can be discovered by tracking

all possible modifications upon container objects. The stored objects can be identified by

the deterministic indexes, which enables strong updates upon container memory layouts.

Specifically, we formulate the idiom by the notion of anchored containers. A container is

an anchored container at a program location if all the preceding modifications have de-

terministic indexes. Anchored containers widely exist in real-world programs, e.g., 75.6%

67

Java EE containers in the top 10 cases searched on GitHub conform to the programming

idiom1. They establish the “anchors” for memory objects, which can be used to identify

precise value flows through containers.

Solution. We introduce the memory orientation analysis to identify anchored containers

and compute their precise index-value correlations, which further support a fast and pre-

cise value-flow analysis. Specifically, we establish a combined abstract domain embodied

with path constraints to track multi-domain properties precisely, such as points-to facts

and deterministic indexes. At a high level, our approach works in two stages:

• The memory orientation analysis identifies anchored containers and applies the strong

updates to their memory layouts. A non-anchored container is smashed without an-

alyzing its index-value correlation. Based on container memory layouts, the mem-

ory orientation analysis enables the construction of a precise value-flow graph. For

example, the container objects o1 and o3 in Figure 4.2 are anchored containers. It

index-value correlation implies that p is null and r is not null at line 21, and the

analysis constructs the precise value-flow graph with the solid edges in Figure 4.3.

• We conduct a demand-driven reachability analysis to solve an instance of the value-

flow problem. It collects the value-flow facts of interest when traversing the value-

flow graph. The constraints are collected and solved to determine the reachability

if necessary. For example, the null pointer exception (NPE) detector traverses the

value-flow graph in Figure 4.3 from null values to dereferenced pointers, and reports

an NPE with no false positive.

Note that it is non-trivial to identify and apply strong updates to anchored containers

in the first stage, involving the accumulative effects of the modifications along control

flow paths. For example, the container object o2 are modified at lines 6, 8, and 9, and the

last two modifications have non-deterministic indexes, so o2 is not an anchored container

after line 8. Particularly, we establish a subdomain to maintain the accumulative effects

of modifications upon each container object, which explicitly indicates whether it is an

anchored container. When transforming each subdomain simultaneously, we instantiate

1The empirical data is listed online: https://containeranalyzer.github.io/empirical.pdf.
2The program is simplified from Hibernate-ORM, IoTDB, and Struts.

68

https://containeranalyzer.github.io/empirical.pdf

1 void foo(String s) {
2 HttpSession hs;//o1
3 Map m = new HashMap<String,String>();//o2
4 hs.setAttribute("id", "a");
5 hs.setAttribute("age", null);
6 m.put("id", "b");
7 String i = hs.getAttribute("id");
8 if (c) {m.put(s, i);}
9 else {m.put(s, null);}
10 Stack<String> ids = new Stack<>();//o3
11 String j = m.get("id");

12 ids.add(i);
13 if (c) {ids.add(j);}
14 bar(hs, ids);
15 }
16 void bar(HttpSession hs, Stack ids) {
17 String p = hs.getAttribute("age");
18 String q = ids.peek();
19 String r = hs.getAttribute("id");
20 if (c)
21 out(p.length()+q.length()+r.length());
22 }

Figure 4.2: A motivating program2

a semantic reduction operator [61] to track the interleaving among multiple subdomains,

and apply strong updates to anchored containers.

Highlight. The memory orientation analysis benefits value-flow analysis with three

characteristics as follows:

• The memory orientation analysis applies strong updates to anchored containers in

the combined domain rather than enforcing container axioms by logics exhaustively,

making the analysis more precise than [25, 12] and less vulnerable to disjunctive

explosion [145].

• Although the memory orientation analysis only computes the precise index-value

correlations of anchored containers, it amplifies the precision benefit and obtains the

more precise ownership information of other containers, no matter whether they are

anchored containers or not.

• The memory orientation analysis divorces analyzing container semantics from value-

flow analysis and delays reasoning about the feasibility of value-flow paths until

client analyses, effectively alleviating the burden of constraint solving.

We implement ANCHOR and evaluate it upon several real-world data-centric applica-

tions by choosing thin slicing [123] and value-flow bug detection [30] as the clients. It is

shown that ANCHOR enables a satisfactory improvement in thin slicing, reporting 17.1%

fewer statements than the smashing-based slicer for the real-world programs. Moreover,

it discovers all the taint flows through containers in the OWASP benchmark projects [147]

with no false positive, and detects 20 NPEs in the real-world projects with 9.1% (2/22) as

69

c
c

c¬c	

c

c
¬c	

		𝑝@ℓ!" 		𝑟@ℓ!" 		𝑞@ℓ!"

“a”@ℓ# 	𝑛𝑢𝑙𝑙@ℓ$ 	𝑛𝑢𝑙𝑙@ℓ% “b”@ℓ&

		i@ℓ' 		j@ℓ""

		p@ℓ"' 		r@ℓ"%

hs_arg1 hs_arg2

ids_arg1

q@ℓ"(

Figure 4.3: The value-flow graph (VFG)3of Figure 4.2. A node represents a value at a
program location, and an edge from a@ℓ1 to b@ℓ2 indicates that the value a flows to the
value b between the program locations ℓ1 and ℓ2. The nodes hs_arg1, ids_arg1, and
hs_arg2 represent the auxiliary parameters [1, 2, 3], which indicate the elements accessed
at lines 17, 18, and 19, respectively.

its false-positive ratio. In contrast, the smashing-based detector reports 31.0% spurious

taint flows and 66.7% false positives of NPEs, respectively. Remarkably, ANCHOR fea-

tures graceful scalability and finishes analyzing the program with 5.12 MLoC in 5 hours.

Upon the submission, there had been 12 true positives of NPEs confirmed by the devel-

opers [148]. We also prove the soundness of ANCHOR theoretically. ANCHOR has been

integrated into the static analysis platform PINPOINT in the Ant Group, an international

FinTech company with over 1 billion global users. The deployment of ANCHOR demon-

strates the impact of our approach in improving system reliability by detecting value-flow

bugs in application code. In summary, we make the following main contributions:

• We introduce the notion of anchored containers and establish a combined abstract

domain to identify them automatically.

• We propose the memory orientation analysis to apply strong updates to anchored con-

tainers, which promotes further value-flow analysis.

• We implement and evaluate ANCHOR by thin slicing and value-flow bug detection,

showing its high precision and linear scalability in real-world scenarios.

3For simplicity, we omit the constraint ϕ in Figure 4.3 if ϕ = T .

70

• ANCHOR has been deployed in Ant Group to examine data propagation within data-

centric applications. It has reported hundreds of bugs in the CI process. We have

published the list of the bugs detected by ANCHOR online [148], along with the de-

tailed empirical data of anchored containers.

The rest of the chapter is organized as follows. Section 4.2 shows the motivating exam-

ple and the outline of our approach. Section 4.3 presents the preliminary background,

and Section 4.4 formulates the problem we focus on. Section 4.5 defines the abstract

memory, and Section 4.6 presents the details of the memory orientation analysis. Sec-

tion 4.7 discusses the demand-driven reachability analysis and presents two typical clients

of value-flow analysis, including thin slicing and value-flow bug detection. Sections 4.8

and 4.9 demonstrate the details of the implementation and the evaluation, respectively.

Section 4.10 summarizes our work on container-aware value-flow analysis.

4.2 Overview

The section presents the container categorization, illustrates a motivating example, and

finally outlines our overall idea.

4.2.1 Category of Containers

We adopt the classification in [63] and categorize the containers into two types, namely

position-dependent containers and value-dependent containers. In a position-dependent con-

tainer, e.g., ArrayList and Stack in JCF, each element has a position, representing the lo-

cation where it is stored. A value-dependent container, e.g., the HashMap in JCF and

HttpSession in Java EE, stores its elements based on their values. Particularly, the Set is

also a value-dependent container. Generally, a container is manipulated by an method

call at an index. An index is a non-negative integer in a position-dependent container,

which denotes the position where the method manipulates the container, or a key in a

value-dependent container, which is a comparable object, such as a string and other user-

defined types.

71

4.2.2 Motivating Example

This section presents a motivating example program and discusses the limitations of ex-

isting efforts. Finally, we demonstrate our aim at the end of the section.

Program Description. Figure 4.2 shows a container-manipulating program, which typ-

ically appears in data-centric application code. Specifically, it contains two functions, i.e.,

foo and bar, and there are three container objects allocated in the function foo, namely

the HttpSession object o1, the HashMap object o2, and the Stack object o3. After inserting

several elements into the container objects, the function foo invokes the function bar and

passes o1 and o3 as the actual parameters. In the function bar, three elements are retrieved

from the two container objects, and finally dereferenced at line 21. To simplify the exam-

ple, we introduce a boolean variable c as the branch conditions, where c does not always

evaluate to true or false.

Following existing efforts on value-flow analysis [54, 3], we leverage the value-flow

graph (VFG) to demonstrate how each value propagates in the program, which is shown

in Figure 4.3. Particularly, an edge (v1@ℓi, v2@ℓj) labeled a constraint ϕ in the VFG indi-

cates that the value can flow between v1 at ℓi and v2 at ℓj when ϕ holds, where ℓi and ℓj

denote the positions in the control flow graph. Based on the VFG, we can further perform

a variety of value-flow clients. In the NPE detection, a feasible path from null value to a

dereferenced pointer indicates a possible NPE in the program. For example, the feasible

path from null@ℓ5 to p@ℓ21 indicates that the dereference of p causes an NPE at line 21.

Unfortunately, it is non-trivial to establish the VFG for a container-manipulating program,

as it is required to analyze container memory layouts, which involves multiple sophisti-

cated analyses, such as points-to analysis, numeric analysis, etc.

Limitations of Existing Approaches. Existing static approaches mainly analyze con-

tainer memory layouts in two ways, which are not precise or scalable enough for real-

world programs. One line of the recent efforts smashes each container into a set of objects

and does not reason the indexes [144, 25, 51, 55, 12]. Although they often obtain gen-

tle scalability, spurious value flows can plague the results of the clients. For example, a

smashing-based analysis can introduce five dash edges in the VFG shown in Figure 4.3,

which indicate the spurious value flows. Specifically, the dash edge from null@ℓ5 to i@ℓ7

72

Memory Orientation
Analysis

Demand-Driven
Reachability Analysis

VFG
Program

Value-Flow Bugs

Program Slices

SMT SolverContainer Specification

Figure 4.4: Schematic overview of our approach

shows the spurious fact that i can be null after line 7, as the smashing-based analysis does

not analyze the index-value correlation of o1. Similarly, it discovers that q@ℓ21 and r@ℓ21

can be null and finally yields two false positives.

The other line leverages symbolic analysis to compute the program values by logi-

cal formulae and applies strong updates to memory layouts by enforcing container ax-

ioms [62, 63]. Container memory layouts, including index-value correlations, are ab-

stracted by logical formulae explicitly and exhaustively, and case analysis makes the num-

ber of the disjunctions exponentially large. For instance, s in Figure 4.2 does not have a

deterministic value, which introduces two disjunctions for o2 after line 8, corresponding

to the cases that s is equal or not equal to “id”, respectively. Thus, the analyses have to

handle the verbose constraints, preventing its scalability significantly.

Our Aim. We aim to establish fast and precise reasoning of container memory layouts

for value-flow analysis to investigate data propagation within data-centric applications.

Specifically, we expect the analysis to obtain precise value flows through containers so that

it could remove more spurious value flows than smashing-based approaches. Besides, the

analysis is required to exhibit high efficiency and gentle scalability when analyzing large-

scaled programs. It would have a great impact on many static clients, including thin

slicing and value-flow bug detection, and thus, promote the understanding and improve

the reliability of data-centric applications with heavy usage of containers.

4.2.3 Our Approach

Our work balances the tension between precision and scalability by utilizing a program-

ming idiom. In many cases, the modifications of a position-dependent container occur at

73

its beginning or end, while the keys of a value-dependent container are constant. Given

a container memory layout, the modified layout is unique if the index of the modification

is deterministic. Moreover, if all the modifications upon a container have deterministic

indexes before the program location ℓ, its memory layout can be precisely determined at ℓ

by tracking the modifications before ℓ along control flow paths. We define the class of con-

tainers as anchored containers, which enable strong updates and further promote a precise

value-flow analysis.

Utilizing anchored containers as our sweet spot, we propose the memory orientation

analysis to analyze container memory layouts precisely. Figure 4.4 shows the schematic

overview of our approach. In the high level, our approach consists of two phases, namely

the memory orientation analysis and the demand-driven reachability analysis. In the first

phase, the memory orientation analysis tracks multi-domain properties simultaneously,

such as points-to facts and deterministic indexes, which support identifying anchored

containers for strong updates. Based on container memory layouts, it constructs a precise

value-flow graph, e.g. constructing the graph with the solid edges in Figure 4.3 for the

program in Figure 4.2. In the second phase, we conduct a demand-driven reachability

analysis by the graph traversal to solve an instance of the value-flow problem. Note that

we do not invoke SMT solvers in the memory orientation analysis but store the constraints

compactly in the graph, which are only collected and checked on demand in the traversal

to avoid unnecessary overhead.

Benefit. The memory orientation analysis unleashes the strength of anchored contain-

ers with twofold benefits:

• Precise memory layouts of anchored containers support discovering more precise

value flows and promotes a chain of further analyses in the clients. For example,

the anchored container o1 in Figure 4.2 finally enables the analysis to avoid the false

positives in the NPE detection.

• The precision benefit can be further amplified, which promotes the reasoning the

memory layouts of other containers. For example, the non-anchored container o2

exclude the null value defined at line 5, as the anchored container o1 makes the null

not reach i at line 7.

74

Program P := F+

Function F := f(v1, v2, . . .){S; }
Statement S := v = new τ | v = u | v = a

| c.insert(u, v) | c.remove(u) | v = c.access(u)
| S1;S2 | if (v) then S1 else S2 | r = call f(v1, v2, . . .)
| foreach (u, v) in c do S od | return v

Figure 4.5: The syntax of the language

The motivating example illustrates the workflow of ANCHOR. From the example, we

find it is crucial but non-trivial to identify and utilize anchored containers. In Section 4.4,

we formulate our problem and formally define anchored containers, following the outline

of other sections.

4.3 Preliminaries

The section presents several preliminary concepts, including program syntax, concrete

memory, concrete semantics, and value-flow graph.

4.3.1 Program Syntax

We borrow the language syntax in [63] and formalize our analysis with a simple Java-like

language in Figure 4.5. A program is in the static single assignment form [149]. Statements

include allocation statements, assignments, container method calls, sequencing, branches,

function calls, container traversals, and return statements. Particularly, the right-hand

side of an assignment can be a variable or a literal.

We analyze two types of containers, namely position-dependent containers and value-

dependent containers. Container method calls have three cases, namely inserting, ac-

cessing, and removing elements. Each container method can manipulate a container at a

specific index. Particularly, we add an artificial index τe to represent the end of a position-

dependent container so that the language supports adding an element at the end more

flexibly. Besides, a loop can traverse a container, and all the elements are accessed once

75

exactly. We assume that a loop in the program is memoryless [150], i.e., the order of the

iterations does not affect the semantics of the loop. The language also supports the nesting

of containers because v in the insertion can point to another container.

Remark. Our work mainly focuses on the semantic analysis of container manipula-

tions. We do not discuss how to handle the fields of memory objects, although we achieve

the field sensitivity based on existing techniques [3, 115]. The language syntax in Fig-

ure 4.5 also omits several program constructs, such as reflective method calls, which are

not the major concerns of our work. With the benefit of the formulation of the above syn-

tax, our analysis can ensure the soundness in analyzing all the program constructs shown

in Figure 6.4, which is proven in Section 4.6.7.

4.3.2 Concrete Memory and Concrete Semantics

Given a program P, a program location ℓ is the position in the control flow graph. We

regard program memory as a collection of values ν ∈ V bound with addresses α ∈ D ⊆ V

and indexes δ ∈ ∆ ⊆ V. Specifically, a memory location is denoted by a pair (α, δ) ∈ D×∆.

An index δ can be an address or a literal in the program. We introduce two sets Dp and

Dv to denote the set of the addresses where the position-dependent and value-dependent

containers are stored, respectively.

Definition 4.3.1 (Concrete Memory State) A concrete memory state M at the program loca-

tion ℓ is (E,L), where

• The environment E is a function mapping a program variable u ∈ X to a value ν ∈ V,

indicating the value of the variable. Particularly, E(u) is the address where the object pointed

by u is stored if E(u) ∈ D.

• The layout L maps a memory location (α, δ) ∈ D×∆ to the pair of an index and a value

(δ,ν) ∈ ∆× V. Particularly, ⊥ ∈ V is introduced to show that there does not exist any

value stored at the index.

Based on this concrete memory, we can define the operational semantics of container

methods straightforwardly, which is similar to the definitions in [63]. To simplify the

76

Ins

E(c) = αc E(u) = νu E(v) = νv L ′(αc, νu) = νv
L ′ = L[(αc, j)→ (j, sec(L)(αc, j− 1)) | j > νu + 1] if αc ∈ Dp

L ′ = L[(αc, νu)→ (νu, νv)] if αc ∈ Dv

(E, L) ⊢ c.insert(u, v) : (E, L ′)

Rem

E(c) = αc E(u) = νu
L ′ = L[(αc, j)→ (j, sec(L)(αc, j+ 1)) | j ⩾ νu] if αc ∈ Dp

L ′ = L[(αc, νu)→ (νu, ⊥)] if αc ∈ Dv

(E, L) ⊢ c.remove(u) : (E, L ′)

Acc

E(c) = αc E(u) = νu
L(αc,νu) = (νu,ν ′) E ′ = E[v→ ν ′]

(E, L) ⊢ v = c.access(u) : (E ′, L)

Proc-I
P = ∅

(E, L) ⊢ proc(u, v,P,S) : (E, L)
Proc-II

P = P ′ ∪ {(δ ′, ν ′)}
E1 = E[u→ δ ′, v→ ν ′]
(E1, L) ⊢ S : (E2, L2)

(E2, L2) ⊢ proc(u, v,P ′,S) : (E ′, L ′)
(E, L) ⊢ proc(u, v,P,S) : (E ′, L ′)

Loop

E(c) = αc P = {(δi, νi) | (δi, νi) ∈ L(αc, δi), νi ̸= ⊥}
(E, L) ⊢ proc(u, v,P,S) : (E ′, L ′)

(E, L) ⊢ foreach (u, v) in c do S od : (E ′, L ′)

Figure 4.6: Concrete semantics of container-manipulating programs

notation, we introduce the mapping sec(L) to get the value stored at a specific index in

a container, i.e., L(α, δ) = (δ, sec(L)(α, δ)). Figure 4.6 shows the definitions of concrete

semantics.

• The rules Ins and Rem define the concrete operational semantics of the insertion and

removal, respectively. Due to the difference between position and value-dependent

containers, the two rules conduct the case analysis when modifying the layout in the

concrete memory.

• For the access method call, the rule Acc obtains the value ν ′ stored at the index E(u)

and enforce the E ′(v) equal to the value ν ′.

• A loop traversing a container takes each index-value pair in the container to exe-

cute the statement S in each iteration. Particularly, the helper rule Proc is defined

inductively to exercise the traversal.

Example 4.3.1 In Figure 4.2, the method setAttribute adds two key-value pairs in the container

77

object pointed by hs at lines 4 and 5. After line 5, we have

E(hs) = α, L(α, “id”) = (“id”, “a”), L(α, “age”) = (“age”,null)

4.3.3 Value-Flow Graph

A value q flows to p if q is assigned to p directly (via an assignment, such as p = q)

or indirectly (via container method calls, such as c.insert(0,p);q = c.access(0)). We can

construct a graph to abstract how the value reaches a program location from another by

an edge labeled with a constraint. Formally, we define the value-flow graph as follows.

Definition 4.3.2 (Value-Flow Graph) A value-flow graph (VFG) is a directed graph G = (N,E,Θ),

where N, E and Θ are defined as follows:

• N is a set of nodes, each of which is denoted by v@ℓ, indicating v is defined or used at a

program location ℓ.

• E ⊆ V×V is a set of edges. (v1@ℓ1, v2@ℓ2) ∈ E means that the value v1@ℓ1 flows to v2@ℓ2.

• Θ maps each edge to a constraint ϕ, meaning that the value-flow relation holds only when ϕ

is satisfied.

Example 4.3.2 In Figure 4.2, we can find that “a” is associated with the index “id” before line

7, so we add the edge from “a”@ℓ4 to i@ℓ7 to the VFG in Figure 4.3, indicating the value flow

induced by container method calls at lines 4 and 7.

Following the previous studies [54, 3, 30], we formulate value-flow analysis as a reach-

ability problem over a VFG. We can track the value-flow facts for various clients, such as

thin slicing [123], value-flow bug detection [30], etc. For example, we collect all feasible

paths from null to the dereferenced values in the NPE detection.

4.4 Container-Aware Value-Flow Problem

To obtain precise value-flow paths, we need to identify the indirect flows induced by

container method calls. Concretely, we need to determine the objects accessed by each

78

access method call, and the reachability relation should perceive the induced value flows.

We call this container-aware value-flow problem, which is a fundamental concern in static

analysis, especially for the investigation of data propagation in data-centric applications.

Based on the semantics of container method calls, container memory layouts, i.e., the

ownership and index-value correlations, determine the value flow through containers.

First, an object is never accessed if it is not stored in the container. Second, an object can

be accessed by the access method call at the index δ if associated with δ. Now we formalize

the two properties and provide the formal definition of the container memory layout.

Definition 4.4.1 (Container Memory Layout) Assume that a container object o is stored at the

address α ∈ D in the concrete memory M = (E,L). The memory layout of the container object o

consists of the following two properties:

• Ownership: It indicates whether there exists δ ∈ ∆ for a value ν such that L(α, δ) = (δ, ν).

For a value-dependent container object o, it also indicates whether there exists ν ′ ∈ V for a

value ν such that L(α, ν) = (ν, ν ′).

• Index-value correlation: For any pair of an index and a value (δ, ν), the index-value corre-

lations indicates whether ν is paired with δ at the address α, i.e., L(α, δ) = (δ, ν).

It is necessary to analyze container memory layouts precisely and efficiently to support

analyzing real-world programs using containers. However, precise reasoning of container

memory layouts, as other non-trivial semantic properties, is an undecidable problem for

general programs [143]. Fortunately, as explained in Section 4.2.3, there is a typical class

of container objects of which modifications occur at deterministic indexes. Their memory

layouts are deterministic after the modifications, which enables precise reasoning without

case analysis. Formally, we define the notion of anchored container as follows.

Definition 4.4.2 (Anchored Container) A container object o is an anchored container at the

program location ℓ if an arbitrary modification method call st before ℓ has the constant index δ.

Particularly, τe is a constant index.

Intuitively, we can identify anchored containers and analyze their memory layouts

precisely. Meanwhile, the precision enhancement introduced by anchored containers also

79

benefits analyzing memory layouts of other containers, even if the containers are not an-

chored containers.

Example 4.4.1 In Figure 4.2, setAttribute modifies o1 upon constant keys at lines 4 and 5, so o1

is an anchored container after line 5. Therefore, i must be equal to “a” at line 7. Meanwhile, o2

is not an anchored container, as s is not constant at lines 8 and 9. It is worth noting that we still

obtain more precise ownership of o2 that the null at line 5 is excluded, showing that the precision

enhancement can even propagate to non-anchored containers.

Roadmap. To solve the container-aware value-flow problem, we propose the mem-

ory orientation analysis, which is our main technical contribution, to identify and apply

strong updates to anchored containers. The combined effects of container semantics are

analyzed without sophisticated reasoning of indexes, and finally encoded in the VFG.

However, as explained in Section 4.1, it is non-trivial to enable the identification, involving

analyzing the facts in multiple domains simultaneously. Specifically, we present a novel

memory abstraction to maintain the multi-domain program facts (Section 4.5), based on

which the memory orientation analysis reasons container semantics by applying abstract

transformers (Section 4.6.1∼Section 4.6.5) and constructs a precise VFG (Section 4.6.6). For

a specific client, we conduct a demand-driven reachability analysis by traversing the VFG

(Section 4.7), which benefits from the precise enhancement provided by the memory ori-

entation analysis.

4.5 Abstract Memory

The section presents the abstract memory used in this work (Section 4.5.1∼Section 4.5.3),

and highlights the technical challenges of memory orientation analysis that rests on the

abstraction (Section 4.5.4).

4.5.1 Abstract Memory State

We abstract the memory based on allocation sites [52] and form a finite set of abstract

objects O := Op ∪Ov ∪Os, where Op, Ov, and Os are the sets of position-dependent

80

container objects, value-dependent container objects, and non-container-typed objects, re-

spectively. Besides, we construct a finite set of literals Oc ⊆ Os, where τ̂e ∈ Oc represents

the end position of a position-dependent container. X is a set of program variables, andΦ

is a set of path constraints. Formally, we define abstract memory state as follows.

Definition 4.5.1 (Abstract Memory State) An abstract memory state M at the program loca-

tion ℓ is a 4-tuple (E, L, C, U). Here, E, L, C, and U are defined as follows.

• Abstract environment E maps a program variable v to a set of abstract memory object (o)

and constraint (ϕ) pairs, indicating v points to o when ϕ holds.

• Abstract layout L := (B, R) contains two subdomains:

– B := Op ∪Ov → B abstracts the ownership of each container object, where

B := P(O×Φ)×P(O×Φ)

Basically, we set the first entry of B(op) to {(o, T) | o ∈ O} for op ∈ Op, indicating

that we only concern the stored objects without considering their positions in a position-

dependent containers.

– R := Op ∪Ov → Rp ∪ Rv abstracts the index-value correlations of the container

objects, where

Rp := P(∪Nk=0Ok ×Φ), Rv := P(Oc ×O×Φ)

N is the number of insertions upon position-dependent containers, bounding the sizes

of the container objects.

• Constant domain C is a function of program variables. C(v) ∈ Oc when v must point to a

literal, and C(v) = ⊥ when v is not initialized. Otherwise, C(v) = ⊤.

• Uniqueness domain U maps o ∈ Op ∪Ov to 1 if o is always modified upon deterministic

indexes. Otherwise, U(o) = 0.

Essentially, an abstract environment E over-approximates the points-to facts, i.e., v

may point to a memory object o in a concrete execution if ϕ is satisfied, where (o,ϕ) ∈

81

E(v). Similarly, the ownership and the index-value correlation of each container are over-

approximated by the separate subdomains of L. Meanwhile, a constant domain C under-

approximates whether a variable points to a literal. Lastly, U stores the accumulative

effects of the modifications upon each container object, and thus, serves as the criteria of

identifying anchored containers.

Definition 4.5.2 (Criteria of Anchored Container) An abstract container object o is anchored

at the program location ℓ if U(o) = 1 where M = (E, L, C, U) is the abstract memory at ℓ.

Example 4.5.1 Consider o1 ∈ Ov pointed by hs in Figure 4.2. ind1 and ind2 are the indexes of

the insertions at lines 4 and 5, respectively. Obviously, we have C(ind1) = “id” and C(ind2) =

“age”. Therefore, o1 is always modified upon deterministic indexes after line 5. Concretely, we

have

B(o1) = ({(“id”, T), (“age”, T)}, {(“a”, T), (null, T)})

R(o1) = {((“id”, “a”), T), ((“age”,null), T)}, U(o1) = 1

Particularly, U(o1) = 1 indicates that o1 is an anchored container after line 5.

4.5.2 Join Operator and Partial Order

Given the definitions of O,Φ, and M, we introduce the join operator and the partial order

of the combined domain.

Definition 4.5.3 (Join Operator of M) ⊔M is the join operator of M, i.e., M = M1 ⊔M M2,

where M1 = (E1, L1, C1, U1) and M2 = (E2, L2, C2, U2). M = (E, L, C, U) is defined as follows.

E(v) := E1(v)⊔E E2(v) B(o) := B1(o)⊔B B2(o) R(o) := R1(o)⊔R R2(o)

C(v) := C1(v)⊔C C2(v) U(o) := U1(o)⊔U U2(o)

Particularly, we define ⊔E,⊔C, and ⊔U as follows:

E1(v)⊔E E2(v) := {(o, ϕ1 ∨ϕ2) | (o,ϕ1) ∈ E1(v), (o,ϕ2) ∈ E2(v)}

B1(o)⊔B B2(o) := {((ok,ϕ1
k ∨ϕ

2
k), (ov,ϕ

1
v ∨ϕ

2
v)) | ((ok,ϕik), (ov,ϕ

i
v)) ∈ Bi(o), i ∈ {1, 2}}

82

R1(o)⊔R R2(o) :={(t, ϕ1 ∨ϕ2) | (t,ϕ1) ∈ R1(o), (t,ϕ2) ∈ R2(o), t ∈ ∪Nk=0Ok}

∪ {(t, ϕ1 ∨ϕ2) | (t,ϕ1) ∈ R1(o), (t,ϕ2) ∈ R2(o), t ∈ Oc ×O}

C1(v)⊔C C2(v) := ite(C1(v) = C2(v), C1(v),⊤)

U1(o)⊔U U2(o) := ite(U1(o) = U2(o), U1(o), 0)

Specifically, ite is the shorthand of if-then-else expression. For clarity, we assume that (o, F) ∈

E(v) if there does not exist ϕ such that (o,ϕ) ∈ E(v). For other subdomains, we also use the

similar assumptions to make the definitions compact.

Definition 4.5.4 (Partial Order of M) M1 ⊑M M2 if and only if there exists M ′ such that

M1 ⊔M M ′ = M2. ⊑M also naturally exports the definitions of ⊑E, ⊑L, ⊑C, and ⊑U.

Intuitively, a join operator is a set union with a disjunction of path constraints. The

complexity of a join operator of each subdomain isO(|D1|+ |D2|), because we can maintain

D1 and D2 by sorted lists, and a join operator takes linear time. Further, we naturally

extend the join operators ⊔R and ⊔E to the batch join operators ⊔̃R and ⊔̃E in order to join

multiple elements, which are applied in the rules in Section 4.6.3 and Section 4.6.5.

4.5.3 Layout Operator for Strong Update

According to the definition of L, its second subdomain R abstracts the index-value corre-

lations of container objects, i.e., how objects are associated with the indexes. To support

strong updates, we define the layout operators to describe the semantics of inserting, ac-

cessing, and removing the objects, which are applied to update the abstract memory in

Section 4.6.

Definition 4.5.5 (Layout Operator) Given ol ∈ Op, om ∈ Ov, oi,ok ∈ Oc and ov ∈ O, a

layout operator has one of the following forms.

• µ(R,ol,oi,ov) and µ(R,om,ok,ov) insert an single object and a pair of objects to ol and om

at a deterministic position oi and key ok, respectively, producing the new container memory

layouts after the insertions.

83

• π(R,ol,oi) and π(R,om,ok) collect the object at a deterministic position oi and key ok, re-

spectively, returning a set of abstract objects paired with constraints, which indicate accessed

elements and conditions.

• ω(R,ol,oi) and ω(R,om,ok) remove the single object and the pair of objects at a deter-

ministic position oi and key ok from ol and om, respectively, producing the new container

memory layouts after the removals.

Any operation on an anchored container is essentially a layout operator, which is a

function returning a new state in the subdomain R, corresponding to the index-value

correlations after the operation. Due to the finite size of Oc, the complexity of a layout

operator is bounded by |R(o)| · |Oc|. Although |R(o)| depends on the numbers of the inser-

tions and removals in different branches, computing layout operators is still more light-

weighted than solving complex constraints qualifying positions and keys with a sheer

number of disjunctions.

Example 4.5.2 In Figure 4.2, we have R(o1) = ∅ before line 4. The insertion at line 4 induces

µ(R,o1, “id”, “a”), which updates R(o1) to {((“id”, “a”), T)}.

4.5.4 Summary

According to the abstract states, we can determine the indirect value flows induced by

the container method calls. Specifically, the points-to facts in the abstract environment E

provide sufficient information of adding value-flow edges in the value-flow graph, based

on which the client of value-flow analysis can be performed.

Example 4.5.3 Before line 7 in the program shown in Figure 4.2, we have

R(o1) = {((“id”, “a”), T), ((“age”,null), T)}

After line 7, we can obtain E(i) = {(“a”, T)}. Finally, we add an edge from “a”@ℓ4 to i@ℓ7 to the

VFG in Figure 4.3.

Technical Challenges. Based on the abstract memory, we have to compute the abstract

state for each program location. Specifically, we should resolve the following issues:

84

• We should identify the manipulated memory objects precisely for container method

calls, posing the challenge in updating points-to facts in E.

• A container object may be modified and accessed at dozens of locations in the pro-

gram and form different memory layouts, making it challenging to maintain L pre-

cisely and efficiently.

• The facts in the subdomains have sophisticated interactions, which requires a non-

trivial semantic reduction operator [61]. For example, the update of L should be

aware of U to determine whether strong updates should be applied.

4.6 Memory Orientation Analysis

The section presents the memory orientation analysis that addresses the technical chal-

lenges discussed in Section 4.4. We first present the abstract transformers of operations

not related to containers and show how to maintain precise points-to facts (Section 4.6.1).

We then define the partial abstract transformers of container method calls (Section 4.6.2),

and propose a semantic reduction operator, i.e., witness operator, to obtain a more precise

abstract state by applying strong updates to anchored containers (Section 4.6.3). Based on

the partial abstract transformers and witness operators, we depcit the abstract semantics

of a container method call (Section 4.6.4). We also define the abstract semantics of con-

tainer traversals briefly (Section 4.6.5). Finally, we illustrate how the memory orientation

analysis integrates the reasoning of container semantics into the VFG construction (Sec-

tion 4.6.6). The benefits of the memory orientation analysis are further highlighted along

with the formulation and the proof of the soundness (Section 4.6.7).

In what follows, we describe the abstract transformers as deductive rules of the form:

E, L, C, U ⊢ st : E ′, L ′, C ′, U ′

where (E, L, C, U) and (E ′, L ′, C ′, U ′) are the abstract memory states before and after the

statement st, respectively.

85

T-Alloc
E ′ = E[v→ {(o, T)}] C ′ = C[v→ ⊤]
E, L, C, U ⊢ v = new τ : E ′, L, C ′, U

T-Ass-var
E ′ = E[v→ E(u)] C ′ = C[v→ C(u)]

E, L, C, U ⊢ v = u : E ′, L, C ′, U

T-Ass-lit
E(a) = {(oa,ϕ)} E ′ = E[v→ {(oa,ϕ)}] C ′ = C[v→ oa]

E, L, C, U ⊢ v = a : E ′, L, C ′, U

Figure 4.7: Abstract transformer of allocation and assignment

T-Sequencing
M ⊢ S1 : M0 M0 ⊢ S2 : M ′

M ⊢ S1;S2 : M ′

T-Branch

ϕ =
∨

(o,ϕ)∈E(v)(o ̸= null∧ϕ)
M ∧ϕ ⊢ S1 : M1 M ∧ (¬ϕ) ⊢ S2 : M2 M ′ = M1 ⊔M M2

M ⊢ if (v) then S1 else S2 : M ′

Figure 4.8: Abstract transformer of sequencing and branch

4.6.1 Abstract Semantics of Non-Container Operation

Non-container operations include allocation statements, assignments, sequencing, and

branches. We define their abstract transformers as follows.

Allocation Statement and Assignment. Figure 4.7 presents the abstract transformers

for allocation statements and assignments. The rules are straightforward. For instance,

when a memory object is allocated, we create an abstract object o ∈ O. To maintain

the points-to relation between v and o, we apply the strong update to the abstract en-

vironment E by setting E(v) to {(o, T)}, indicating v must point to o after the statement.

Meanwhile, v can not be a variable pointing to a literal. Thus C(v) is set to ⊤.

The assignment v = u applies the strong update to the points-to set of v by setting

E(v) to E(u), and the abstract values of v to the ones of u. Similarly, we define the abstract

transformer for a literal assignment.

Sequencing and Branch. In Figure 4.8, the rule T-Sequencing defines the abstract trans-

former of a sequence of statements, which is the composition of the abstract transformer

86

of each statement. Similarly, the rule T-Branch defines the abstract transformer of a branch

statement. It first conjoins the branch conditions ϕ and ¬ϕ with every constraint in the

abstract states respectively, and then transforms the abstract states along two branches.

Finally, it joins the abstract states at the end of two branches and obtains the abstract state

after the branch statement. Particularly, we use the notation M ∧ ϕ as a shorthand of

conjoining ϕ with the constraints in M.

4.6.2 Partial Abstract Transformer of Container Method Call

We proceed to depict the abstract semantics for container method calls. The overall idea

is to locate the abstract container objects manipulated by the method call based on the

points-to facts in E and then recompute L. Because we can not determine whether the

manipulated container object is an anchored container or not from U before the statement,

we postpone the strong updates on the memory layouts of anchored containers by an

additional operator (Section 4.6.3), and define a partial abstract transformer first without

analyzing index-value correlations of the manipulated containers. For clarity, we first

define the unary operator ▽R to construct the upper bound of the abstract layout of a

container object.

Definition 4.6.1 (Upper-Bound Operator) Given o ∈ Op ∪Ov and R, we define the upper-

bound operator▽R:

▽R(R,o) := {(t,
∨

(t ′,ϕ)∈R(o)ϕ) | t ∈ T}

where T := ∪Nk=0Ok when o ∈ Op and T := Oc ×O when o ∈ Ov. Note that ▽R(R,o) is the

conceptual upper bound of the abstract layout of o. We use this notation for defining the rules

while do not compute it explicitly.

We describe the partial abstract transformers of container method calls in the following

deductive form:

E, L, C, U ⊢t st : E ′, L ′, C ′, U ′

87

T-Ins

(oc,ϕc) ∈ E(c) (ou,ϕu) ∈ E(u) (ov,ϕv) ∈ E(v)
B = ({(ou,ϕc ∧ϕu)}, {(ov,ϕc ∧ϕv)})

B ′ = B[oc → B(oc)⊔B B] R ′ = R[oc →▽R(R,oc)]
U ′ = U[oc → ite(C(ou) ∈ Oc, U(oc), 0)]

E, L, C, U ⊢t c.insert(u, v) : E, L ′, C, U ′

T-Rem

(oc,ϕc) ∈ E(c) (ou,ϕu) ∈ E(u)
R ′ = R[oc →▽R(R,oc)] U ′ = U[oc → ite(C(ou) ∈ Oc, U(oc), 0)]

E, L, C, U ⊢t c.remove(u) : E, L ′, C, U ′

T-Acc

(oc,ϕc) ∈ E(c) B(oc) = (Bu,Bv)
C ′ = C[v→ ⊤] E ′ = E[v→ {(oe,ϕc ∧ϕe) | (oe,ϕe) ∈ Bv}]

E, L, C, U ⊢t v = c.access(u) : E ′, L, C ′, U

Figure 4.9: Partial abstract transformers of container method call

Figure 4.9 presents the partial abstract transformers for container method calls. First,

the rule T-Ins defines the partial abstract transformer of an insertion. For each abstract

objects pointed by c, u, and v, it transforms the abstract memory state in three steps.

• For an abstract container object oc pointed by c, the rule updates its abstract value

in B by inserting ou and ov with the constraint ϕc ∧ϕu.

• To update R, T-Ins simply sets the abstract value of oc to its conceptual upper bound

to obtain a sound approximation by the upper-bound operator in Definition 4.6.1.

• The abstract value of oc in the uniqueness domain is also updated and set to 0 if the

abstract value of ou in the constant domain is not literal. Otherwise, it is preserved

and equal to the original abstract value.

Similarly, we define the rule T-Rem for a removal. The difference is that T-Rem does not

change B with the assumption that no element is removed to guarantee the soundness.

Lastly, T-Acc defines the partial abstract transformer of an access method call. C(v)

is set to be ⊤, as v is not assigned by a literal. Meanwhile, T-Acc iterates each abstract

container object oc pointed by c and the abstract objects oe in its value set, and oe is exactly

the accessed object. Finally, T-Acc applies the strong update to E(v) by enforcing v point

to oe under ϕc∧ϕe, where ϕc and ϕe are the paired constraints of oc and oe, respectively.

88

Example 4.6.1 Before line 5 in Figure 4.2, we have U(o1) = 1, R(o1) = {((“id”, “a”), T)},

B(o1) = ({(“id”, T)}, {(“a”, T)}), and C(ind2) = “age” ∈ Oc, where ind2 is the insertion

index, so we have U ′(o1) = 1 after line 5. Applying the rule T-Ins, we have

B ′(o1) = ({(“id”, T), (“age”, T)}, {(“a”, T), (null, T)})

R ′(o1) = ▽R(R,o1) = {(t, T) | t ∈ Oc ×O}

As defined in the rule T-Ins, the values of the manipulated container object in B are

merged by ⊔B. According to Definition 4.5.3, the disjunctions in constraints enable the

strong update on B. However, while the rules support precise reasoning about B, we can

not obtain how objects are stored in each container because C and U are opaque to R.

4.6.3 Witness Operator

To utilize anchored containers and obtain more precise memory layouts, we instantiate

the witness operators [151] for semantic reduction [61]. Based on Definition 4.5.2 in Sec-

tion 4.5.1, U ′ determines all the anchored containers at the statement st. Therefore, the key

idea underlying the witness operators is to sharpen R as long as we find that an abstract

container object is anchored (according to the subdomain U). Specifically, the witness op-

erator takes as input the abstract memory states M := (E, L, C, U) before the statement and

M ′ := (E ′, L ′, C ′, U ′) after applying the partial abstract transformer, and finally returns a

smaller abstract memory state M ′′ := (E ′′, L ′′, C ′′, U ′′) compared with M ′. We describe the

witness operator as deductive rules of the following form:

(E, L, C, U), (E ′, L ′, C ′, U ′) ⊢w st : (E ′′, L ′′, C ′′, U ′′)

Figure 4.10 presents the witness operators for container method calls. With the facts in

C and U, it is possible to transform R to smaller states than R ′ in an insertion and removal,

and obtain a smaller state E ′′ than E ′ in an access method call.

• For an insertion, the rule W-Ins first examines whether u points to a literal and the

abstract container object oc pointed by c is deterministic. If oc is an anchored con-

tainer, the layout operator µ updates its memory layout maintained by R. Because

89

W-Ins

E(c) = {(oc,ϕc)} (ov,ϕv) ∈ E(v) C(u) = ou
A(ov,ϕv) = ⊔̃R{(t,ϕ∧ϕv) | (t,ϕ) ∈ µ(R,oc,ou,ov)}

R ′′ = R ′[oc → ⊔̃R{A(ov,ϕv) | (ov,ϕv) ∈ E(v)}]
U ′(oc) = 1 L ′′ = (B ′, R ′′) M ′′ = (E ′, L ′′, C ′, U ′)

M, M ′ ⊢w c.insert(u, v) : M ′′

W-Rem

E(c) = {(oc,ϕc)} C(u) = ou R ′′ = R ′[oc → ω(R,oc,ou)]
U ′(oc) = 1 L ′′ = (B ′, R ′′) M ′′ = (E ′, L ′′, C ′, U ′)

M, M ′ ⊢w c.remove(u) : M ′′

W-Acc

E(c) = {(oc,ϕc)} C(u) = ou E = {(oe,ϕc ∧ϕe) | (oe,ϕe) ∈ π(R,oc,ou)}
U ′(oc) = 1 E ′′ = E[v→ E] M ′′ = (E ′′, L ′, C ′, U ′)

M, M ′ ⊢w v = c.access(u) : M ′′

Figure 4.10: Witness operator of container method call

the number of the abstract memory objects pointed by v can be larger than 1, all the

updated abstract layouts R of oc are joined by ⊔̃R. Similarly, the rule W-Rem applies

the strong update to R and removes the stored objects from the memory layout of

an anchored container byω.

• The rules of the witness operators for access method calls are straightforward. If u

points to a literal and c points to an anchored container, W-Acc utilizes the layout

operator π to collect the memory objects oe paired with the index ou in R and then

applies the strong update to E(v) by enforcing v point to oe.

Example 4.6.2 After applying the rule T-Ins for the insertion at line 5 in Figure 4.2, we have

U ′(o1) = 1, indicating that o1 is an anchored container. Thus, we have

R ′′(o1) = ⊔̃R{(t,ϕ∧ T) | (t,ϕ) ∈ µ(R,o1, “age”,null)}

= {((“id”, “a”), T), ((“age”,null), T)}

Generally, a semantic reduction operator in the combined domain can be expensive, as

it requires pair-wise or clique-wise operators [61, 152]. We notice that join operators are

applied multiple times in the rule W-Ins, iterating the k-tuples or pairs of abstract objects

in µ(R,oc,ou,ov) and computing the constraint of each k-tuple or pair. A naive design has

quadratic time complexity in the total number of k-tuples or pairs. We optimize witness

90

operators by maintaining a hash value for each k-tuple and pair so that the join operator

can be applied in linear time complexity. Specifically, if (t1,ϕ1) and (t2,ϕ2) satisfy the

condition that t1 and t2 have the same hash value, we are aware that t1 and t2 are equal

and then create the disjunction ϕ1 ∨ϕ2 paired with t1 (i.e., t2).

4.6.4 Abstract Semantics of Container Method Call

For each container method call, we can easily compute its abstract semantics by applying

witness operators after the partial abstract transformers. Specifically, we have the abstract

transformer M ⊢ st : M ′ for a container method call st if and only if M ⊢t st : M0 and

M, M0 ⊢w st : M ′.

In contrast to the partial abstract transformers in Figure 4.9, the witness operators de-

mand the post-states of the subdomains after applying the partial abstract transformers,

such as U ′, to identify anchored containers for strong updates. However, the partial ab-

stract transformers in Figure 4.9 induces the transition of each subdomain independently,

permitting the parallel updates of the subdomains. We separate the witness operators

from the partial abstract transformers to achieve better efficiency in the transition.

It is worth noting that witness operators only affect the abstract memory states when

the container method calls manipulate an anchored container at a deterministic index. For

example, we can safely skip other computations of witness operators if u does not point

to a literal. Although we compose witness operators with partial abstract transformers

eagerly, we can end unnecessary witness operators by scheduling the computations of the

premises of the rules in Figure 4.10.

With the benefit of witness operators, we can obtain more precise container memory

layouts by achieving the semantic reduction. We state the correctness of the witness oper-

ators in Figure 4.10 as the following theorem.

Theorem 4.6.1 Given a container method call st and an abstract memory state M before st, we

have

M ⊢t st : M ′ ∧ M, M ′ ⊢w st : M ′′ ⇒ M ′′ ⊑M M ′

Proof. We sketch the proof for the case in which st is an insertion. Without the loss of

91

generality, we only prove the correctness of W-Ins for position-dependent containers. For

value-dependent containers, the proofs can be provided in almost the same way. Also, we

can construct the similar proofs for the other two kinds of container method calls.

According to the definitions of W-Ins in Figure 4.10, we only need to prove that L ′′ ⊑L

L ′. Based on the definition of W-Ins, we have L ′′ = (B ′, R ′′). Hence, we need to prove that

for an arbitrary op ∈ Op and ((o1
1, . . . ,ok1),ϕ1) ∈ R ′′(op), there exists ((o1

2, . . . ,ok2),ϕ2) ∈

R ′(op) such that oi1 = oi2(1 ⩽ i ⩽ k) and ϕ1 implies ϕ2. Based on the definition of T-Ins

and W-Ins, R ′′ and R ′ only differ at oc pointed by c, where E(c) = {(oc,ϕc)}. We have

A(ov,ϕv) = ⊔̃R{(t,ϕ∧ϕv) | (t,ϕ) ∈ µ(R,oc,ou,ov)}

R ′′ = R ′[oc → ⊔̃R{A(ov,ϕv) | (ov,ϕv) ∈ E(v)}]

Consider an arbitrary ((o1,o2, . . . ,om),ϕ ′′) ∈ R ′′(oc), we can derive the following fact

from the definition of µ:

∃((o1,o2, . . . ,ooi−1,ooi+1, . . . ,om),ϕ) ∈ R(oc), ϕ∧ϕv = ϕ
′′

Based on the definition of▽R, we have R ′(oc) = {(t,
∨

(t ′,ϕ)∈R(oc)
ϕ) | t ∈ ∪Nk=0Ok}. Let t =

(o1,o2, . . . ,om), and ϕ ′ =
∨

(t ′,ϕ)∈R(oc)
ϕ. We have ϕ implies ϕ ′ according to the property

of the logical disjunction. Meanwhile, we have ϕ ′′ implies ϕ based on ϕ∧ϕv = ϕ ′′, so

we get ϕ ′′ implies ϕ ′. Thus, we have proved that for each ((o1,o2, . . . ,om),ϕ ′′) ∈ R ′′(oc),

there exist ((o1,o2, . . . ,om),ϕ ′) ∈ R ′(oc) such that ϕ ′′ implies ϕ ′. Q.E.D.

Remark. The precision enhancement provided by witness operators also propagates

to non-anchored containers because of the interactions among the subdomains E, B, and

R. With the benefit of precise index-value correlations in R, the witness operators in Fig-

ure 4.10 also generate more precise points-to facts in E, based on which the transformers

in Figure 4.9 produce more precise ownership in B for general containers.

Another interesting benefit of witness operators is that the objects with fields can be

precisely analyzed in a field sensitive manner. Essentially, such an object is a particular

kind of an anchored container. The constant indexes of the manipulations are exactly

the field names of the object. In real-world programs, container objects are often used as

the fields of a user-defined object. A field-insensitive analysis can hardly apply strong

updates upon container memory layouts, as it does not identify which container objects

92

Fix
M ⊢ S : M1 M = M1

M ⊢ fix(S) : M
Fix

M ⊢ S : M1 M ̸= M1 (M▽M1) ⊢ fix(S) : M ′

M ⊢ fix(S) : M ′

T-Loop

(oc,ϕc) ∈ E(c) (Bu,Bv) = B(oc)
Eu = ⊔̃E{(ou,ϕ∧ϕc) | (ou,ϕ) ∈ Bu} Ev = ⊔̃E{(ov,ϕ∧ϕc) | (ov,ϕ) ∈ Bv}

E1 = E[u→ Eu, v→ Ev] C1 = C[u→ ⊤, v→ ⊤] (E1, L, C1, U) ⊢ fix(S) : M ′

M ⊢ foreach (u, v) in c do S od : M ′

Figure 4.11: Abstract transformer of container traversal

are pointed by the field precisely. Therefore, the witness operators can compute the precise

points-to facts for each field, which further enables strong updates for the container objects

pointed by the fields.

4.6.5 Semantics of Container Traversal

For a traversal, the rules in Figure 4.11 iterate the loop body to obtain the fixed point. For

example, the rule T-Loop first enumerates the objects stored in a container and enforces u

and v point to these objects. Besides, u and v can not point to certain literals, so C(u) and

C(v) are set to ⊤. The rule Fix finally computes the fixed point for the loop body.

To assure the termination, we define and apply the widening operator ▽ [153] if the

abstract state M before an iteration is not equal to the abstract state M1 after the iteration.

The path constraint after widening is set to be true if it is changed in the iteration. The

finite sizes of X and O guarantee that M1 = M must hold after applying the rule Fix finite

times, and the rule T-Loop must be terminating.

4.6.6 Value-Flow Graph Construction

Based on the points-to facts in E, we can identify the accessed container object, add the

value-flow edges labeled with constraints, and finally, stitch value flows from different

functions by function summaries to construct a global VFG. Compared with previous

value flow analyses [3, 115, 154], the memory orientation analysis extends the abstract

memory model to analyze the semantics of container method calls, finally discovering the

value flows through containers precisely.

93

Table 4.1: Rules of computing value-flow edges

Statement Condition Edge

v = a; ∃oa, (oa,ϕa) ∈ E(a)∧ (oa,ϕv) ∈ E(v) a→ v: ϕa ∧ϕv
v = u; ∃o, (o,ϕv) ∈ E(v)∧ (o,ϕu) ∈ E(u) u→ v: ϕv ∧ϕu
v = c.access(u) ∃o∃w, (o,ϕv) ∈ E(v)∧ (o,ϕw) ∈ E(w) w→ v: ϕv ∧ϕw

Following the existing approaches [3, 115], the memory orientation analysis computes

the abstract memory and constructs the VFG in two phases as follows.

Intraprocedural Analysis. We construct the VFG for a function straightforwardly based

on the rules in Table 4.1. For an assignment, we check the points-to sets of the variables

on the left and right-hand sides and add the edge if they are not disjoint. For an access

method call, a value-flow edge is produced between w and v when their points-to sets

are not disjoint after the statement. The guarded constraints of the edges are exactly the

conjunctions of the constraints of the points-to facts in E. Particularly, we do not invoke

SMT solvers on the constraints but store them in the graph as an edge label. To simplify

the constraints, we follow the previous work [3] and utilize lightweight semi-decision

procedures to filter out apparent contradictions.

Interprocedural Analysis. In the presence of function calls, we introduce the abstract

objects for the formal parameters at the function entry and the formal return values at the

function exit. Following existing techniques [1, 2, 3], we also add auxiliary parameters and

return values to support depicting side effects. Then, we compute the abstract memory

in the intraprocedural analysis and build the function summary according to the abstract

memory [63], which are the edges between the parameters to the returns in the VFG of a

single function, abstracting the effect of calling the function [155]. Finally, we inline the

function summary of the callee at each call site located in the caller function in a bottom-

up manner, yielding a global VFG of the whole program.

Example 4.6.3 For the function bar in Figure 4.2, the last element of o3 is accessed at line 18, so

we add an auxiliary parameter node ids_arg1 to the VFG in Figure 4.3. Based on the abstract state

before line 14, we can determine that i@ℓ7 and j@ℓ11 can be the last element, inducing two edges

from i@ℓ7 and j@ℓ11 to ids_arg1, respectively. Similarly, we add the other two auxiliary parame-

ter nodes, i.e., hs_arg1 and hs_arg2, and connect them with null@ℓ5 and “a”@ℓ4, respectively,

94

to form the interprocedural value flow.

4.6.7 Discussion

Benefit of the Combined Domain. Our memory orientation rests on the combined do-

main to apply strong updates to the memory layouts of anchored containers, allowing a

more precise solution than the one obtained by solving each subdomain separately. Es-

sentially, C supports the constant propagation [48] and affects the state transition in the

uniqueness domain U. Even if an index is computed at runtime, we can still effectively

identify whether it is constant or not. Furthermore, E and U enable us to introduce the

witness operators for semantic reduction [61] and obtain more precise abstract states.

Figure 4.12 shows the interactions between the subdomains, which are indicated by

the edges labeled with the sets of the rules. In total, there are ten edges in Figure 4.12

showing ten ways of interactions of the subdomains. We discuss two typical interactions

as follows.

• The edge from U to R indicates the precision benefit introduced by the rules W-

Ins and W-Rem. They apply the strong updates upon the memory layouts of the

anchored containers and compute their precise index-value correlations in R.

• The edge from E to B indicates that we can obtain more precise ownership even if

the container is not an anchored container, as the rule T-Ins propagates the precision

benefit from E to B.

Overall, the combined domain and its abstract transformers serve as a critical role in the

memory orientation analysis, eventually promoting the precision of value flow analysis.

Soundness of the Memory Orientation Analysis. Lastly, we discuss the soundness

of the memory orientation analysis. An anchored container is essentially a data structure

with a set of fields. According to the partial abstract transformers in Figure 4.9, the unique-

ness domain U indicates whether a container object must be an anchored container or not.

This implies that we perform strong updates conservatively, as we under-approximate

the set of anchored containers. As long as we identify anchored containers, we finally rea-

95

B

ER C

U

①
②

③

④

⑤

②

② ⑥
⑥⑦

Rule Set ID Rules
① {T-Ins}
② {W-Acc}
③ {T-Acc}
④ {T-Ins, T-Rem, W-Ins, W-Rem}
⑤ {T-Ass-lit}
⑥ {T-Ins, T-Rem}
⑦ {W-Ins, W-Rem}

Figure 4.12: The interactions between the subdomains and the corresponding rules

son their index-value correlations in the way of existing field-sensitive analyses [156, 51],

which ensures the soundness theoretically.

Formally, we state the soundness of abstract semantics by the following theorem.

Theorem 4.6.2 Given a program P, there exists an abstraction function α such that for any con-

crete memory stateM and abstract memory state M if α(M) ⊑M M, then

M ⊢ P :M ′ ∧ M ⊢ P : M ′ ⇒ α(M ′) ⊑M M ′

Proof. We sketch the proof of the theorem as follows. The key of the proof is to con-

struct the abstraction function α. According to Definition 4.3.1 and Definition 4.5.1, we can

define the function σ : V→ O as follows to abstract the values in the concrete memory by

the abstract objects in the abstract memory.

• If ν is an address in the concrete memory, σ maps it to the abstract memory object

based on the allocation-site abstraction, Specifically, σ(ν) is the abstract memory

object allocated by the statement applying the address ν.

• If ν is a literal, σmaps ν to the corresponding literal object o ∈ Oc.

Given a concrete memory M at the program location ℓ, we can define (Ê, L̂, Ĉ, Û) :=

α(M) by utilizing σ. First, we construct the abstract environment Ê based on E. According

to the concrete memory M, we can easily computes the path constraint ϕ by creating the

conjunction of the equality of the variables in the branch conditions before ℓ. Thus, we

define Ê as follows for any ν ∈ V:

Ê(σ(ν)) = {(σ(E(v)),ϕ)}

96

Second, we construct the abstract layout L̂ := (B̂, R̂). Here, we consider two cases

in which σ(ν) is a position-dependent and value-dependent abstract container object, re-

spectively.

• σ(ν) ∈ Op: We can obtain the memory layout of the position-dependent container

object storing at the address ν based on the concrete memoryM, i.e., L(ν, i) = (i,νi),

where 1 ⩽ i ⩽ k. Therefore, we have

B̂(σ(ν)) = {({(o, T) | o ∈ O}, {(σ(νi),ϕ) | 1 ⩽ i ⩽ k})}

L̂(σ(ν)) = {((σ(ν1), · · · ,σ(νk)), ϕ)}

• σ(ν) ∈ Ov: We can obtain the memory layout the value-dependent container object

storing at the address ν based on the concrete memory M, i.e., L(ν, κi) = (κi,νi),

where 1 ⩽ i ⩽ k. Similarly, we have

B̂(σ(ν)) = ({(σ(κi),ϕ) | 1 ⩽ i ⩽ k}, {(σ(νi),ϕ) | 1 ⩽ i ⩽ k})

L̂(σ(ν)) = {((σ(κi), σ(νi)), ϕ) | 1 ⩽ i ⩽ k}

Third, we construct the state in constant domain Ĉ. For any variable v in the program,

we enforce Ĉ(v) = σ(θ) if v is always equal to a certain literal θ before ℓ. If v has not been

initialized, we set Ĉ(v) to ⊥. Otherwise, we let Ĉ(v) be ⊤.

Fourth, we can compute Û(σ(ν)) in the similar way of defining Ĉ. Specifically, Û(σ(ν)) =

1 if the container object storing at the address ν satisfy the condition of an anchored con-

tainer before the program location ℓ. Otherwise, we set Û(σ(ν)) to 0.

Hence, we obtain the abstraction function α, which mapsM to M̂ = (Ê, (B̂, R̂), Ĉ, Û).

Given the concrete semantics in Figure 4.6, we can examine the relation α(M ′) and M ′

based on Definitions 4.9 and 4.10 straightforwardly. Intuitively, the composition of the

partial abstract transformers and the witness operators updates the abstract memory con-

servatively, preserving the relation that α(M ′) ⊑M M ′. Meanwhile, the monotonicity of

the join operator ⊔M guarantees the soundness of analyzing the program in the presence

of the branches and loops. Finally, the sound function summary implies the soundness of

analyzing the program with function calls. Q.E.D.

97

According to the rules of computing value-flow edges in Table 4.1, we can further

obtain the following corollary based on Theorem 4.6.2, which states the soundness of the

overall value-flow analysis. We omit the sketch of its proof in the paper, as it can be

obtained from the soundness of computing the abstract memory immediately.

Corollary 4.6.1 Given a program P, if a value u at the program location ℓ1 flows to a value v at

the program location ℓ2 in a concrete execution of P, then there must exist a value-flow edge from

u@ℓ1 to v@ℓ2 in the VFG constructed in the memory orientation analysis.

4.7 Demand-Driven Reachability Analysis

Once we obtain the VFG by the memory orientation analysis in Section 4.6, we can re-

duce the container-aware value-flow problem to a reachability problem [157, 3], which

enable us to effectively investigate data propagation within data-centric application code.

For a specific client, we conduct a demand-driven reachability analysis by traversing the

graph and collecting the value-flow facts of interest. The section presents two funda-

mental clients, namely thin slicing and value-flow bug detection, to demonstrate that our

approach benefits program understanding and improves memory safety, respectively. We

utilize the motivating example in Figure 4.2 and its VFG in Figure 4.3 to illustrate the

details of the clients throughout the section.

4.7.1 Thin Slicing

Program slicing identifies a subset of the program relevant to a program variable and a

statement, called the seed. It has wide applications in program understanding [123, 124,

125] and debugging [131, 132]. Different from traditional slicing, the thin slice for a seed

includes only the statements that affect the values of the variable directly, called the pro-

ducer statements, and exclude the dependencies of the base pointer and control dependen-

cies [123]. Thus, thin slices are smaller than conventional slices and support more precise

program understanding.

98

To identify the producer statements, we conduct the reachability analysis by backward

traversing the VFG from the seed. As blamed in [123], data structures are a major source

of slice pollution. The precise reasoning of container semantics enables the slicer to obtain

more precise slices for given programs.

Example 4.7.1 Consider the variable q and the statement ids.peek() at line 18 in Figure 4.2. We

can obtain the set of the slices S as follows by a backward traversal from q@ℓ18:

S = { s1 : “a”@ℓ4 ↪→ i@ℓ7 ↪→ ids_arg1 ↪→ q@ℓ18,

s2 : “b”@ℓ6 ↪→ j@ℓ11 ↪→ ids_arg1 ↪→ q@ℓ18,

s3 : null@ℓ9 ↪→ j@ℓ11 ↪→ ids_arg1 ↪→ q@ℓ18 }

If the analysis does not distinguish the objects in containers, the thin slice also includes the

insertions at line 5, which is a spurious producer statement. Specifically, we have the set of the

slices S ′:

S ′ = S∪ {s4 : null@ℓ5 ↪→ i@ℓ7 ↪→ ids_arg1 ↪→ q@ℓ18}

4.7.2 Value-Flow Bug Detection

Value-flow bugs cover a wide category of program bugs, such as NPE [30], memory

leak [4], and taint vulnerabilities [126, 158]. For example, detecting NPE suffices to per-

form a forward graph traversal, checking the reachability of the value-flow path from

null to the dereferenced pointer. Similarly, taint vulnerability detection is essentially the

problem of analyzing the reachability from the sources to the sinks specified in the taint

specifications [25].

In many data-centric systems, such as Web applications [127, 12], value flows are of-

ten propagated through containers, some of which may trigger the bugs. Our approach

strengthens the bug detection for these programs and, thus, improves system reliability

from the application side.

Example 4.7.2 The NPE detector traverses the VFG in Figure 4.3 from the null values to the

dereferenced pointers, i.e., p, q, and r at line 21. It discovers that the value flow is reachable from

null@ℓ5 to p@ℓ21, forming the path

p1 : null@ℓ5 ↪→ hs_args1 ↪→ p@ℓ17 ↪→ p@ℓ21

99

Thus, the NPE detector reports the NPE without false positives. However, a container mashing-

based analysis reports two false positives caused by the following spurious value flows even if it is

path-sensitive:

p2 : null@ℓ5 ↪→ hs_args2 ↪→ r@ℓ19 ↪→ r@ℓ21

p3 : null@ℓ5 ↪→ i@ℓ7 ↪→ id_arg1 ↪→ q@ℓ18 ↪→ q@ℓ21

4.7.3 Summary

The VFG of a given program precisely summarizes how values flow through containers,

enabling the clients to solve the instances of the value-flow problem by a demand-driven

reachability analysis. If necessary, the path constraints are collected on demand and then

solved by an SMT solver. Our approach judiciously delays constructing and reasoning

about the disjunctions until SMT solving in the reachability analysis. The solver only

checks the constraints of certain paths and bypass irrelevant ones, further promoting the

scalability of our approach. Also, the precision often goes arm in arm with scalability in

the analysis [159, 160]. The strong updates in the memory orientation analysis reduce the

facts in each subdomain, yielding a more sparse VFG. Moreover, it can decrease the num-

ber of the traversed paths in the reachability analysis, alleviating the overall overhead.

4.8 Implementation

We have implemented ANCHOR based on the static analysis platform PINPOINT [3, 115]

in Ant Group, using Z3 [161] as the SMT solver. ANCHOR supports a variety of value-flow

analyses, such as the value-flow bug detection and thin slicing. Following PINPOINT, AN-

CHOR achieves the context-, flow-, field-, and path-sensitivity in the client analysis. Our

work extends the memory model of PINPOINT, enabling the precise reasoning of container

memory layouts. In this section, we mainly present the details on the implementations of

the memory orientation analysis and the reachability analysis.

Memory Orientation Analysis in ANCHOR. In the memory orientation analysis, AN-

CHOR analyzes the collections in JCF, Java legacy collections, and data structures in Java

EE, which are widely utilized in real-world data-centric applications [41, 12]. Table 4.2

100

Table 4.2: List of containers

Framework Name Category Framework Name Category

JCF ArrayList position Legacy Vector position
JCF LinkedList position Legacy Stack position
JCF HashSet value Java EE ServletContext value
JCF TreeSet value Java EE ServletRequest value
JCF LinkedHashSet value Java EE HttpServletRequest value
JCF HashMap value Java EE HttpServletResponse value
JCF TreeMap value Java EE HttpServletRequestWrapper value
JCF LinkedHashMap value Java EE HttpServletResponseWrapper value

Legacy Properties value Java EE HttpSession value
Legacy Dictionary value Java EE JspContext position, value
Legacy Hashtable value Java EE PageContext position, value

shows their names and categories. Specifically, we provide the container specification

in a configuration file to specify the concrete semantics of each container method, such

as inserting at the end of a position-dependent container, and removing the pair at a

specific key in a value-dependent container. In the memory orientation analysis, AN-

CHOR loads the configuration file to identify container method calls, and updates abstract

memory states by applying corresponding partial abstract transformers in Figure 4.9 and

the witness operators in Figure 4.10. Particularly, ANCHOR is only concerned with the

memory layouts of the containers and does not perform the reasoning of other sophisti-

cated properties, such as the largest key of a TreeMap object and the first-inserted key in a

LinkedHashMap object. It is worth mentioning that several kinds of Java EE containers are

essentially a composition of multiple position-dependent containers or value-dependent

containers. For example, a JspContext object maintains the JspWriter objects sequentially

and the attribute objects with the keys. ANCHOR analyzes such container objects sepa-

rately, regarding each of them as an object with two container-typed fields.

Reachability Analysis in ANCHOR. In our reachability analysis, we collect and solve

the constraints on demand in the traversal. Instead of leveraging a full-feature SMT solver,

we also implement several semi-decision procedures as the intra-procedural preprocess-

ing procedures, such as unit propagation, to determine unsatisfiable or valid constraints

in a light-weighted manner [161], most of which can be achieved in linear time. For gen-

eral cases, we model the variables in the program by bit vectors in the constraints, and

set the length of a bit vector to the bit width. To avoid solving the formula in a large size,

we adopt an eager strategy to prune the infeasible paths before they reach the sink nodes.

101

Specifically, we solve the condition of a path at specific program locations in the traversal

even if it has not reached a sink node. If the current path condition has been unsatisfiable,

we can safely stop the traversal, as it can not form a feasible path.

4.9 Evaluation

To demonstrate the utility, we address the following research questions:

• RQ1: How universe are anchored containers?

• RQ2: How efficient is ANCHOR in constructing the VFG?

• RQ3: How effective is ANCHOR in thin slicing?

• RQ4: How precise and scalable is ANCHOR in detecting value-flow bugs?

We conduct four experiments to answer the research question. First, we count an-

chored containers to show the universality of the concept. Second, we measure the time

and memory overhead of the VFG construction for real-world programs. Third, we count

the producer statements as the size of a thin slice to measure the precision of thin slicing.

Finally, as a case study, we use taint vulnerabilities and null pointer exception to measure

the precision and scalability in detecting value-flow bugs.

Subjects. We select 18 open-source data-centric applications on GitHub that are ac-

tively maintained and contain intensive usage of various containers. They cover different

sizes (ranging from 19 KLoC to 5.12 MLoC) and diverse domains (such as RPC frame-

works, data management systems, etc.). Besides, many of these projects, such as MyBatis,

HBase, and Hadoop, are the fundamental infrastructure of data-centric applications. They

are extensively and frequently scanned by academic static analyzers [129, 162, 27], and

industrial tools, and thus expected to have every high quality. We also select several

open-sourced applications in Ant Group, including sofa-rpc, atlas, and dubbo, to show

our commercial value for the company. Particularly, we choose the OWASP benchmark

projects [147] as the subjects to evaluate taint vulnerability detection, as configuring taint

specifications for real-world programs might be subjective.

102

(a) (b)

(c) (d) (e)

Figure 4.13: Proportions of different kinds of containers. (a): Proportions of position-
dependent and value-dependent containers; (b): Proportions of anchored position-
dependent and anchored value-dependent containers; (c), (d), and (e): Proportions of
anchored and non-anchored containers in different frameworks.

Environment. We evaluate ANCHOR on a 64-bit machine with 40 Intel(R) Xeon(R) CPU

E5-2698 v4@2.20GHz and 512GB of physical memory. Following previous studies [163, 3],

we set the time limit of an SMT call to 10 seconds. Any analysis is run with a limit of 6

hours and 150GB of memory.

4.9.1 Identifying Anchored Containers

To show the prevalence of anchored containers, we count the anchored containers at the

exit of each project by the memory orientation analysis. Specifically, we examine the

uniqueness domain U at the exit and count the number of the container objects o which

is mapped 1 by U. Several container objects are anchored containers at specific program

locations, e.g., the HashMap object o2 at line 7 in Figure 4.2. However, we do not con-

sider them in such a fine-grained manner, although they can still promote the value-flow

analysis. We also count the non-anchored containers in each project and measure the dis-

tribution of anchored containers in different types and frameworks.

103

Table 4.3 shows the numbers of anchored containers in the column #AC. The result

shows that anchored containers widely exist in real-world programs. On average, there

are 1.13 anchored containers in 1 KLoC, which demonstrates their prevalence. Particu-

larly, over 1 thousand anchored containers exist in the project NetBeans, posing the neces-

sity of analyzing them precisely and efficiently. Besides, The column #NAC in Table 4.3

shows the number of non-anchored containers. Although non-anchored containers take

up a larger proportion in real-world programs, the orientation analysis can still effectively

improve the precision of many value-flow clients, which will be evidenced by the answers

to other research questions.

Figure 4.13 shows more details of the proportions of various kinds of containers. First,

Figure 4.13 (a) reveals that position-dependent containers, such as ArrayList and LinkedList,

are slightly more frequently used than value-dependent containers, such as HashMap and

Dictionary. Second, Figure 4.13 (b) shows that position-dependent containers take up

70.8% of all the anchored containers, while the proportion of value-dependent contain-

ers is only 29.2%. The phenomenon mainly comes from the common practice of devel-

opers, as they often add or remove an element at the beginning or the end of a position-

dependent container, and use more non-literal keys in a value-dependent container. Third,

Figure 4.13 (c), (d), and (e) show the proportions of anchored and non-anchored contain-

ers in three frameworks. Specifically, the collections in JCF, which are general-purposed

containers, are often used with non-literal keys or constant indexes in a flexible manner,

and the proportion of non-anchored containers reaches 72.3%. In contrast, 83.7% Java EE

data structures are anchored containers, as they are mostly used to store specific messages,

e.g., network requests and responses, which often take literals as keys.

Answer to RQ1: Anchored containers widely exist in real-world programs. There
are 1.13 anchored containers in 1 KLoC of the experimental subjects. The proportions
of anchored containers in the JCF collections, Java legacy collections, and Java EE
data structures are 27.7%, 65.7%, and 83.7%, respectively.

104

Table 4.3: The numbers of anchored containers and overhead of building the VFG

Project Description Size
(KLoC) #AC #NAC VFG-N VFG-O VFG-S

Time
(min)

Mem
(GB)

Time
(min)

Mem
(GB)

Time
(min)

Mem
(GB)

GraphJet Graph processing system 19 35 85 0.1 0.4 0.1 0.4 0.1 0.4
mapper Server application 22 18 77 0.3 0.6 0.4 0.7 0.3 0.6
light-4j Microservice platform 44 48 182 0.3 1.5 0.3 1.6 0.3 1.6
roller Server application 54 87 267 1.2 1.7 1.4 1.9 1.2 1.8
MyBatis ORM framework 61 81 220 1.0 2.8 1.1 3.1 1.1 3.1
sofa-rpc RPC framework 74 72 238 1.3 3.7 1.5 3.9 1.4 3.8
Glowstone Server application 86 125 303 1.4 3.1 1.7 3.4 1.5 3.3
DolphinScheduler Eventing infrastructure 90 132 457 1.3 2.7 1.6 2.9 1.5 2.9
atlas Server application 142 226 551 1.7 4.1 2.1 4.7 2.0 4.6
Struts Web framework 170 197 765 2.9 5.1 3.3 5.6 3.2 5.5
dubbo RPC framework 184 173 736 3.0 5.5 3.5 6.1 3.2 5.9
IoTDB Data management system 236 445 1,498 6.7 10.0 7.2 10.9 6.8 10.2
Spring-Boot Web framework 346 396 1,152 7.1 10.4 7.9 12.1 7.5 11.8
Cassandra Database system 538 534 1,250 11.3 15.3 13.1 18.4 12.5 17.7
Hibernate-ORM ORM framework 787 452 1,288 13.4 20.8 16.6 23.1 14.5 22.3
HBase Data management system 791 677 1,626 14.9 21.6 17.2 24.3 15.8 23.7
Hadoop Data management system 1,811 769 3,041 25.7 34.5 28.6 38.6 27.5 37.4
NetBeans IDE platform 5,122 1,273 5,029 54.8 81.5 61.1 86.2 57.3 84.9

4.9.2 Constructing Value-Flow Graph

To evaluate the scalability of ANCHOR, we investigate the overhead of ANCHOR in the

VFG construction. Specifically, we set up two configurations to construct the VFG. In the

first configuration (VFG-O), we perform the memory orientation analysis to utilize the

anchored containers, while in the second configuration (VFG-S), we smash the container

objects as many existing value-flow analyzers [54, 25]. To better quantify the overhead of

analyzing container semantics, we also add the configuration VFG-N as a blank control

group, in which we do not analyze container method calls.

The columns VFG-N, VFG-O, and VFG-S in Table 4.3 show the overhead of time and

memory under the three configurations, respectively. We can find that

• The memory orientation analysis introduces negligible overhead compared with the

analysis based on smashing containers. Both of them finish the construction for any

project in 62 minutes with 86.2G peak memory. For the projects with less than 1

MLoC, two analyses only demand around 18 minutes and 25G memory.

• Compared with the analysis under VFG-N, the memory orientation analysis con-

sumes at most 24.9% more time and 20.3% more memory. When analyzing the

105

0 1000 2000 3000 4000 5000
Size(KLoC)

0

20

40

60

80

Ti
m
e(
m
in
)/M

em
or
y(
G)

y=0.01217 x+2.219
R2=0.9631

y=0.01687 x+3.86
R2=0.9691

time
memory

Figure 4.14: Scalability of the VFG construction under the configuration VFG-O

project NetBeans with 5.12 MLoC, ANCHOR only spends extra 6.3 minutes and 4.7G

peak memory on the precise reasoning of container semantics.

• We also adopt regression analysis to study the observed scalability under VFG-O,

of which the result is shown in Figure 4.14. The R-squared values for time and

memory are 0.9631 and 0.9691, respectively, which indicates the overhead grows

nearly linearly at a gentle rate and shows the potential scalability of ANCHOR.

The scalability of ANCHOR in the VFG construction benefits from two major designs.

First, we perform a delay reasoning of value-flow paths, and only encode the path condi-

tion symbolically in the VFG without any explicit solving process. Second, fewer program

facts are generated in the abstract state M in the presence of the strong updates, which

makes the abstract transformers possibly avoid more computation. The observed linear

scalability promotes the practicality of ANCHOR to analyze the large-scale programs in

the real world.

Lastly, it is worth mentioning that we construct the VFG for the whole program, which

can support a variety of value-flow clients. When we focus on a specific client, e.g., the

NPE detection, we could concentrate on particular value flows, and only analyze contain-

ers with specific features, such as the containers that may contain null values. However,

our experimental data shown in Table 4.3 and Figure 4.14 has demonstrated the low over-

head of the memory orientation analysis. Moreover, ANCHOR essentially analyzes non-

106

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Project ID

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

D
ec

re
as

e
R

at
io

Figure 4.15: Decrease ratio of slice sizes under TS-O over TS-S

anchored containers as pointers by container smashing and regards anchored containers

as data structures with a set of fields, which does not introduce significant overhead the-

oretically.

Answer to RQ2: ANCHOR features the linear scalability in the value-flow graph
construction for real-world programs and finishes the analysis in 62 minutes with
86.2 GB of peak memory for the program with 5.12 MLoC.

4.9.3 Answering Thin Slicing Queries

To Show the precision improvement in the thin slicing, we follow the previous stud-

ies [123, 164] and compare the sizes of thin slices under two configurations, i.e., TS-O

and TS-S, in which we perform the memory orientation analysis and smash the container

objects, respectively. Due to the soundness of two thin slicers, a smaller average size of

thin slices indicates a higher precision of the thin slicer. For each project, we randomly

select 100 pairs of an access method call and its return value as the seeds. Particularly, we

do not solve constraints to make the analysis light-weighted in the scenario of program

understanding.

Figure 4.15 shows the decrease ratio of thin slice sizes under TS-O over the ones of

TS-S, in which project IDs are assigned based on the project sizes. It is shown that 17.1%

fewer producer statements are discovered under TS-O than TS-S on average. Besides,

107

Table 4.4: NPE detection result

Project NPE-O NPE-S Infer
Time (min) Mem (GB) #FP/#R Time (min) Mem (GB) #FP/#R Time (min) Mem (GB) #FP/#R

GraphJet 0.8 1.3 0/0 0.8 1.2 1/1 0.5 0.8 2/2
mapper 1.2 1.9 0/0 1.1 1.7 1/1 1.0 1.9 1/1
light-4j 3.8 2.3 0/2 3.1 2.7 0/2 4.9 1.6 2/4
roller 4.9 4.1 0/0 4.3 3.8 1/1 2.1 5.7 4/4
MyBatis 9.3 6.0 0/1 8.9 7.4 2/3 7.2 10.1 5/6
sofa-rpc 7.6 5.4 0/1 7.9 6.1 1/2 5.6 4.3 2/2
Glowstone 14.0 7.5 0/0 11.9 8.3 1/1 12.9 13.7 3/3
DolphinScheduler 12.8 6.3 0/0 12.5 6.5 0/0 10.2 8.9 1/1
atlas 14.6 8.1 0/0 13.5 9.3 2/2 NA NA NA
Struts 17.9 9.0 0/1 20.1 9.6 0/1 NA NA NA
dubbo 18.7 9.3 0/4 19.3 9.5 0/4 NA NA NA
IoTDB 26.5 14.5 0/2 26.2 17.8 1/3 28.4 12.1 5/7
Spring-Boot 31.3 16.8 1/1 30.5 16.1 2/2 34.6 20.7 3/3
Cassandra 52.4 21.9 0/2 49.8 21.4 3/5 43.2 33.9 6/7
Hibernate-ORM 66.5 35.2 0/0 69.6 38.1 1/1 51.1 46.3 4/4
HBase 69.9 42.4 0/0 67.1 39.5 1/1 NA NA NA
Hadoop 141.7 66.7 0/4 127.8 73.9 8/12 113.7 89.5 14/17
NetBeans 297.3 121.5 1/4 271.4 139.6 15/18 OOM OOM OOM

2/22 40/60 53/62

NA means we fail to run INFER on the experimental projects.
OOM means INFER runs out of memory.

we compare the thin slices generated under two configurations. It is found that the thin

slices generated under TS-S contain all the statements in the slices generated under TS-O.

Therefore, the size decrease of the thin slices indicates that ANCHOR provides more pre-

cise slices under the configuration TS-O effectively, which benefits from the precise VFG

constructed by the memory orientation analysis. Therefore, we conclude that the memory

orientation analysis brings better precision in thin slicing than smashing containers. The

more precise thin slices can provide better insight for the developers to understand and

debug the program in the development.

Answer to RQ3: ANCHOR eliminates 17.1% producer statements that are spuri-
ous on average for thin slicing in real-world projects compared with the thin slicer
smashing containers.

4.9.4 Detecting Value-Flow Bugs

Following the previous experiments, we set up the configurations Taint-O/Taint-S

and NPE-O/NPE-S for the detections of the two types of bugs, respectively.

108

Detecting Taint Vulnerabilities

To evaluate the effectiveness of ANCHOR in the taint vulnerability detection, we choose

the OWASP benchmark projects [147], which is a Java test suite with thousands of ex-

ploitable test cases of taint vulnerabilities. The vulnerabilities covered by OWASP bench-

mark projects include cross-site scripting attacks, information leakage, improper error-

handling attacks, etc. Particularly, we select all the programs using containers as the ex-

perimental subjects, only concentrating on quantifying the benefit of analyzing container-

manipulating programs.

We evaluate ANCHOR upon the collected subjects under two configurations Taint-O

and Taint-S, in which we perform the memory orientation analysis and the container

mashing, respectively. The results show that ANCHOR discovers all the 352 taint flows

through containers with no false positive under Taint-O, while the false-positive ratio

reaches 31.0% (158/510) under Taint-S. Therefore, the memory orientation analysis can

significantly improve the precision of analyzing the OWASP benchmark projects, demon-

strating the practical use in detecting taint vulnerabilities in the presence of containers.

Detecting Null Pointer Exception

To measure the precision and scalability of the NPE detection, we evaluate ANCHOR upon

the real-world projects under the configurations NPE-O and NPE-S. Particularly, we count

the NPE reports caused by the value flows through containers to show the impact of rea-

soning container semantics. We run the prominent bug detector INFER to compare the

overhead and precision [165, 166]. Table 4.4 shows the numbers of reported bugs, false

positives, and the overhead, based on which we summarize the following findings.

Precision and Overhead. Overall, ANCHOR analyzes the experimental subjects with

high efficiency and scalability. First, the reports of the analysis under NPE-O are subsumed

by the ones under NPE-S, and the false-positive ratios are 9.1% (2/22) and 66.7% (40/60),

respectively. Upon the submission, 12 of the true positives had been confirmed by the

developers [148]. Besides, it is worth noting that most of the bugs are discovered in the

popular infrastructure projects, such as MyBatis, Struts and Hadoop, showing the impact

of ANCHOR for infrastructure reliability.

109

1 public PropertiesConfiguration() {
2 Set<String> propertiesNames = getInputStrsFromUser();
3 List<PropertiesProvider> providers = new ArrayList<>();
4 for (String name : propertiesNames) {
5 if ("true".equals(name)) {
6 providers.add(null);
7 } else {
8 providers.add(getExtension(name));
9 }

10 }
11 Properties properties = ConfigUtils.getProperties();
12 for (PropertiesProvider provider : providers) {
13 properties.putAll(provider.initProperties());
14 }
15 ConfigUtils.setProperties(properties);
16 }

Figure 4.16: A confirmed NPE in the project dubbo

Second, ANCHOR finishes analyzing the project NetBeans with 512.2 MLoC in 5 hours

within 121.5 GB peak memory under NPE-O. An interesting finding in the evaluation is

that the memory orientation analysis reduces the overhead in several projects, such as

sofa-rpc, Struts, and Hibernate-ORM. The major reason is that the strong updates intro-

duce fewer value-flow facts, which further form fewer value-flow paths, alleviating the

overhead of the graph traversal and constraint solving. Also, our work can be further im-

proved by reducing the time and memory overhead. In the evaluation, we only measure

the extra overhead introduced by our approach. The techniques of reducing the overhead

of static analyzers can benefit ANCHOR seamlessly in an orthogonal manner [115].

Case Study. We show two typical NPE reports discovered under the two configura-

tions. Figure 4.16 shows a confirmed NPE bug in the project dubbo, which is reported

under NPE-S and NPE-O. If the name of the property is equal to “true”, a null value is in-

serted into the ArrayList object at line 6 and finally dereferenced in the traversal. Under the

configuration NPE-S, ANCHOR maintains the ownership of the container object pointed

by providers, and thus finds that provider can be null in the traversal, which causes an NPE

at line 13. Meanwhile, ANCHOR also reports the NPE under the configuration NPE-O due

to its soundness. It is also worth mentioning that Figure 4.16 shows a typical pattern of

container usage. Specifically, the elements are dereferenced in the traversal under condi-

tions unrelated to their indexes. Even if the container is non-anchored, ANCHOR does not

report a false positive under NPE-O as long as there exists a null value in the container.

Figure 4.17 shows two false positives in the project NetBeans reported under the con-

110

1 public void action(String w) {
2 Map<String, Object> config = new HashMap<>();
3 config.put("WORD", w == null ? "" : w);
4 config.put("IS_WHOLE", Boolean.FALSE);
5 config.put("BLOCK", null);
6 run((String)config.get("WORD"),
7 (Boolean)config.get("IS_WHOLE"));
8 }

Figure 4.17: Two false positives in NetBeans reported under the configuration NPE-S

figuration NPE-S. The values paired with “WORD” and “IS_WHOLE” are not null, while

the analysis does not distinguish them from the null value paired with “BLOCK”, causing

two false positives at lines 6 and 7. In contrast, ANCHOR avoids reporting the false posi-

tives, as the HashMap object is an anchored container, of which the index-value correlation

is precisely tracked by ANCHOR. Figure 4.17 demonstrates a common usage pattern of an-

chored value-dependent containers, which often exists in the configuration modules of a

project. The values paired with literal keys are produced by different expressions intro-

ducing different program facts, which finally yields specific value-flow bugs at particular

keys. Our memory orientation analysis effectively identifies this pattern and analyzes

index-value correlations precisely, further supporting precise value-flow bug detection.

Comparison with Infer. The column Infer in Table 4.4 shows that ANCHOR and INFER

share the similar overhead. INFER introduces 53 false positives in 62 reports, and all the

true positives reported by INFER are also detected by ANCHOR. The fundamental reason

of its high false-positive ratio is that INFER can not support precise container reasoning,

e.g., it reports the two false positives in Figure 4.17. Also, INFER can not fully track path

conditions when the path variables do not collude with preconditions, introducing the

infeasible value flows in the NPE detection. After multiple attempts, INFER still fails to

analyze several projects because of the crash and out-of-memory, denoted by NA and

OOM, respectively. In contrast, ANCHOR finishes analyzing all the projects in the given

budget of time and memory, showing the superiority in terms of scalability.

There are other static analyzers detecting NPEs in real programs [167]. Particularly,

INFER analyzes the data structures with bi-abduction reasoning and achieves the field-,

flow-, and context-sensitivity with good scalability, sharing the similar style of our work.

Thus, we select INFER for comparison to show the advantages of ANCHOR. We also seek

to evaluate COMPASS [63] while it is outdated for the operating systems we can set up.

111

Also, COMPASS is proposed to analyze C/C++ programs, and its implementation does

not support analyzing Java programs.

Answer to RQ4: ANCHOR detects all the taint vulnerabilities in the OWASP bench-
mark programs using containers with no false positive. Also, it uncovers 20 null
pointer exceptions in 18 real-world Java programs with 9.1% as its false-positive ra-
tio and finishes analyzing the program with 5.12 MLoC in 5 hours.

4.9.5 Threats to Validity

There are two major threats to the validity of our approach. The first threat to the validity

is whether our approach can be generalized to the containers in a variety of third-party

libraries. Actually, our memory orientation analysis only relies on the specifications of

container methods. As explained in Section 4.8, the developers can classify the semantics

of the methods and abstract them by the container methods in the language syntax defined

in Figure 4.5. This process does not involve much expert knowledge, and thus supports

the generality of our approach.

The second threat to the validity of our work is whether our approach supports a

sound value-flow client analysis. Recall that Theorem 4.6.2 and Corollary 4.6.1 guarantee

the soundness of value-flow analysis. For a specific client, such as the NPE detection,

we can discover all the value-flow paths and collect the path conditions by traversing

the VFG. However, we set the time budget of solving a constraint in the implementation,

possibly discarding feasible paths when the solver fails to solve the path conditions in 10

seconds, which might introduce unsoundness to a specific value-flow client.

4.9.6 Discussion

This section presents more discussions on the benefit of anchored containers, the limita-

tions, and future work.

Benefit of Anchored Containers. The experiments demonstrate that the anchored con-

tainers enable the analysis to obtain high precision with low overhead. Although pre-

cise reasoning of general containers requires constructing and solving the constraints in a

112

more sophisticated logic theory, the modification patterns of the anchored containers per-

mit us to specialize the container axioms [168] and acquire the value flows based on the

modification history. The combined domain in Section 4.5 essentially extends the solving

procedure and supports constructing more precise VFG in the memory orientation anal-

ysis. Meanwhile, the experiment of NPE detection shows that the anchored containers

can make the precision go arm in arm with scalability in several analyses of the subjects.

As guaranteed by Theorem 4.6.1, more facts are reduced by the strong updates in the

subdomains in the presence of the anchored containers, which prevents the reachability

analysis from examining spurious value-flow paths. The phenomena have been discussed

in the recent static analyses [159, 160]. The anchored containers play an important role in

unleashing the precision and efficiency of the analysis simultaneously.

Path sensitivity in ANCHOR. In the memory orientation analysis, we establish a com-

bined abstract domain embodied with path constraints, which enables us to achieve pre-

cise abstraction of points-to facts and container memory layouts. The encoded path con-

straints can eventually promote the precision of downstream clients, such as value-flow

bug detection. Particularly, the false positive ratio would be much higher if we gave up

path sensitivity in our memory model. However, it should be noted that the superiority of

ANCHOR over container smashing does not depend on the precision enhancement intro-

duced by path sensitivity. Even if our analysis is path insensitive, ANCHOR can still obtain

more precise memory layouts of anchored containers than the ones obtained by container

smashing, which implies a lower false positive ratio than the one of a path-insensitive

container smashing-based approach.

Limitation of ANCHOR. Our study shows the effectiveness of ANCHOR in analyzing

container-manipulating programs, but several limitations still exist as follows.

• ANCHOR only analyzes the memory layout of the containers, and it does not concern

other properties of containers, such as the size, the emptiness, and insertion order,

which also affect the value-flows in the program. Although we have not found the

spurious results caused by the unawareness of these properties in the experiment, it

can indeed decrease the precision and recall of ANCHOR theoretically.

• ANCHOR takes the manually-written container specifications as input to identify the

113

container types and the behavior of their methods. For example, we manually inves-

tigate all the class definitions in JavaEE to collect the container-like data structures

in Table 4.2. However, the manual annotation often involves a huge laborious effort,

especially in the presence of numerous third-party libraries [23, 12].

• ANCHOR does not reason the index-value correlations of non-anchored containers,

which introduces the precision loss when analyzing the value flows through them.

As shown in Figure 4.13 (c), there is a large proportion of JCF collections that are

non-anchored. Although the anchored containers can improve the precision of ana-

lyzing their ownership, their index-value correlations are still blurred in the memory

orientation analysis. This prevents ANCHOR from further improving the precision

of several value-flow analyses, such as thin slicing.

Future Work. It could be promising to explore the following directions to design an

automatic, fast, and precise static analyzer for data-centric applications using containers.

First, it would be meaningful to track more container properties to obtain more precise

value flows. For example, the size of a container could support more precise reasoning of

the path condition if a branch condition involves its size. Second, the automatic inference

of container specifications would enable the static analyzer to identify the container types

and analyze client programs in a more automatic manner. More data structures in the

third-party libraries, such as Apache Commons Collections [11], Trove [169], and Google

Guava Collection [170], could be discovered and identified as containers, which benefits

the subsequent analyses [55, 12, 63]. Third, it would be worth designing more advanced

analyses to reason the non-anchored containers. The relations among the indexes of con-

tainer method calls could support discovering more precise value flows in general cases.

For example, a must-not alias analysis would enable us to prune spurious value flows

through non-anchored containers according to their keys, which could further increase

the precision of value-flow analysis. Fourth, it would also be a promising direction to

design an on-demand VFG construction algorithm. The values unrelated to a client can

be skipped so that we can safely ignore specific value flows through containers, which

can further decrease the overhead of the analysis. Lastly, anchored containers can also

widely exist in the programs written in other programming languages, especially Python

and JavaScript programs. For instance, a dictionary with constant keys is often utilized

114

to maintain the content of a json file or a web message. Identifying and precisely ana-

lyzing anchored containers in the domain-specific Python or JavaScript programs would

significantly promote the downstream analyses upon them.

4.10 Conclusion

We have described ANCHOR to analyze value flows through containers to investigate data

propagation within data-centric applications. ANCHOR identifies anchored containers for

strong updates in a light-weighted memory orientation analysis and discovers the precise

value flows induced by container method calls. As a result, it supports producing more

precise thin slices and uncovering 20 NPEs with only two false positives. ANCHOR out-

performs the state-of-the-art value flow analyses and container reasoning techniques in

terms of precision and scalability, and features in the ability to analyze millions of lines

of code. The underlying insight of ANCHOR can benefit various clients upon data-centric

applications, such as program understanding and bug detection, which improves system

reliability from the application side.

115

CHAPTER 5

INFERRING API ALIASING SPECIFICATIONS
FROM LIBRARY DOCUMENTATION

5.1 Introduction

In modern programming languages, programmers often develop data-centric applica-

tions based on various libraries, which offer fundamental building blocks for application-

side implementation. Undoubtedly, the behaviors of library APIs directly affect the func-

tionality of the application code. As investigated by existing studies [22, 23], several li-

brary APIs are essentially generalized store and load operations, forming aliasing rela-

tions through the load-store match. For example, the APIs HashMap.put and HashMap.get

conduct the store and load operations, respectively. When they are invoked upon the

same HashMap object with the same first parameters successively, the return value of

HashMap.get can be aliased with the second parameter of HashMap.put. To identify value

flows in the application code, a static analyzer relies on API aliasing specifications to un-

derstand how library APIs manipulate memory, which play critical roles for pointer anal-

ysis and other downstream clients. According to our investigation, many existing static

analysis techniques rely on manually specified library API aliasing specifications [25, 55,

12]. However, the emergence of third-party libraries introduces a large number of APIs,

making laborious effort unacceptable in practice.

This work targets the API aliasing specification inference problem to support library-

aware alias analysis. Existing approaches infer API aliasing specifications from three per-

spectives. The first line analyzes the source code statically [67, 66]. Although it can derive

the function summaries as the API aliasing specifications, the solution suffers the scalabil-

ity problem due to deep call chains [171]. More importantly, the implementation of several

library APIs can depend on native code, such as System.arraycopy in the implementation

of java.util.Vector, which makes static analysis intractable [22]. The second line of the tech-

niques constructs unit tests via active learning to trigger the execution of library APIs,

116

so as to infer aliasing relations in the runtime [22]. Compared to static analysis-based

inference techniques, they are more applicable when the source code of the library is un-

available. However, it can be infeasible to generate unit tests to trigger the target library

APIs due to the difficulties of constructing the parameters with complex data structures

and executing APIs in specific devices or environments. Third, several researchers learn

the aliasing specifications from applications using libraries [23], which does not require

the source code of the libraries or the execution of the programs. Unfortunately, their ap-

proach only discovers the API specifications used in the applications, finally causing the

low recall in the inference.

This paper presents a new perspective on inferring API aliasing specifications. Dif-

ferent from existing studies, we utilize another important artifact of third-party libraries,

namely documentation, to analyze the semantics of library APIs. As shown in Figure 5.1,

library documentation contains formal semantic properties, e.g., class hierarchy relation

and API type signatures, and informal semantic information, e.g., API semantic descrip-

tions and naming information. Although the library documentation demonstrates the

library API semantics in detail, it is far from trivial to derive API aliasing specifications

from the documentation. First, effectively understanding the informal semantic informa-

tion is quite difficult. Even if we apply the recent advance in the large language models,

e.g., feeding the documentation of android.content.Intent to CHATGPT, we can only obtain

nine API aliasing specifications, all of which are incorrect. Second, documentation may

contain a long list of classes and APIs, significantly introducing the overhead of the speci-

fication inference. For example, feeding the lengthy documentation to CHATGPT not only

increases the time overhead but also introduces a high financial cost due to the enormous

token consumption.

To effectively achieve the inference with high efficiency, we propose our inference al-

gorithm named DAINFER, which originates from three key insights:

• The class hierarchy relation and API type signatures determine the available APIs

for a given class and over-approximate aliasing relations based on the types of API

parameters and returns. If two values can not be aliased, we do not need to an-

alyze the naming information and API semantic descriptions, which decreases the

overhead by avoiding applying NLP models.

117

Method Summary

ID Return Type Method and Description
1 void putStringArrayListExtra(String name, ArrayList<String> value)

Add extended data to the intent.
2 Intent setIdentifier(String identifier)

Set an identifier for this Intent.

3 String getIdentifier()
Retrieve the identifier for this Intent.

4 ArrayList<String> getStringArrayListExtra(String name)
Retrieve extended data from this Intent.

5 String normalizeMimeType(String type)
Normalize a MIME data type.

6 int fillIn(Intent other, int flags)
Copy the contents of other in to this object.

Method Summary

ID Return Type Method and Description
7 E push(E item)

Pushes an item onto the top of this stack.
8 E peek()

Looks at the object at the top without removing it from the stack.
9 E pop()

Removes the object at the top of this stack and returns that object as
the value of this function.

10 boolean empty()
Tests if this stack is empty.

package: java.util
Class Stack<E>
•java.lang.Object

• java.util.AbstractCollection<E>
• java.util.AbstractList<E>

• java.util.Vector<E>
• java.util.Stack<E>

package: android.content
Class Intent
•java.lang.Object

• android.content.Intent
① Class Hierarchy Relation

③ Naming Information

② Type Signature ④ Semantic Description

(a) The documentation of android.content.Intent (b) The documentation of java.util.Stack

Figure 5.1: Library documentation example. mi denotes the API with the ID i.

• The named entities in the names indicate the high-level semantics of the parame-

ters and return values, which narrows down aliasing relations. In Figure 5.1(a), the

named entities in the API name of Intent.getIdentifier and the parameter name of In-

tent.setIdentifier are the same, indicating that the return value of Intent.getIdentifier

can be aliased with the parameter of Intent.setIdentifier.

• The API semantic descriptions can reveal the conducted memory operations with

specific verbs, enabling us to identify API pairs that potentially form API aliasing

specifications. In Figure 5.1(b), for example, the verbs “push” and “look” show that

the APIs Stack.push and Stack.peek conduct the insertion and read operations upon

the memory, respectively.

Based on our insights, we propose DAINFER, an algorithm to infer API aliasing specifi-

cations. Technically, we introduce a graph representation to over-approximate the aliasing

relations between parameters and return values based on type information. To interpret

informal semantic information, we use a large language model and a tagging model to

abstract memory operation kinds and high-level semantics of API parameters/return val-

ues, respectively. Then, we reduce the specification inference problem to an optimization

problem that enforces the aliasing pairs between API parameters as many as possible

for precise semantic abstraction. Particularly, the optimization problem poses constraints

over the results of the two NLP models. To solve the problem efficiently, we propose the

neurosymbolic optimization algorithm, which interacts with the two NLP models in a

demand-driven manner, achieving low resource cost in the inference.

118

We implemented our approach DAINFER and evaluated it upon Java classes in sev-

eral popular libraries, which are widely used in many data-centric applications. Based on

library documentation, DAINFER achieved the inference with a precision of 79.78% and

a recall of 82.29%, consuming 5.35 seconds per class on average. We also quantified the

impact of the inferred API aliasing specifications on the pointer analysis and taint analy-

sis. It was shown that DAINFER promoted the alias analysis by discovering 80.05% more

aliasing facts for the API return values and enabled the taint analysis to discover 85 more

taint flows in the experimental subjects. Our main contributions of this work include:

• We introduce a new paradigm of inferring API aliasing specifications and reduce

the inference problem to an optimization problem over a graph representation of

the library documentation.

• We propose a novel technique, namely neurosymoblic optimization, to efficiently

solve the optimization problem and effectively infer the API aliasing specifications.

• We extensively evaluate our approach over real-world libraries to demonstrate its

superiority over existing techniques and quantify its impact on client analyses.

The rest of this chapter is organized as follows. Section 5.2 introduces the background

of library-aware alias analysis to motivate the API aliasing specification problem infer-

ence and demonstrate the workflow of DAINFER after the discussion of existing tech-

niques. Section 5.3 provides a formal definition of our problem. Section 5.4 and Section 5.5

demonstrates the technical design of DAINFER. The details of the implementation and

evaluation are presented in Section 5.6 and Section 5.7. We finally conclude this chapter

in Section 5.8.

5.2 Background and Overview

In this section, we introduce the background of API aliasing specification inference and

outline our key idea of inferring API aliasing specifications from documentation.

119

5.2.1 Library-Aware Alias Analysis

Modern software systems, especially data-centric applications, heavily depend on various

libraries. A recent study found that a Java web application can include an average of 48

libraries transitively [172]. This prevalence of library usage stimulates the demand for

modeling API semantics in fundamental static analyses, such as alias analysis. However,

the deep call chains and unavailable source code (e.g., native functions) complicate the

scalability and applicability of static analysis. Many static analyzers use specifications

to abstract the library API semantics to achieve library-aware analysis. Specifically, the

API aliasing specification for an API pair (m1,m2) indicates: When m1 and m2 conduct

the store and load operations upon memory, respectively, the return value of m2 may be

aliased with the parameter ofm1 ifm2 is invoked afterm1 upon the same object. Based on

the specification, a static analyzer can model the library API semantics without explicitly

analyzing the implementation of m1 and m2, ultimately promoting the scalability and

applicability of the overall analysis.

Example 5.2.1 In Figure 5.1(a), when the first parameters of Intent.putStringArrayListExtra and

Intent.getStringArrayListExtra are aliased, the return value of the latter can be aliased with the

second parameter of the former if they are invoked successively upon an object.

5.2.2 Different Perspectives of Inferring API Aliasing Specifications

With the increasing number of third-party libraries, manually specifying the API aliasing

specifications demands incredibly laborious effort [25, 12, 55]. To mitigate this problem,

previous studies infer the API aliasing specifications from different artifacts, including

the library implementation [67], application code using libraries [23], and unit tests con-

structed via active learning [22]. However, their solutions can be bothered with three main

drawbacks. First, analyzing the library implementation suffers the scalability issue due to

complex program structures, such as deep call chains, and even becomes inapplicable

due to the unavailability of the implementation or the presence of native code. Second,

inferring the specifications from application code using libraries may fail to achieve high

recall when specific APIs are not utilized in the application code. Third, deriving the alias-

120

ing facts from dynamic execution of unit tests suffers the inapplicability issue when it is

infeasible to construct executable unit tests in specific devices or environments.

To fill the research gap, our work proposes another perspective to infer the API alias-

ing specifications. We realize that there is another essential library artifact, i.e., the library

documentation, demonstrating the library API semantics in a semi-formal structure. As

shown in Figure 5.1, the formal semantic properties, including the class hierarchy relation

and API type signatures, are explicitly provided. Meanwhile, the naming information,

e.g., the parameter names and API names, shows the intent of API parameters and re-

turn values, while API semantic descriptions demonstrate the functionalities of the APIs

informally. These ingredients permit us to understand how the library APIs manipulate

the memory and further form aliasing relations between their parameters and return val-

ues. More importantly, the documentation is often available for analysis, as the developers

tend to refer to it during the development. Hence, inferring the API aliasing specifications

from documentation would exhibit better applicability than the existing techniques.

5.2.3 Overview of DAINFER

Although the documentation guides the developers in understanding the API semantics,

there exists a gap between the API knowledge and API aliasing specifications. Concretely,

we need to understand how the API parameters are stored and how the API return values

are loaded. However, achieving this is quite complicated in front of informal semantic

information. Even if we leverage the new advances in the large language models, the

models cannot understand how the APIs manipulate the memory and eventually fail to

identify the aliasing relations based on the documentation. Also, interacting with the

LLMs via online requests can bring quite high overhead and consume a large number of

tokens in the presence of the long documentation.

To address the challenges, we propose a novel inference algorithm named DAINFER,

which effectively understands the API semantics and efficiently infers the API aliasing

specification from library documentation. Our key idea originates from three critical ob-

servations on the aliasing relations between the parameters and return values of the li-

brary APIs as follows.

121

Library
Documentation

Neurosymbolic
Optimizer

APIAliasing
Specification

API Value Graph Edge Set

SMT/OMT
Solver

LLM
Tagging Model

Figure 5.2: Workflow of DAINFER

• The parameters and return values should be type-consistent if they are aliased. Specif-

ically, their types should be the same, or one of them is the sub-type/super-type of

the other. Such facts are easily obtained from the class hierarchy relation and API

type signatures in the documentation. In Figure 5.1, for example, we can obtain the

potential aliasing relation between the return value of Intent.getIdentifier and the pa-

rameter of Intent.setIdentifier, while the second parameter of Intent.putStringArrayListExtra

can not be aliased with the return value of Intent.getIdentifier.

• If the return values and parameters of two APIs are aliased, the named entities in

their names tend to be the same, indicating the same high-level semantics. For ex-

ample, the APIs Intent.setIdentifier and Intent.getIdentifier in Figure 5.1(a) share the

same named entity identifier, indicating that they manipulate the same inner field.

For general-purpose data structures, such as java.util.Stack in Figure 5.1(b), the API

names of Stack.peek and Stack.pop do not have any named entities, indicating that

their return values can be aliased with other parameters with consistent types.

• If a library API stores its parameters or loads the inner field as the return value, the

verbs in its semantic description can reflect the memory operation kind intuitively.

For example, the verbs set and insert are commonly used for the APIs storing its

parameters, while the verbs get and return are prevalent in the semantic descriptions

of the APIs loading the inner fields.

Based on the observations, we realize that we can leverage type information to over-

approximate aliasing relations and utilize named entities and verbs to understand the

high-level semantic meanings of the APIs. For any store-load API pair, we can finalize an

API aliasing specification as long as we discover the parameters and return values with

the same semantic meanings and consistent types. According to these insights, we design

our inference algorithm DAINFER, of which the workflow is shown in Figure 5.2. Our key

122

technical design consists of three components.

• We introduce a new graph representation, namely the API value graph, to approx-

imate the aliasing relations. After converting a library documentation to a normal-

ized documentation model, we encode the potential aliasing relations in the API

value graph.

• We conceptually reduce the API aliasing specification inference to an optimization

problem upon the API value graph, where we select as many edges as possible to

discover all the possible aliasing relations between parameters and return values.

Particularly, we leverage two NLP models, namely a tagging model and a large lan-

guage model, to extract the named entities and interpret semantic descriptions, re-

spectively.

• We instantiate the optimization problem and propose an efficient neurosymbolic op-

timization algorithm to solve the problem, of which the solution induces the API

aliasing specifications. Our neurosymbolic optimization algorithm interacts with

the tagging model and the LLM in a demand-driven manner, significantly improv-

ing the efficiency of our algorithm.

Benefiting from our insights, our inference algorithm DAINFER simultaneously achieves

high precision, recall, and efficiency. The high availability of library documentation also

promotes the applicability of our approach in real-world scenarios. In the following sec-

tions, we will formulate our problem (Section 5.3) and provide our technical design (Sec-

tion 5.4 and Section 5.5) in detail.

5.3 Problem Formulation

This section first formulates the documentation model (Section 5.3.1) and then defines

the API aliasing specification (Section 5.3.2). Lastly, we provide the formal statement of

the API aliasing specification inference problem and highlight the technical challenges

(Section 5.3.3).

123

5.3.1 Documentation Model

Definition 5.3.1 (Documentation Model) Given a library, its documentation model is L :=

(H, T, N, D):

• Class hierarchy model H maps a class c to a set of classes, which are the superclasses of c.

• Type signature model T maps (c,m, i) to a type, where m is an API of the class c and i is

the index of the parameter. Without ambiguity, we regard the index of the return value as -1.

• Naming model N maps (c,m, i) to a string indicating the parameter name or API name,

where m is an API of the class c and i is the index of the parameter. Without ambiguity,

N(c,m,−1) indicates the name of the APIm of the class c.

• Description model D maps (c,m) to a string indicating the API semantic description.

Example 5.3.1 According to the documentation of the class Intent in Figure 5.1, we have

H(Intent) = {Object}, T(Intent,m1,−1) = void, T(Intent,m1, 1) = ArrayList<String>

N(Intent,m1, 0) = name, N(Intent,m1, 1) = value, N(Intent,m1,−1) = putStringArrayListExtra

D(Intent,m1) is “Add extracted data to the intent”. Here, m1 is Intent.putStringArrayListExtra.

Due to space limits, we do not discuss other APIs in detail.

Notably, we can collect all the APIs supported by a specific class and its superclasses,

forming the universe of the available APIs when using the class. The naming informa-

tion and API semantic descriptions are informal specifications, guiding the developers

to use proper APIs in their programming contexts. Based on the documentation model,

not only do developers achieve their program logic conveniently, but also analyzers can

understand the behavior of each API.

5.3.2 API Aliasing Specification

To support the library-aware alias analysis, we concentrate on the API aliasing specifica-

tion inference and follow an important form of aliasing specifications formulated in the

prior study [23], which is defined as follows.

124

Definition 5.3.2 (API Aliasing Specification) An API aliasing specification is (m1,m2,P, t),

where m1 and m2 are two APIs, P := {(i
(1)
1 , i(2)1), · · · , (i(1)j , i(2)j)} is a set of non-negative integer

pairs, and t is an non-negative integer. It indicates that the return value ofm2 can be aliased with

the t-th parameter ofm1 if

• m1 is called beforem2 upon the same object

• The i(1)k and i(2)k -th parameters ofm1 andm2 are aliased accordingly.

Here, 0 ⩽ i(1)k ⩽ n1, 0 ⩽ i(2)k ⩽ n2, and 0 ⩽ k ⩽ j < min(n1,n2). n1 and n2 are the numbers of

the parameters of the APIsm1 andm2, respectively.

Definition 5.3.2 shows that the APIs m1 and m2 conduct the store and load operations

upon the memory, respectively. Unlike simple load and store operations of pointers, stor-

ing and loading the values upon memory may depend on the values of other parameters.

Intuitively, the set P indicates the pre-condition of the aliasing relation between the return

value of m2 and the t-th parameter of the m1. Notably, the parameters of m1 and m2 are

not necessarily aliased to enforce the aliasing relation between the return value ofm2 and

the t-th parameter of m1 when P is empty. We call m1 and m2 form a store-load API pair

without ambiguity.

Example 5.3.2 In Figure 5.1(a), we have two API aliasing specifications (m1,m4, {(0, 0)}, 1) and

(m2,m3, ∅, 0). Specifically, the API aliasing specification (m1,m4, {(0, 0)}, 1) indicates the fact

that the return value of Intent.getStringArrayListExtra can be aliased with the second parameter of

Intent.putStringArrayListExtra when the two APIs are invoked upon the same object and their first

parameters are aliased.

Notably, the API aliasing specification in Definition 5.3.2 is more general than the one

targeted by USPEC [23]. Specifically, USPEC only infers that callingm2 may return a value

aliased with the t-th parameter of a preceding call of m1 on the same object if all other

parameters are aliased. However, there exist many store-load API pairs in which not all the

other parameters are aliased. For instance, the API createBitmap of android.graphics.Bitmap

sets the values of DisplayMetrics, Config, width, and height simultaneously, while the

125

method getConfig only fetches the value of Config. Our formulation in Definition 5.3.2

is expressive enough to depict such the store-load API pair. Hence, our specifications can

promote downstream clients better than the ones targeted by USPEC [23].

5.3.3 Problem Statement

We aim to address the API aliasing specification inference problem from another perspec-

tive. As demonstrated in Section 5.3.1, the library documentation provides various forms

of semantic properties of the library APIs. Hence, we hopefully derive the API aliasing

specifications from the documentation without conducting deep semantic analysis upon

the source code or program runtime information.

Notably, the API aliasing specification for a given store-load API pair may not be

unique. In Example 5.3.2, for instance, (m1,m4, ∅, 1) is also a valid specification, which

does not pose any restrictions upon the parameters of the two APIs. In our work, we

want to ensure that the inferred specifications exhibit the pre-conditions of the aliasing re-

lations as strong as possible. Finally, we state the problem of the API aliasing specification

inference as follows.

Given a documentation model L = (H, T, N, D), infer a set of API aliasing specifica-
tions SAS such that |P| is maximized for each (m1,m2,P, t) ∈ SAS.

Technical Challenges. Although library documentation offers semantic information,

solving the above problem is quite challenging. First, the naming information and API

semantic descriptions can be ambiguous. Without an effective interpretation, we can not

understand how the APIs operate upon the memory and identify aliasing relations be-

tween parameters and return values. Second, there are often many available APIs offered

by a single class and even its superclasses. It is non-trivial to obtain high efficiency in front

of a large number of available APIs for each class.

Roadmap. In this work, we propose an inference algorithm DAINFER to address the

two technical challenges. Specifically, we introduce the documentation model abstrac-

tion to formulate semantic information, which enables us to reduce the original problem

to an optimization problem (Section 5.4). Furthermore, we propose the neurosymbolic

126

optimization to efficiently solve the instantiated optimization problem (Section 5.5). Our

implementation and evaluation demonstrate the effectiveness and efficiency of our ap-

proach DAINFER (Section 5.6 and Section 5.7).

5.4 Documentation Model Abstraction

This section presents the abstraction of our documentation model. We first propose the

concept of the API value graph to over-approximate aliasing relations (Section 5.4.1). Be-

sides, we introduce two label abstractions over the API value graph (Section 5.4.2), which

enables us to reduce the API aliasing specification problem to an optimization problem

(Section 5.4.3).

5.4.1 API Value Graph

As shown in Section 5.3.1, the formal semantic information, namely class hierarchy and

the type signatures, reveals potential aliasing relations between API parameters and re-

turn values, while the informal semantic information, e.g., the names and API semantic

descriptions, shows how parameters and return values are utilized in the API invocations.

To depict aliasing relations that can be introduced by the API invocations, we propose a

graph representation, namely the API value graph, as follows.

Definition 5.4.1 (API Value Graph) Given a documentation model L = (H, T, N, D), its API

value graph is the labeled graph G := (V ,E, ℓn, ℓd), where

• The node set V contains API parameters and return values, which are referred to as API

values. (c,m, i) ∈ V if and only if (c,m, i) ∈ dom(N) or there is c ′ ∈ H(c) such that

(c ′,m, i) ∈ dom(N).

• The edge set E ⊆ V × V indicates aliasing relations between API values. Specifically,

(v1, v2) ∈ E if and only if T(v1) = T(v2), T(v1) ∈ H(T(v2)), or T(v2) ∈ H(T(v1)).

• The name label ℓn is a function that maps an API value to its name, i.e., ℓn(v) = N(v).

• The description label ℓd is a function that maps an API value to the semantic description of

the API, i.e., ℓd(v) = D(c,m), where v = (c,m, i).

127

(Intent, 𝑚! , -1) (Intent,𝑚", -1)

(Intent, 𝑚", 1)

(Intent,𝑚#, 0)

(Intent, 𝑚# , -1)

(Intent,𝑚", 0)

(Intent,𝑚$, 0)
(Intent, 𝑚$, -1)

(Intent, 𝑚% , -1)

(Intent,𝑚%, 0)

(Intent,𝑚&, 0)

(Intent, 𝑚& , -1)(Intent,𝑚&, 1)

getIdentifier s3

normalizeMimeType s5

identifier s2

name s4

name s1

type s5
value s1 getStringArrayListExtra s4

setIdentifier s2

flags s6 fillIn s6

(Stack, 𝑚' , 0) (Stack,𝑚', -1)

(Stack,𝑚(, -1) (Stack,𝑚), -1)

(Stack, 𝑚"* , -1)

other s6

putStringArrayListExtra s1 empty s10

push s7item s7

peek s8 pop s9

Figure 5.3: The API value graph of the documentation model induced by the documenta-
tion in Figure 5.1

The API value graph regards API values, namely API parameters and return values, as

first-class citizens, and depicts their high-level semantics with labels. Intuitively, an edge

from (c,m1, i1) to (c,m2, i2) indicates the fact that the two values may be aliased whenm2

is invoked after m1 upon the same object. Meanwhile, the two labels attach the informal

semantic information to API values, showing their usage intention. From a high-level

perspective, the API value graph over-approximates aliasing relations according to class

hierarchy relation and type signatures and still preserves informal semantic information

as labels to support further specification inference.

Example 5.4.1 Figure 5.3 shows the API value graph for the documentation model induced by the

classes in Figure 5.1, where the name labels and description labels are shown in the left and right

boxes, respectively. si indicates the API semantic description of mi in Figure 5.1. Specifically, the

edge from (Intent,m2, 0) to (Intent,m5, 0) indicates that the first parameters of Intent.setIdentifier

and Intent.normalizeMimeType may be aliased when the two APIs are invoked successively.

5.4.2 Label Abstraction

According to Definition 5.4.1, the edges of the API value graph approximate aliasing re-

lations over API values based on their types. However, not all the aliasing relations can

hold when using APIs. In Figure 5.1, for example, the return value of getIdentifier and the

first parameter of normalizeMimeType are unlikely to be aliased as the named entities in

their names are different, revealing different usage intention of the two API values. To

formulate this intuition, we formally introduce the concept of the semantic unit abstraction,

which shows the high-level semantics of API values.

128

Definition 5.4.2 (Semantic Unit Abstraction) A semantic unit abstraction ατ maps a string s

to a set of nouns, i.e., ατ(s) = {wi | τ(wi) = NOUN, s = w1 ⊙w2 ⊙ · · · ⊙wn}. Here, ⊙ is the

concatenation operation, and s is the concatenation ofwi. τ is a tagging function that maps a word

to a grammatical tag. Particularly, we call the named entities in ατ(s) as the semantic units of s.

Example 5.4.2 The nouns appearing in the API name of getStringArrayListExtra include string,

array, list, and extra. Hence, we have ατ(getStringArrayListExtra) = {string, array, list, extra}.

Essentially, the semantic unit abstraction extracts the named entities from the names as

semantic units, which shows the high-level semantics of API values, enabling us to refine

aliasing relations according to the following two intuitions: (1) If two API values v1 and

v2 have the names with the same semantic units, we can obtain the confidence that they

are very likely to indicate the same object in the memory; (2) If the name of an API value

does not have any semantic units, we can conservatively regard that it can be aliased with

any other API values with consistent types. Hence, we formally define the semantic unit

consistency to formulate the two intuitions.

Definition 5.4.3 (Semantic Unit Consistency) Given a semantic unit abstraction ατ upon an

API value graph G = (V ,E, ℓn, ℓd), two nodes v1 and v2 are semantic-unit consistent, denoted

by (v1, v2) ∈ Cτ ⊆ E, if and only if (1) ατ(N(v1)) = ατ(N(v2)), or (2) ατ(N(v1)) = ∅ ∨

ατ(N(v2)) = ∅.

Example 5.4.3 Consider the API value graph in Figure 5.3. We haveατ(getIdentifier) = {identifier},

so the return value of the API getIdentifier and the first parameter of setIdentifier are semantic-unit

consistent for the class Intent. Also, we have ατ(item) = {item} and ατ(peek) = ∅, so the return

value of peek and the first parameter of push are semantic-unit consistent for the class Stack.

Lastly, we notice that API semantic descriptions show how the API values are manip-

ulated upon the memory. According to our problem statement in Section 5.3.3, we need

to identify whether the API return value is originally stored by another API. Specifically,

we give a formal definition of the concept named memory operation abstraction as follows.

129

Definition 5.4.4 (Memory Operation Abstraction) A memory operation abstraction function

αo maps a semantic description s to αo(s) ⊆ M, where M = {I, D, R, W}. The elements in M

indicate the insertion (I), deletion (D), read (R), and write (W) operation upon the memory.

Notably, we classify common memory operations into four categories. Although the

insertion and deletion are both specific kinds of write operations, there are still several

write operations that simply initialize or modify specific fields of the classes, which shows

the necessity of introducing the category W for the memory operation abstraction.

Example 5.4.4 According to Figure 5.1, we haveαo(s1) = αo(s2) = {W} andαo(s3) = αo(s4) =

{R} for the class Intent. For the class Stack, we have αo(s7) = {I, W}, αo(s8) = {R}, and

αo(s9) = {R, D, W}.

To sum up, the semantic unit abstraction and the memory operation abstraction inter-

pret the informal semantic descriptions with the sets of semantic units and memory op-

erations, respectively, based on which we can refine potential aliasing relations indicated

by the edges of the API value graph and identify store-load API pairs. In Section 5.5.2,

we will demonstrate how to instantiate the two abstractions to support the specification

inference.

5.4.3 Problem Reduction

Established upon the two label abstractions, we can effectively interpret the high-level

semantics of API values and the memory operations conducted by the APIs. According

to our problem statement in Section 5.3.3, we need to identify the store-load API pairs

in the API aliasing specification inference. Particularly, we need to infer as many aliased

parameters in each API pair as possible so that the inferred specification can pose a strong

pre-condition over the API parameters, which finally induces a precise abstraction of the

API semantics. Therefore, we can reduce the specification inference to an optimization

problem over the API value graph as follows.

Definition 5.4.5 (Optimization Problem) Given a semantic unit abstraction ατ and a memory

operation abstraction αo upon an API value graph G = (V ,E, ℓn, ℓd), find an edge set E∗ ⊆ E

with a maximal size |E∗| satisfying the following constraints:

130

• (Degree constraint) For any v = (c,m, i) ∈ V and m ′, the following two conditions are

satisfied:

|{v ′ | (v, v ′) ∈ E∗, v ′ = (c,m ′, i ′)}| ⩽ 1, |{v ′ | (v ′, v) ∈ E∗, v ′ = (c,m ′, i ′)}| ⩽ 1

• (Validity constraint) If (v1, v2) ∈ E∗, where v1 = (c,m1, i1) and v2 = (c,m2, i2), then there

exist u1 = (c,m1, t) and u2 = (c,m2,−1) such that (u1,u2) ∈ E∗.

• (Semantic unit constraint) For any (v1, v2) ∈ E∗, where v1 = (c,m1, i1) and v2 = (c,m2, i2),

the semantic unit abstraction of the names of v1 and v2 should satisfy

– If i2 ̸= −1, v1 and v2 are semantic-unit consistent, i.e., (v1, v2) ∈ Cτ

– If i2 = −1, v1 or v ′1 is semantic-unit consistent with v2, i.e., (v1, v2) ∈ Cτ or (v ′1, v2) ∈

Cτ, where v ′1 = (c,m1,−1).

• (Memory operation constraint) For any (v1, v2) ∈ E∗, the following two conditions are

satisfied:

– v1 satisfies I ∈ αo(ℓd(v1))∨ (W ∈ αo(ℓd(v1))∧ D /∈ αo(ℓd(v1))

– v2 satisfies that R ∈ αo(ℓd(v2))

Definition 5.4.5 aims to maximize the |E∗| to discover all the aliased parameters of each

store-load API pair, which enforces the inferred API aliasing specifications abstract the

API semantics precisely. The four kinds of constraints are posed upon the selected edges

such that the solution can be reduced to the API aliasing specifications effectively. Specif-

ically, the degree and validity constraints ensure that the edges induce the API aliasing

specification defined Definition 5.3.2. Besides, the parameters of the APIs m1 and m2

should be semantic-unit consistent if they are connected by a selected edge. If a selected

edge connects the parameter of m1 and the return value of m2, then the parameter of

m1 should be semantic unit-consistent with the return value of m2. Lastly, the memory

operation constraint ensures that the APIsm1 andm2 are likely to be store-load API pairs.

Finally, we can obtain the specifications based on the optimal solution as follows.

131

(Intent, 𝑚! , -1)

(Intent, 𝑚", 0) (Intent, 𝑚#, 0)

(Intent, 𝑚$, 0)

{identifier} {R}

{identifier} {W}

{name} {R}

(Stack, 𝑚% , 0) (Stack, 𝑚%, -1)

(Stack, 𝑚&, -1) (Stack, 𝑚', -1)

(Intent, 𝑚#, 1)

(Intent, 𝑚$, -1)

{value} {W}

{string, array, list, extra} {R}

{name} {W} {item} {I, W}

{} {R}

{} {I, W}

{} {R, D, W}

Figure 5.4: An optimal solution to the problem instance induced by the API value graph
shown in Figure 5.3

Given the optimal solution E∗ of the optimization problem defined in Defini-
tion 5.4.5, we can obtain the API aliasing specification (m1,m2,P, t) ∈ SAS, where

• P = {(i1, i2) | ((c,m1, i1), (c,m2, i2)) ∈ E∗, i2 ̸= −1}

• t satisfies ((c,m1, t), (c,m2,−1)) ∈ E∗

Example 5.4.5 Figure 5.4 shows the optimal solution to the optimization problem over the API

value graph in Figure 5.3, where the sets shown in the two boxes demonstrate the extracted se-

mantic units and identified memory operations under the label abstractions in Examples 5.4.3

and 5.4.4. We discover six possible aliasing relations. Notably, although the semantic units

of (Intent,m4,−1) are different from (Intent,m1, 1), they are exactly the same as the ones of

(Intent,m1,−1), indicating that the second parameter ofm1 have the same semantics as the return

value ofm4. The optimal solution finally induces the API aliasing specifications in Example 5.3.2.

By reducing the original problem to the optimization problem in Definition 5.4.5, we

only need to tackle two important sub-problems for the specification inference. First, we

have to instantiate two label abstractions effectively so that we can precisely interpret the

semantic meanings of the names and the memory operation kinds. Second, we need to

design an efficient optimization algorithm to solve the optimization problem and further

convert the optimal solution to the API aliasing specifications. In Section 5.5, we will

provide the technical details of addressing the two sub-problems.

132

5.5 Inferring Specification via Neurosymbolic Optimization

This section presents the technical details of our algorithm DAINFER. Specifically, we

demonstrate the overall algorithm in Section 5.5.1 and detail the label abstraction instanti-

ation in Section 5.5.2. Besides, we present the neurosymbolic optimization in Section 5.5.3

to instantiate and solve the optimization problem given in Definition 5.4.5. Lastly, we

summarize our approach and highlight its advantages in Section 5.5.4.

5.5.1 Overall Algorithm

As demonstrated in Section 5.4.3, we can reduce the API aliasing specification inference

problem to an instance of the optimization problem given in Definition 5.4.5. Technically,

we propose and formulate our specification algorithm in Algorithm 3, which takes as in-

put a documentation model L and generates a set of API aliasing specifications SAS as

output. First, we derive the API value graph G from the documentation model L based

on Definition 5.4.1 (Line 1). Second, we instantiate two label abstractions, i.e., ατ and αo,

and further construct an instance of the optimization problem P defined in Definition 5.4.5

(Lines 2–3). Third, we propose the neurosymbolic optimization to solve the instance of the

optimization problem P (Lines 4–5), and finally convert the optimal solution E∗ to a set

of API aliasing specifications SAS (Line 6). Particularly, Definition 5.4.1 has demonstrated

how to construct the API value graph, and converting the optimal solution to the specifi-

cation is also explicitly formulated at the end of Section 5.4.3. In the rest of this section, we

will provide more technical details on the label abstraction instantiation (Section 5.5.2) and

the neurosymbolic optimization algorithm (Section 5.5.3), which finalize the functions get-

SemanticUnitAbs, getMemoryOperationAbs, and neuroSymOpt in Algorithm 3, respectively.

5.5.2 Label Abstraction Instantiation

According to Definitions 5.4.2 and 5.4.4, the two label abstractions demand two different

kinds of natural language processing (NLP) techniques. Specifically, the semantic unit ab-

straction requires attaching the grammatical tags, while the memory operation abstraction

replies to an NLP model to understand how an API manipulates the memory. In what fol-

133

Algorithm 3: Inference Algorithm
Input: L: Documentation model;
Output: SAS: A set of API aliasing specifications;

1 G← constructAVG(L);
2 ατ ← getSemanticUnitAbs();
3 αo ← getMemoryOperationAbs();
4 P← (L,G,ατ,αo);
5 E∗ ← neuroSymOpt(P);
6 SAS ← convert(E∗);
7 return SAS;

lows, we will detail how to instantiate the two label abstractions with two different NLP

models, respectively.

Instantiating Semantic Unit Abstraction.

According to common programming practices, the developers of libraries follow typical

naming conventions [173], such as camel case, pascal case, and snake case. For example,

userAccount is a parameter name using camel case, and get_account_balance is an API

name using snake case. Notably, the sub-words are often separated with an underscore

or begin with an uppercase letter. Hence, we can easily decompose each name s into the

concatenation of several sub-words and further determine the tag of each sub-word.

However, we notice that the names of APIs or their methods can hardly be valid

phrases or sentences. Simply applying the part-of-speech (POS) tagging would tag al-

most all the sub-words as the nouns. To obtain more precise tagging results, we leverage

an existing probability model trained in Brown Corpus [174], which can return all the pos-

sible grammatical tags of each sub-word along with the occurrences. This enables us to

determine whether or not a sub-word is more likely to be a noun. Formally, we instantiate

the semantic unit abstraction as follows.

Definition 5.5.1 (Instantiation of Semantic Unit Abstraction) Assume that gτ maps a word

w to a set of tag-occurrence pairs {(τj,kj)}. Then, the tagging function τ is defined as τ(w) =

arg maxτj o(τj), where (τj, o(τj)) ∈ gτ(w), which further instantiates ατ in Definition 5.4.2.

Example 5.5.1 Consider the API setIdentifier in Figure 5.1. After splitting the API name into

134

“set” and “identifier”, we discover that “set” is more likely to be a verb than a noun, while

“identifier” is very likely to be a noun. Hence, our instantiated semantic unit abstraction ατ

maps setIdentifier to {identifier}, identifying identifier as the semantic unit of the API.

Instantiating Memory Operation Abstraction.

To instantiate an effective memory operation abstraction, we leverage an important pro-

gramming practice: The developers often summarize the API functionality in a full sen-

tence or a verb-object phrase as its semantic description. Particularly, the verbs in the

semantic description intuitively depict the memory operations conducted by the API.

Therefore, it is possible to instantiate an effective memory operation abstraction based

on the verbs in the semantic description. However, the verbs used in the semantic de-

scriptions can vary a lot, even if the APIs conduct the same kind of memory operation.

For example, when describing an API conducting the memory insertion, developers can

choose different verbs, e.g., “put”, “insert”, and “push”. The diverse choices of the verbs

describing a specific memory operation would make the inference suffer low recall if we

just adopted a grep-like approach based on string matching.

Inspired by recent progress in the NLP community, we realize that the latest advances

in the Large Language Models (LLMs) may provide new opportunities for resolving this

issue [175, 176, 177]. Specifically, the LLMs have excellent abilities in text understand-

ing, especially under the guidance of few-shot examples or descriptions of rules. Hence,

we propose a two-stage prompting-based approach to instantiate the memory operation

abstraction, which is demonstrated in Figure 5.5.

• First, we design the prompt in Figure 5.5 (a) to retrieve the verbs describing each

memory operation. To obtain the most typical verbs, we enforce the LLM sort the

verbs based on the preference.

• Second, we select the top-1 verbs recommended in the first stage and construct the

prompt guiding the memory operation abstraction, which is shown in Figure 5.5(b).

Finally, we obtain a response containing four “Yes”/“No” separated by commas.

Based on the above prompting process, we can obtain an instantiation of the memory

operation abstraction, which is formally formulated as follows.

135

As an experienced programmer, you are good at
choosing method names and writing documentation.

You are developing four methods m1, m2, m3, and m4 to
implement the following four functionalities:

Here are the verbs for each method.

Please choose proper verbs for each method. The verbs can be
used in the method name and the semantic description of the
documentation. Please separate the verbs by commas and sort
them based on preference.

- m1: reads the value of a class field and returns it
- m2: stores its parameter to a class field
- m3: inserts its parameter to a class field
- m4: removes a value from a class field

- m1: get, retrieve, fetch, obtain, acquire, read, access
- m2: set, assign, store, save, initialize, update, record
- m3: insert, add, put, store, set, update, record
- m4: remove, delete, erase, clear, eliminate, exclude

As an experienced programmer, you are good at understanding
API semantics according to its semantic description.

Here are four memory operations, namely read, write, insertion, and
deletion. Given a semantic description of an API, determine whether the API
conducts the read, write, insertion, and deletion based on the following rules:

- If the description contains [xxx] or its synonyms, it conducts the read.

Please provide the API semantic description.

- If the description contains [xxx] or its synonyms, it conducts the write.
- If the description contains [xxx] or its synonyms, it conducts the insertion.
- If the description contains [xxx] or its synonyms, it conducts the deletion.

Here is the semantic description of the API getParcelableArrayListExtra in
the class android.content.Intent: Retrieve extended data from this Intent.
Please determine its memory operations by answering Yes/No. Here is an
example output: No, No, No, No

Yes, No, No, No

Select
Top 1

(a) Retrieve typical verbs via prompting (b) Instantiate the memory operation abstraction via prompting

Figure 5.5: Instantiate the memory operation abstraction via two-staged prompting

Definition 5.5.2 (Instantiation of Memory Operation Abstraction) go is the LLM obtained

via two-staged prompting in Figure 5.5. Then the memory operation abstraction αo satisfies that

op ∈ α0(s) if and only if the corresponding answer of op in go(s) is “Yes”, where op ∈M.

Example 5.5.2 As shown in Figure 5.5(b), the output of the LLM is “Yes, No, No, No”, indicat-

ing that the API Intent.getStringArrayListExtra only conducts the memory read. Hence, we have

αo(s4) = {R}, where s4 is the semantic description of the API Intent.getStringArrayListExtra.

Notably, our two label abstractions are achieved with different overheads. Specifically,

the semantic unit abstraction only relies on the existing tagging model that can be applied

efficiently. In contrast, the memory operation abstraction has to post the request to the

online LLM model, of which the request frequency and number are restricted. To obtain

high efficiency and decrease the token cost of the LLM, we have to propose an effective

solving procedure, which will be demonstrated in Section 5.5.3.

5.5.3 Neurosymbolic Optimization

Based on the above intuitions, Algorithm 4 formulates our neurosymoblic optimization

algorithm by utilizing the two NLP models in a demand-driven manner. Specifically, we

process each API pair in each iteration. Initially, we check whether or not the degree

136

Algorithm 4: Neurosymbolic optimization
Input: P: An optimization problem instance;
Output: E∗: The optimal solution;

1 foreach (c,m1), (c,m2) do
2 ϕd ← deriveDegreeConstraints(P);
3 ϕv ← deriveValidityConstraints(P);
4 if SMTSolve (ϕd ∧ϕv)=UNSAT then
5 continue;

6 ϕs ← deriveSUConstraints(P);
7 if SMTSolve (ϕd ∧ϕv ∧ϕs)=UNSAT then
8 continue;

9 ϕo ← deriveMOConstraints(P);
10 E ′ ← Solve(obj(P),ϕd ∧ϕv ∧ϕs ∧ϕ0);
11 E∗ ← E∗ ∪ E ′;
12 return E∗;

constraint ϕd and the validity constraint ϕv are satisfied (Lines 2–5). If both of them are

satisfied, we apply the tagging model to derive the semantic unit constraint ϕs (Line 6)

and further examine the satisfiability of the conjunction of the three constraints (Line 7).

If it is satisfiable, we apply the LLM to achieve the memory operation abstraction, and

derive the memory operation constraint (Line 9). Based on an existing OMT solving tech-

nique [178], we select the maximal number of edges connecting the API values (Line 10)

and append them to the set E∗ (Line 11), which is returned as the optimal solution to the

optimization problem.

Example 5.5.3 Consider the APIs of Intent in Figure 5.1(a). When processing the APIs In-

tent.fillIn and Intent.getIdentifier, the validity constraint is not satisfied as there are no type-

consistent parameters or return values. Hence, we do not apply the tagging model or the LLM.

For the APIs Intent.setIdentifier and Intent.normalizeMimeType, we find that their parameters

and return values are not semantic-unit consistent, so we do not invoke the LLM with their se-

mantic descriptions.

It is worth noting that the semantic unit constraint can also be instantiated by applying

the LLM with a proper prompt. However, pairwise examining the names of an API and

its parameters with the LLM can introduce huge overhead and hinder the opportunity

to optimize the efficiency of Algorithm 4 with the lazy strategy of applying the models.

137

Hence, we conduct the named-entity recognition with a tagging model, which is more

light-weighted than the LLMs.

5.5.4 Summary

Benefiting from our label abstraction instantiations and neurosymbolic optimization, our

inference algorithm DAINFER features with two important advantages. First, our label

abstraction instantiations make DAINFER effectively identify the high-level semantics of

API values and the memory operations conducted by the APIs. Particularly, DAINFER has

a good generalization ability in understanding the semantic description for the memory

operation abstraction, which promotes the precision and recall of the specification infer-

ence. Second, we choose a lazy strategy of applying the NLP models in the neurosymoblic

optimization. Noting that invoking an online LLM service can introduce more overhead

than SMT solving, our neurosymoblic optimization algorithm can finally obtain the high

efficiency of our inference algorithm.

Lastly, it is worth noting there exist several existing studies attempting to infer other

kinds of API specifications from library documentation, such as taint specification [179]

and memory management specification [180]. However, their approaches can not be eas-

ily extended to infer API aliasing specifications in our problem. Although existing tech-

niques [179, 180] analyze API pairs, such as a pair of a source and a sink, the targeted

specifications are not as sophisticated as the ones targeted in our work. Apart from iden-

tifying store/load API pairs, we still need to determine the possible aliasing facts between

parameters and return values of the two APIs, which demands another domain-specific

solution to derive such specifications from the documentation. Our work is the first trial

to derive API aliasing specifications from documentation, demonstrating the opportunity

to infer fundamental program facts with NLP models, especially LLMs, to support static

analysis clients.

5.6 Implementation

We implement the approach DAINFER as a prototype. It parses the library documenta-

tion to extract the documentation model, which is further fed to the inference algorithm.

138

In what follows, we demonstrate more implementation details to convenience the repro-

duction of our work.

Documentation parsing. We implement the documentation parser by using soup Python

package. For each documentation page describing the API semantics, we can extract the

four kinds of information, including class hierarchy relation, API type information, nam-

ing information, and API semantic descriptions, Since library documentation pages al-

most have a uniform format, we do not have to make major changes to the implementa-

tion of the parser to adapt to different libraries.

Label abstraction instantiation. To instantiate the semantic unit abstraction, we uti-

lize the conditional frequency distributions tool with Brown Corpus provided by Natural

Language Toolkit [181] to determine whether or not a word is the most likely to be a noun.

To instantiate the memory operation abstraction, we adopt gpt-3.5-turbo model with chat

completions API to interpret the API semantic descriptions [182]. Specifically, we invoke

the interface ChatCompletion.create to feed the constructed prompts to the LLM and fetch

its response. In our implementation, we set the temperatures of the two stages of prompt-

ing to 0.7 by default.

Neurosymoblic optimization. We implement the neurosymbolic optimization based

on Z3 solver [161, 178]. For any pair of APIs, we introduce (n1 + 1) · (n2 + 1) boolean vari-

ables to indicate whether the values of two APIs are aliased or not, wheren1 andn2 are the

numbers of the API parameters. To accelerate the LLM inference process, we parallelize

the invocations of the LLM in eight threads. To avoid redundantly applying the tagging

model and the LLM, we introduce the memorization technique to store the tagging result

of each word and the response of the LLM upon each API semantic description. If a word

or an API semantic description has been processed before, our algorithm directly reuses

the previous result instead of applying the NLP models again.

5.7 Evaluation

To quantify the effectiveness and efficiency of DAINFER, we propose the following three

research questions.

139

• RQ1: How effectively and efficiently does DAINFER infer the specifications?

• RQ2: How does DAINFER compare against other approaches?

• RQ3: How does DAINFER benefit library-aware static analysis clients?

5.7.1 Experimental Setup

All the experiments are performed on a 64-bit machine with 40 Intel(R) Xeon(R) CPU E5-

2698 v4 @ 2.20 GHz and 512 GB of physical memory. We invoke the Z3 SMT solver with

its default options.

Subjects. To make the comparison, we evaluate ATLAS [22], USPEC [23], and DAIN-

FER upon the same set of Java classes. Specifically, the Java classes are collected from: (1)

The classes of which the specifications are manually specified in FLOWDROID [25]; (2) The

classes appearing in the inference results of USPEC [23]. Since the dataset of ATLAS [22] is

not publicly available, we cannot conduct experiments on it. In total, our benchmark con-

tains 167 Java classes offering 8,342 APIs, which range from general-purpose libraries, in-

cluding Android framework and Java Collections Framework, to specific-usage libraries,

such as Gson. Particularly, all the container types targeted by CRES and ANCHOR are all

covered by our benchmark.5 Without ambiguity, we call the first and the second kinds of

the classes form FLOWDROID benchmark and USPEC benchmark, respectively.

5.7.2 Effectiveness and Efficiency

Effectiveness. We run DAINFER upon the documentation models of the subjects to

obtain the inferred specifications. To obtain the ground truth, we have to examine the

API semantics and investigate each API pair for the class. Notice that investigating all the

classes demands tremendous manual effort. Following the recent study [23], we randomly

select 60 classes that offer 2,771 APIs in total. For each API, we need to examine whether it

forms store-load API pairs with other APIs offered by the same class, of which the number

can reach 50 on average. To make the manual examination more reliable, we refer to the

specifications specified by the developers of FLOWDROID, and meanwhile, investigate

140

Table 5.1: Efficiency of DAINFER and its ablations

Tool # Tagging # LLM Token Cost Time Cost (sec)
DAINFER 32,325 2,950 726,425 892.93

DAINFER-TYPE 32,325 5,164 1,276,254 1,734.63
DAINFER-EXHAUSIVE 58,846 8,090 1,994,017 2,844.26

the library documentation and implementation simultaneously. Eventually, we obtain

988 API aliasing specifications as the oracle.

According to our investigation, we find that DAINFER achieves high precision and re-

call upon the experimental subjects. Specifically, it successfully infers 2,680 API aliasing

specifications. For the randomly selected 60 classes, DAINFER infers 1,019 API aliasing

specifications, 813 of which are correct, achieving a precision of 79.78%. After examining

all the APIs of the selected classes, we discover that DAINFER misses 175 specifications,

achieving a recall of 82.29%. Interestingly, we collect the specifications where the API

names contain “get” or “set”, and discover that such specifications only take up 33.49%

of all the inferred ones. It shows that DAINFER can precisely understand how APIs oper-

ate upon the memory even if the API names contain diverse verbs. We also compare our

inference results with the specifications in the FLOWDROID and USPEC benchmarks. It is

shown that DAINFER infers 170 out of the total 210 specifications in FLOWDROID bench-

mark and 65 out of the total 82 specifications inferred by USPEC, achieving 81.0% and

79.3% recall upon the two benchmarks, respectively. The above results demonstrate that

our approach can effectively infer the API aliasing specifications from the documentation.

Efficiency. We quantify the efficiency of DAINFER with four metrics, including the

number of applying the tagging model, the number of applying the LLM, the token cost,

and the time cost. As shown in Table 5.1. DAINFER applies the tagging model 32,325 times

and interacts with the LLM 2,950 times using 722,009 tokens, and the overall time cost is

892.93 seconds (around 15 minutes). According to the billing strategy of OpenAI, we only

need to pay 1.09 USD when using DAINFER for API aliasing specification inference.

We also conduct the ablation study to demonstrate the benefit of neurosymbolic opti-

mization. Specifically, the ablation DAINFER-EXHAUSIVE applies the two NLP models to

all the APIs while the ablation DAINFER-TYPE applies the NLP models to the APIs satis-

fying the degree constraint and the validity constraint. As shown in Table 5.1, DAINFER-

141

TYPE invokes the LLM 5,164 times with 1,276,254 tokens in total and finishes analyzing all

the subjects in 1,734.63 seconds. Besides, DAINFER-EXHAUSIVE has to apply the tagging

models 58,846 times and invoke the LLM 8,090 times using 1,994,017 tokens, of which the

whole process finishes in 2,844.26 seconds. The key reason for the differences between the

ablations is that the solving steps at Lines 5 and 9 in Algorithm 4 can effectively reduce the

numbers of applying the tagging model and the LLM, respectively, when the conjunctions

of the constraints are unsatisfiable. Also, the token cost is naturally reduced when our al-

gorithm invokes the LLM in a demand-driven manner. Compared to DAINFER-TYPE and

DAINFER-EXHAUSIVE, DAINFER achieves the inference with 1.94× and 3.19× speed-ups.

Hence, our neurosymbolic optimization efficiently supports the specification inference.

Answer to RQ1: DAINFER successfully derives 2,680 API aliasing specifications for
167 Java classes in 15 minutes, achieving a precision of 79.78% and a recall of 82.29%
upon examined Java classes.

5.7.3 Comparison with Existing Techniques

We compare DAINFER with two most recent studies on API aliasing specification infer-

ence, i.e., ATLAS [22] and USPEC [23]. Besides, we construct another baseline, LLM-

ALIAS, which feeds the library documentation to CHATGPT as input and generates API

aliasing specifications via in-context learning. The few-shot examples used in the in-

context learning are publically available [183].

Comparison with ATLAS. We run the released tool ATLAS [184] upon the total 167

classes and finish the inference in 74.48 minutes. It is shown that the generated aliasing

specifications only depict the potential aliasing relations between parameters and return

values, while they all miss the pre-conditions under which such aliasing relations hold.

For example, ATLAS only obtains that the return value of HashMap.get can be aliased with

the second parameter of HashMap.put, missing the pre-condition over their first param-

eters. The restrictive templates used in the inference introduce the imprecision of the

inferred specifications, which is also reported in the prior study [23]. Moreover, ATLAS

fails to generate the specifications for 111 classes in the experimental subjects, such as

android.os.Intent and android.os.Configuration. The root cause is that ATLAS fails to infer

142

the specifications when the creation of library function parameters is non-trivial, or the

unit test execution demands a specific environment. Lastly, it is worth mentioning that

the output of ATLAS is the library implementation derived from the execution of unit

tests. Automatically converting it into the specifications defined in Definition 5.3.2 re-

quires static analysis techniques, while the analyzers with different precision would yield

different API aliasing specifications. Hence, we do not quantify the precision and recall of

the inference results of ATLAS in a more fine-grained manner.

Comparison with USPEC. USPEC is not open-sourced due to its commercial use [23],

so we asked the authors for the raw data of their evaluation. According to their results,

USPECS successfully obtains 124 API aliasing specifications upon 62 classes. Unfortu-

nately, the precision of USPEC only reaches 66.1% (82/124). For instance, USPEC gener-

ates the incorrect aliasing specification (HashMap.put, HashMap.get, {(0, 1)}, 0) for the class

java.util.HashMap. The root cause is that USPEC infers possible aliasing relations according

to the usage events. However, the keys and values of HashMap objects may have the same

types, making the inference algorithm unable to distinguish them with usage events only.

We also quantify the recall of USPEC based on our labeled specifications in Section 5.7.2.

It is shown that USPEC misses 370 API aliasing specifications. The recall of inferring API

aliasing specifications is only 18.14%. The root cause of its low recall is that USPEC can

only generate the aliasing specifications for the APIs that are used in the applications.

Comparison with LLM-ALIAS. We compare DAINFER with LLM-ALIAS, which di-

rectly queries CHATGPT with the documentation. Its response of is a natural language

sentence indicating an API aliasing specification. Due to laborious effort, we examine the

inference results for 60 classes randomly selected in Section 5.7.2. The results show that

LLM-ALIAS generates 801 API aliasing specifications for examined classes, only 113 of

which are correct, achieving a precision of 14.11%(113/801) and a recall of 11.44%(113/988).

Among 688 incorrect specifications, 60 specifications indicate the correct aliasing relations

between parameters and return values, while they do not pose any restrictions over API

parameters as the pre-conditions. The results show that vanilla LLMs without special

designs have poor performance in understanding the concept of aliasing relation. In con-

trast, DAINFER achieves quite satisfactory precision and recall, which benefits from our

insightful problem reduction and efficient neurosymbolic optimization.

143

Ratio of Alias Set Size

Pr
op
or
tio
n

Figure 5.6: The results of alias analysis

Answer to RQ2: DAINFER achieves much higher precision and recall than USPEC

and ATLAS, unleashing the power of LLMs in understanding library documentation.

5.7.4 Effects on Client Analysis

To demonstrate the impact of DAINFER on library aware analysis, we choose two funda-

mental clients, namely alias analysis and taint analysis, to quantify how it benefits down-

stream clients. Particularly, alias analysis is a fundamental pre-analysis of program op-

timization, while taint analysis support taint-style vulnerability detection to enhance the

program reliability. We expect to demonstrate the impact of DAINFER in promoting the

performance and reliability with the results of the two clients.

Effect on Alias Analysis. We conduct the field and context-sensitive alias analysis

upon 15 Java projects based on existing studies [3, 154] with two settings. In the first

setting, named Alias-Empty, we provide empty API specifications, i.e., discarding all the

possible alias facts introduced by library API calls. In the second setting, named Alias-Infer,

we apply the inferred correct API aliasing specifications to the alias analysis. We quantify

the alias set sizes of the return values of library APIs under the two specifications.

Figure 5.6 shows the distribution of the ratios of alias set sizes. On average, the alias

set sizes of the return values are increased by 80.05% with the benefit of our inferred spec-

ifications. The alias set sizes of 96.25% return values of the library API calls are increased

144

Application ID

#
Ta
in
tF
lo
w
s

Figure 5.7: The results of taint analysis

by at least 40%. Because our pointer analysis is sound, the increase in the alias set size

demonstrates that DAINFER promotes the alias analysis in discovering more alias facts in

the applications using libraries.

Effect on Taint Analysis. We choose three different settings of specifications for FLOW-

DROID to conduct the taint analysis, namely Taint-Empty, Taint-Manual, and Taint-Infer.

Here, Taint-Empty and Taint-Infer are similar to the two settings in the alias analysis. Under

the setting Taint-Manual, we apply the manual specifications provided by FLOWDROID di-

rectly. We select 23 popular Android applications in F-Droid [185], which cover different

program domains, including navigation, security, and messaging applications.

Figure 5.7 shows the numbers of the taint flows discovered under the three settings.

Specifically, FLOWDROID discovers 225 taint flows under Taint-Empty, while it finds 304

taint flows under Taint-Manual. Notably, 79 out of 304 taint flows are induced by the alias-

ing relations among API parameters and returns. When we run FLOWDROID under Taint-

Infer, it discovers 310 taint flows, 85 of which are discovered based on the correct API

aliasing specifications inferred by DAINFER. There are six taint flows in three apps not

discovered by FLOWDROID under the setting Taint-Infer due to false negatives of our in-

ference algorithm. However, 12 taint flows discovered under Taint-Infer are not discovered

under Taint-Manual. The results demonstrate that DAINFER promotes the taint analysis in

discovering more taint flows.

145

Answer to RQ3: The inferred API aliasing specifications enable alias analysis to
discover 80.05% more alias facts for the return values of library APIs and support
taint analysis in finding 85 more taint flows upon the selected Android apps.

5.7.5 Discussion

Threats to Validity. Our work has three main threats to the validity. First, we select the

classes evaluated in existing works and manual specifications in FLOWDROID, which can

introduce the subject selection bias. However, the selected classes are general and cover

commonly used ones. For example, the manual specifications in FLOWDROID cover the

Android platform and Java standard library classes. Our evaluation can show the impact

of our approach in understanding such fundamental classes. Second, following previous

studies [23], we manually investigate the documentation and implementation to deter-

mine the ground truth for each class. Although we conduct the cross-checking accord-

ing to the manual specifications provided by FLOWDROID, we still introduce the oracle

bias, especially when several inferred specifications do not appear in the FLOWDROID

benchmark. Third, DAINFER depends on an online generative AI service, of which the

availability and stability can affect the performance and effectiveness of our approach.

Particularly, the temperature setting of the two-staged prompting may affect the inference

results. To measure the temperature sensitivity, we also quantify the precision and recall

of DAINFER under different temperatures. The differences of the smallest and largest

precision and recall are only 4.55% and 2.63%, respectively.

Limitations and Future Work. Our approach has several drawbacks that demand fur-

ther improvements. First, DAINFER can not determine whether an API creates a new

object. When the developers create any new objects, our inferred specifications can only

depict data flow facts instead of aliasing relations. For example, DAINFER infers an API

aliasing specification for java.util.Map that the return value of Map.computeIfPresent can

be aliased with the second parameter of Map.put when their first parameters are aliased.

This is a wrong specification as computeIfPresent returns null value or a newly computed

value instead of any existing values stored in the fields. Second, the semantic unit con-

sistency requires two strings to be equal. In our evaluation, however, we notice that sev-

146

eral semantic units are not the same strings while they indicate the same concept. For

example, the first parameters of SparseArray.set and SparseArray.valueAt in the class an-

droid.util.SparseArray are key and index, respectively. The two different strings are actually

the indicators of the same semantic concept. Hence, DAINFER can not infer the correct

specification for the two APIs. Third, our documentation model is mainly applicable to

Java libraries, as Java documentation can offer the four kinds of program properties ex-

plicitly. For other programming languages, such as Python, we can hardly obtain any class

hierarchy relation in their documentation, which makes it impossible to over-approximate

aliasing facts with the assistance of type information. Lastly, DAINFER depends on the ef-

fectiveness of the LLM used in the memory operation abstraction. Currently, we cannot

figure out whether the LLM has seen the experimental data during the pre-training phase

and demonstrate how DAINFER performs upon library documentation that is not used

for pre-training the LLM.

To further improve DAINFER, we can explore several directions in the future. First,

we can train a new word-embedding model to measure the similarity between different

strings. It can hopefully support us in identifying the semantic units indicating the same

concept even if they are not the same string. Second, it is promising to obtain a domain-

specific LLM via fine-tuning. Specifically, we can leverage existing static analyzers to

scan the source code of open-source libraries, obtain their memory operation kinds, and,

particularly, determine whether the APIs create objects. Such offline models have better

potential for interpreting the API semantic descriptions and making the neurosymbolic

optimization break the efficiency bottleneck in interacting with the LLM.

5.8 Conclusion

We proposed a new approach DAINFER to infer API aliasing specifications from docu-

mentation. DAINFER adopts the tagging model and the large language model to interpret

informal semantic information in the documentation and reduces the inference problem

to an optimization problem, which can be efficiently solved by our neurosymbolic opti-

mization algorithm. The inferred specifications are further fed to static analysis clients for

analyzing the applications using libraries. Our evaluation demonstrated the high preci-

147

sion and recall of DAINFER in the inference, and also showed its significant impact in pro-

moting the library-aware pointer analysis and taint analysis. The inferred specifications

reveal the details of data manipulation conducted by library APIs, effectively assisting the

enhancement of reliability and performance with better library understanding.

148

CHAPTER 6

VERIFYING DATA CONSTRAINT
EQUIVALENCE IN FINTECH SYSTEMS

6.1 Introduction

With the development of E-commerce, FinTech systems have become increasingly essen-

tial to industrial production. As a typical kind of data-centric systems, they are com-

posed of a cluster of database-backed applications manipulating large amounts of sensi-

tive data [186]. Any incorrect data value can yield system misbehaviors and cause im-

measurable financial losses. To ensure reliability, it is a common practice to specify target

properties as data constraints [36, 35, 16] for data validation. If a data constraint is vio-

lated, developers receive an alert for further diagnosis.

Unfortunately, the continuous submissions from developers make data constraints ac-

cumulate rapidly and can even introduce redundancy. In a global FinTech company, Ant

Group, 103 developers submitted 2,306 data constraints in the first quarter of 2022. Un-

aware of previous submissions, they create equivalent data constraints, which gradually

become the technical debt [187], wasting computing resources and increasing the burden

of system maintenance. To resolve the redundancy, the developers expect to search the

existing equivalent data constraints before submitting new ones, thereby avoiding redun-

dant submissions. Besides, quality assurance teams are eager to examine data constraint

repositories regularly, seeking more opportunities for optimizing data validation based

on the equivalence relation. Thus, it is relevant to verify the data constraint equivalence

for performance enhancement of a FinTech system.

Goal and Challenges. We aim to design a decision procedure determining whether

two data constraints are equivalent. However, it is stunningly challenging to find a so-

lution fitting industrial requirements. First, the decision procedure should be highly effi-

cient, as FinTech systems often contain tens of thousands of data constraints, which am-

plify the efficiency bottleneck greatly. Any inefficiency in the decision procedure can result

149

in significant burdens of adoption. Second, it is crucial to guarantee soundness and prove

the equivalence as completely as possible. Otherwise, it would remove necessary data

constraints or miss equivalent ones, resulting in financial losses or hiding opportunities

for further optimization, respectively. In reality, data constraints can involve various data

types, increasing the difficulty of achieving these objectives simultaneously.

Existing Effort. There have been two lines of research on equivalence verification.

One line of the techniques leverages the specified rewrite rules and checks whether a pro-

gram can be transformed to the other via term rewriting [188, 87]. Although the rewrite

rules theoretically ensure soundness, they can only identify restrictive forms of equiva-

lent patterns [70], and the vast search space of applying rewrite rules also brings great

overhead [90]. The other line encodes the program semantics with logical formulas and

performs the symbolic reasoning by invoking an SMT solver [75, 95, 189]. It provides a

general approach to verify the equivalence, while an SMT solver is not efficient enough

to reason a large number of data constraints. The solver has to be invoked thousands of

times in the equivalence clustering and searching, accumulating the overhead and finally

degrading the overall efficiency [190].

Insight and Solution. Our key idea originates from two critical observations. First,

non-equivalent data constraints often contain different variables, literals, or operators. For

example, the data constraint in Figure 6.1(a) examines the attributes oid and in in the table

t, while the data constraint in Figure 6.1(b) examines the attributes iid and new instead. The

lexical differences guide the generation of concrete values to make two data constraints

evaluate differently. Second, equivalent data constraints often converge towards similar

syntactic structures. For instance, the data constraints in Figure 6.1(d) and Figure 6.1(c)

only differ in the orders of assertions, branches, and commutative operands after elimi-

nating user-defined variables. The isomorphic syntactic structures are the witness of their

equivalence. Thus, we can leverage the lexical differences and syntactic isomorphism

to efficiently refute and prove the equivalence, respectively, avoiding unnecessary SMT

solving for better performance.

Based on the insight, we present EQDAC, an efficient decision procedure for the equiv-

alence verification. We establish a first-order logic (FOL) formula as the symbolic repre-

sentation to depict the semantics. To refute the equivalence, we perform the divergence

150

s = ’IN’;
if(contains(t.ty,s))

assert(t.in > 0);
else

assert(t.out > 0);
assert(t.amt > 0);
assert(t.oid != 0);

(a)

if(contains(t.ty,’IN’)){
assert(t.old == t.new - t.in);

} else {
assert(t.old == t.new + t.out);

}
assert(t.oid != 0);
assert(t.iid != 0);

(b)

s = ’IN’;
if(not contains(t.ty,s))

assert(t.out > 0);
else

assert(t.new > 0);
assert(t.amt > 0);
assert(t.iid != 0);

(c)

assert(t.iid != 0);
assert(t.oid != 0);
if(not contains(t.ty,’IN’))
cash = t.out + t.new;

else
cash = t.new - t.in;

assert(cash == t.old);

(d)

Figure 6.1: Examples of data constraints

analysis to explore the symbolic representations and generate the concrete values of vari-

ables, which simultaneously make one data constraint hold and the other violated. To

prove the equivalence, we conduct the isomorphism analysis with a tree isomorphism al-

gorithm [191] to examine whether the two symbolic representations can be transformed

into each other by reordering the clauses and commutative terms. We combine the two

analyses with the SMT solving, which determines the logical equivalence of the symbolic

representations, finally obtaining a three-staged decision procedure.

We implement EQDAC and evaluate it upon a FinTech system in Ant Group, which

maintains 30,801 data constraints in total. Leveraging EQDAC, we discover that 11,538

data constraints have at least one equivalent variant in the system, indicating that 7,842

data constraints are redundant. EQDAC finishes the equivalence clustering in three hours

and achieves the equivalence searching in 1.22 seconds per data constraint. Except for the

SMT solving, the stages of EQDAC can be proven to work in polynomial time. Benefiting

from EQDAC, the CPU time can be reduced by 15.48% in the process of data validation.

We also prove the soundness and completeness of EQDAC theoretically for a given syntax

of data constraints. In summary, we make the following major contributions:

• We formulate the data constraint equivalence problem, which is critical for optimiz-

ing data validation in a FinTech system.

• We propose a sound and complete decision procedure EQDAC to efficiently support

151

the equivalence clustering and searching of data constraints.

• We implement EQDAC and evaluate it upon the data constraints in Ant Group,

showing that it efficiently detects a significant number of equivalent data constraints.

In the rest of the chapter, the content is organized as follows. Section 6.2 introduces the

background of data constraints in FinTech systems and motivates the problem of resolving

equivalent data constraints. Section 6.3 demonstrates the key idea of our approach with a

motivating example, which is followed by the formal statement of data constraint equiv-

alence problem in Section 6.4. Sections 6.5 and 6.6 illustrates the technical details of our

decision procedure. We present the implementation and evaluation details in Sections 6.7

and 6.8, respectively, and summarize the work in Section 6.9.

6.2 Background and Motivation

This section presents the background and highlights the motivation of our work.

6.2.1 Equivalent Data Constraints in FinTech Systems

FinTech systems, a typical kind of data-centric systems, usually consist of a cluster of

database-backed applications manipulating large amounts of user data. To improve the

system reliability, the developers often specify data constraints to describe target data

properties and set up a data validation (DV) platform to examine them during the sys-

tem runtime. Once a data constraint is violated, developers can receive detailed runtime

information to guide further system diagnosis.

In reality, many development teams continuously submit data constraints to a central

DV platform. For example, around 100 teams in Ant Group actively submit data con-

straints daily to the platform. Unaware of existing submissions, developers often submit

data constraints equivalent to existing ones. Besides, the developers tend to be conserva-

tive about removing constraints, as they do not want to risk missing data errors. In this

context, the DV platform examines equivalent data constraints redundantly, which causes

unnecessary resource consumption, e.g., CPU time, disk IO, and network traffic. Finally,

152

New DC

Equivalent Variants

Search Bot

DeveloperDC Repository

Cluster Bot Clusters Quality Assurance
Manager

Merge Suggestions

Equivalence
Searching

Equivalence
Clustering

Merge or commit

Figure 6.2: The workflow of equivalence searching and clustering

the accumulation of equivalent data constraints becomes the technical debt [187] of a Fin-

Tech system: Thus, it is crucial to tackle equivalent data constraints in the maintenance,

which promotes resource-saving of a FinTech system.

6.2.2 Resolving Equivalent Data Constraints

To resolve the technical debt, the developers of Ant Group propose two demands, namely

equivalence clustering and equivalence searching, to tackle equivalent data constraints.

Specifically, they expect to integrate two bots into the CI/CD workflow [192] of a FinTech

system as follows.

• Equivalence searching: A developer commits a new data constraint to the bot for

searching existing equivalent variants. The list of equivalent variants assists the

developer in deciding whether to merge it with any existing one. The workflow is

shown in the upper part of Figure 6.2.

• Equivalence clustering: A quality assurance (QA) manager exports all the data con-

straints to the bot, which divides the data constraints into equivalence clusters.

Then, the QA manager summarizes merge suggestions and sends them to devel-

opers for further confirmation. The lower part of Figure 6.2 shows the workflow of

equivalence clustering.

Generally, the two bots resolve the redundancy from two perspectives, respectively.

First, the equivalence searching conducts the instant checking of newly-submitted data

153

constraints, enabling the developers to avoid redundancy if possible. Second, the equiva-

lence clustering supports the nightly scan of the whole repository of data constraints. The

QA managers can inspect the clustering information to find opportunities for merging

equivalent ones. During the development cycle, the two bots can serve as two lines of

defense for redundancy issues in the CI/CD workflow.

To automate the overall workflow, we need an efficient decision procedure to verify

whether two data constraints are equivalent. Specifically, the two bots would invoke the

decision procedure to determine the equivalence in the clustering and searching, respec-

tively. In this work, we aim to design an effective solution for verifying data constraint

equivalence, and promoting two clients with our decision procedure.

6.3 EqDAC in a Nutshell

This section presents a motivating example to show our insight (Section 6.3.1) and outlines

our decision procedure (Section 6.3.2).

6.3.1 Motivating Examples

Verifying the data constraint equivalence is non-trivial in industrial scenarios. First, the

cost of the decision procedure can accumulate significantly due to the vast number of data

constraints [15]. Second, the decision procedure can prune necessary data constraints or

miss equivalent ones if it is not sound or complete, increasing the risk of data security

and hiding the opportunity for optimization. Thus, we need to simultaneously ensure the

soundness, completeness, and efficiency of the decision procedure.

Figure 6.1 shows four data constraints as examples. Specifically, the data constraints

in Figure 6.1(a) and Figure 6.1(b) depict the properties where three attributes of the table

t have positive values in two cases, and the values of oid and iid are not 0, respectively.

Besides, the data constraints in Figure 6.1(d) and Figure 6.1(c) describe the property where

the changes to the account balances are equal to the transferred cash amount, and the ids

of the two accounts, i.e., iid and oid, are not 0. According to the examples, we can obtain

the following two important observations:

154

Isomorphism
Analyzer

SMT
Solver

EQNEQ

Divergence
Analyzer

Semantic
EncoderData Constraint Pair

NEQ EQ

Symbolic
Representation

Figure 6.3: Schematic overview of our decision procedure EQDAC

• Non-equivalent data constraints tend to have different lexical tokens, such as database

attributes, literals, and operators. For example, the data constraints in Figure 6.1(a)

and Figure 6.1(b) examine different attributes. It is likely to generate the values of

table attributes, making them evaluate differently.

• Equivalent data constraints often only differ in the orders of commutative operands

and independent statements after eliminating user-defined variables. For instance,

the data constraints in Figure 6.1(c) and Figure 6.1(d) share the isomorphic syntactic

structure, which implies their equivalence.

Based on the observations, we realize that the lexical differences and syntactic isomor-

phism enable us to efficiently refute and prove the equivalence, respectively. If we gen-

erate “good” concrete values making two data constraints evaluate differently or find the

isomorphism between the syntactic structures, we can avoid SMT solving and achieve

high efficiency.

6.3.2 Outline of Decision Procedure

According to our insight, we design an efficient, sound, and complete decision procedure

for verifying data constraint equivalence. To depict the data constraint semantics, we

propose the semantic encoding to construct a FOL formula in a restrictive form as its

symbolic representation, which eliminates user-defined variables (e.g., the variable cash

in Figure 6.1(c)). Based on the symbolic representations, our decision procedure works in

three stages, as shown in Figure 6.3.

• The divergence analysis explores the symbolic representations with the guidance of

lexical differences, aiming to generate concrete values that make data constraints

155

evaluate differently. For example, it explores the clause induced by the last assertion

in Figure 6.1(a) and assigns 0 to the attribute oid to violate the assertion. Also, it

concretizes the variables in Figure 6.1(b) to make the data constraint satisfied.

• The isomorphism analysis constructs the parse trees of the symbolic representations

and examines whether the parse trees are isomorphic. The analysis abstracts away

the order of commutative constructs, such as independent statements and commu-

tative operands. For example, it discovers the isomorphic structures in Figure 6.1(d)

and Figure 6.1(c), blurring the orders of assertions and the operands of + and ==.

• If the first two analyses can not refute or prove the equivalence, we invoke an SMT

solver to check the logical equivalence of the symbolic representations. To ensure

soundness and completeness, we perform the SMT encoding with a decidable frag-

ment in the combined theory of bit-vector, floating-point arithmetic, and string.

Apart from soundness and completeness, EQDAC also features a theoretical guarantee

of complexity. The symbolic representation construction, the divergence analysis, and the

isomorphism analysis can work in polynomial time to the size of the abstract syntax tree

of a data constraint. Our evaluation also provides strong evidence of the EQDAC’s high

efficiency in the equivalence clustering and searching.

6.4 Problem Formulation

This section presents the syntax (Section 6.4.1) and formulates the data constraint equiva-

lence problem (Section 6.4.2).

6.4.1 Data Constraint Syntax

Figure 6.4 summarizes the syntax. A variable is a data variable vd ∈ Vd indicating the

value of a table attribute, or an user-defined variable x ∈ Vu storing the value temporally.

Its value can be a finite-length integer, a floating point number, or a string. A literal is a

constant value. An arithmetic expression can be a literal, a data variable, or a compound

arithmetic expression. A comparison expression compares arithmetic expressions and user-

defined variables, or examines the strings with predicates p ∈ P. A Boolean expression is

156

V := vd | x
L := {li | i ⩾ 1}
A := l | vd | a1 ⊕ a2
C := a1 ⊙ a2 | x1 ⊙ x2 | a⊙ x | x⊙ a | p(v, l) | p(v1, v2)
B := c | b1 and b2 | b1 or b2 | not b | iteb(c0,b1,b2)
S := x = a | assert(b) | s1; s2 | ites(c0, s1, s2)
R := s+
⊕ := + | − | × | ÷
⊙ := > | < | ⩾ | ⩽ | == | ̸=
P := {prefixOf, suffixOf, contains, equals}

Figure 6.4: The syntax of data constraints

a comparison expression or a compound expression with logical connectives. A statement

is an assignment, an assertion, a sequencing, or an ites statement. Particularly, the condi-

tions in iteb expressions and ites statements only relate to data variables. Finally, a data

constraint consists of finite statements. All its assertions are expected to hold for given

database tables.

The syntax is expressive enough to specify target properties in real-world scenarios.

It covers all the patterns in [35], such as value comparison, conditional comparison, etc.

Also, user-defined variables support writing data constraints flexibly. Arithmetic oper-

ations and string predicates support expressing complex properties, e.g., comparing the

sums of cash amounts and matching between string variables.

6.4.2 Data Constraint Equivalence Problem

Before stating the problem, we first introduce the notions of interpretation and semantic

equivalence as follows.

Definition 6.4.1 (Interpretation and Model) An interpretation I maps each data variable vd
to a value in its domain. I is a model of a data constraint r, denoted by I |= r, if all the assertions

hold under I.

Example 6.4.1 The following interpretation I is a model of the data constraint in Figure 6.1(a).

I = [t.ty 7→ ‘IN’, t.in 7→ 1, t.out 7→ 0, t.oid 7→ 1, t.amt 7→ 1]

157

An interpretation indicates the values of table attributes. A data constraint induces a

set of interpretations making its assertions hold. Formally, we define the semantic equiv-

alence.

Definition 6.4.2 (Semantic Equivalence) The data constraints r1 and r2 are semantically equiv-

alent, denoted by r1 ≃ r2, if and only if

∀I : I |= r1 ⇔ I |= r2

Example 6.4.2 Based on Example 6.4.1, we can construct

I ′ = I[t.new 7→ 0, t.iid 7→ 1]

I ′ is not a model of the data constraint in Figure 6.1(b), while it is a model of the data constraint in

Figure 6.1(a), indicating that they are not semantically equivalent.

In this work, we aim to propose a decision procedure to verify whether r1 is semanti-

cally equivalent to r2 for a given data constraint pair (r1, r2). However, finding a sound,

complete, and efficient solution is challenging. Theoretically, any instance of SAT prob-

lem [193] can be reduced to an instance of our problem by constructing two proper data

constraints in polynomial time. Formally, we state the complexity barrier of our problem

as follows.

Theorem 6.4.1 (Complexity Barrier) Data constraint equivalence problem is NP-hard.

Proof. We only need to prove that we can reduce any instance of the SAT problem to

an instance of the data constraint equivalence problem in polynomial time.

Consider an arbitrary propositional logic formula ψ, which contains n variables de-

noted by ai (1 ⩽ i ⩽ n). We first construct a database table with n attributes, namely

vi, where 1 ⩽ i ⩽ n. Meanwhile, we introduce a constant set containing n unique

constants, denoted by L = {ℓ1, ℓ2, · · · , ℓn}. We then construct the assertion statement

assert(f(v1, v2, · · · , vn)). Here the boolean expression f(v1, v2, · · · , vn) is constructed by

replacing ai with the equality constraint vi == ℓi in ψ. Such the assertion statement is

exactly the data constraint r we want. Obviously, ψ is unsatisfiable if and only if r is

semantically equivalent to

assert(f(v1, v2, · · · , vn) and ¬f(v1, v2, · · · , vn))

158

The reduction can be achieved in linear time to the size of the formula ψ. Therefore, the

data constraint equivalence problem is NP-hard. Q.E.D.

Roadmap. To verify the equivalence, we propose a symbolic representation to encode

the semantics (Section 6.5) and design an efficient decision procedure (Section 6.6). Par-

ticularly, we introduce light-weighted reasoning to refute and prove the equivalence effi-

ciently, which is our main technical contribution. By fusing our light-weighted reasoning

with SMT-based analysis, our decision procedure features soundness and completeness,

and achieves high efficiency in supporting the equivalence clustering and searching.

6.5 Semantic Encoding

This section introduces the symbolic representation to depict the semantics (Section 6.5.1),

presents the symbolic evaluation (Section 6.5.2), and summarizes the benefit at the end

(Section 6.5.3).

6.5.1 Symbolic Representation

A data constraint is essentially a program with data variables as inputs. The values of

data variables determine the values of all the variables and expressions. Based on the

intuition, we propose the concepts of symbolic terms and conditions to depict the values

of variables and expressions.

Definition 6.5.1 (Symbolic Term) A symbolic term τ represents the value of a variable or a

literal in either of the forms:

• τ := vd or τ := l is a data variable or a literal, respectively.

• τ := τ1 ⊕ τ2 is a compound term with an arithmetic operator.

Definition 6.5.2 (Symbolic Condition) A symbolic condition ϕ is a FOL formula in one of the

following forms:

• An atomic condition is an arithmetic comparison of two symbolic terms or a string compari-

son, i.e., ϕ := τ1 ⊙ τ2 or ϕ := p(τ1, τ2), where p ∈ P is a string predicate.

159

• A compound condition is a FOL formula with logical connectives, i.e., ϕ := ϕ1 ∧ϕ2, ϕ :=

ϕ1 ∨ϕ2, or ϕ := ¬ϕ0.

Example 6.5.1 In Figure 6.1(c), the values of cash can be represented by the terms t.out+ t.new

and t.new− t.in. The condition of the ites statement is encoded by ¬contains(t.ty, ‘IN’).

The symbolic terms represent the values of variables, literals, and arithmetic expres-

sions, while the symbolic conditions encode the values of Boolean expressions, providing

the ingredient for defining the symbolic representations.

Definition 6.5.3 (Symbolic Representation) For a data constraint r, its symbolic representa-

tion is a symbolic condition φ satisfying

• For any interpretation I, I |= r if and only if I |= φ.

• The negations only occur before string atomic constraints.

Intuitively, the symbolic representation encodes the semantics faithfully with a FOL

formula, which only relates to data variables and exclude redundant negations. It ab-

stracts away user-defined variables and blurs syntactic differences in terms of negations

effectively, enabling us to design light-weighed reasoning for equivalence verification. In

what follows, we show how to construct the symbolic representation in detail.

6.5.2 Symbolic Evaluation

Now we propose the symbolic evaluation to construct the symbolic representation. Basi-

cally, the symbolic evaluation consists of two stages, which collects the values of Boolean

expressions in each assertion, and eliminates unnecessary negations, respectively. Before

delving into details, we first introduce the notion of the symbolic state.

Definition 6.5.4 (Symbolic State) Given a data constraint r, the symbolic state S at program

location ℓ is (E,Φ), where

• An environment E maps a variable v or an arithmetic expression e to a term-condition pair

set {(τ,ϕ)}, indicating that v or e evaluates to the same value of τ when ϕ holds.

160

• A propertyΦ is a symbolic condition that summarizes the assertions in r before the program

location ℓ.

Example 6.5.2 After the first assertion in Figure 6.1(c), we have

E = [t.iid 7→ {(t.iid, T)}, 0 7→ {(0, T)}] Φ = (t.iid ̸= 0)

Now we present the technical details of the symbolic evaluation. In the first stage, we

evaluate the variables and expressions to obtain a FOL formula depicting the semantics,

which only relates to the data variables. Specifically, we define the evaluation rules in

Figure 6.5 and Figure 6.6.

• The rule ASSIGN evaluates the RHS with the rules VAR and AE in Figure 6.6, and

applies the strong update to E, enforcing the user-defined variable v and the expres-

sion a have the same value. It successfully evaluates user-defined variables, making

the symbolic terms only relate to the data variables.

• The rule ASSERT evaluates the Boolean expression b to a symbolic condition ψ. It

then connectsψ and the original propertyΦwith a logical conjunction. This, in turn,

forms a property that accumulates the conditions of the assertions.

• The rules SEQ and ITE-S are defined straightforwardly. SEQ applies the evaluation

rules of two components sequentially. ITE-S evaluates the two cases separately and

joins two symbolic states according to the branch condition.

We omit the rules of evaluating string comparisons and other compound Boolean ex-

pressions due to limited space, which are similar to the rules ACmp and ITE-E. Based on

the rules, we evaluate a data constraint stepwise. Initially, the symbolic state is a pair of

empty mapping and a true value. By applying the rule of each statement along control

flow paths, we obtain the symbolic state at each program location and finally summarize

all the assertions with the property Φe at the exit, which depicts the semantics of the data

constraint.

161

ASSIGN
E ⊢e a; V E ′ = E[v 7→ V]

E,Φ ⊢ v = a; E ′,Φ

ASSERT
E ⊢b b; ψ Φ ′ = Φ∧ψ

E,Φ ⊢ assert(b) ; E,Φ ′

SEQ
S ⊢ s1 ; S1 S1 ⊢ s2 ; S ′

S ⊢ s1; s2 ; S ′

ITE-S

E ⊢b c0 ; γ1 γ2 = ¬γ1 E,Φ ⊢ si ; Ei,Φi
E ′ = [u 7→

⋃2
i=1{(τi,ϕi ∧ γi)|(τi,ϕi) ∈ Ei(u)}]

E,Φ ⊢ ites(c0, s1, s2) ; E ′, ite(γ1,Φ1,Φ2)

Figure 6.5: Evaluation rules of statements

VAR
u ∈ L∪Vd U = {(u, T)}

E ⊢e u; U

AE

ai ∈ A E ⊢e ai ; Ui
A = {(t1 ⊕ t2,ϕ1 ∧ϕ2) | (ti,ϕi) ∈ Ui}

E ⊢e a1 ⊕ a2 ; A

ACmp

ui ∈ A∪Vu E ⊢e ui ; Ui
B = {(t1 ⊙ t2)∧ϕ1 ∧ϕ2 | (ti,ϕi) ∈ Ui}

E ⊢b u1 ⊙ u2 ;
∨
ϕ∈Bϕ

ITE-E
E ⊢b c0 ; γ0 E ⊢b bi ; γi

E ⊢b iteb(c0,b1,b2) ; (γ1 ∧ γ0)∨ (γ2 ∧¬γ0)

Figure 6.6: Helper rules evaluating expressions

Example 6.5.3 Consider the data constraint in Figure 6.1(c). We obtainΦ = ϕ1 ∧ ((ϕ2 ∧ϕ4)∨

(ϕ3 ∧¬ϕ4)) at its exit, where
ϕ1 = (t.iid ̸= 0)∧ (t.oid ̸= 0) ϕ2 = (t.out+ t.new = t.old)

ϕ3 = (t.new− t.in = t.old) ϕ4 = ¬contains(t.ty, ‘IN’)

In the second stage, we eliminate the negations inΦe that do not apply to atomic string

constraints. Technically, we first transform Φe into the negation normal form (NNF), in

which the negation applies only to atomic formulas. Then, we eliminate the negation

before each atomic arithmetic constraint by changing the comparison operator, e.g., trans-

forming ¬(t.a ⩾ t.b) to t.a < t.b. Notably, the above transformations can be achieved by

the breadth-first search upon the parse tree of Φe, where the symbolic representation is

constructed on the fly. The overall time complexity is linear to the size ofΦe.

162

Example 6.5.4 In Example 6.5.3, we eliminate the negations and get the symbolic representation

φ = ϕ1 ∧ ((ϕ2 ∧ϕ4)∨ϕ
′), where ϕ ′ = (t.new− t.in = t.old)∧ contains(t.ty, ‘IN’).

6.5.3 Summary

The symbolic representation is essentially a Boolean function of data variables, featuring

the following three benefits:

• The symbolic representations preserve the lexical differences in terms of data vari-

ables, literals, and operators, which can indicate the possible non-equivalence.

• The symbolic evaluation evaluates the user-defined variables, abstracting away the

difference in terms of their names, which do not affect the semantics.

• The elimination of unnecessary negations normalizes the FOL formulas and yields

isomorphic symbolic representations for more equivalent data constraints.

Thus, the semantic encoding exposes lexical differences and syntactic isomorphism for

light-weight reasoning, which efficiently refutes and proves the equivalence (Section 6.6.1

and Section 6.6.2).

6.6 Decision Procedure

In this section, we first introduce the divergence analysis (Section 6.6.1) and isomorphism

analysis (Section 6.6.2) for efficiently refuting and proving the equivalence, respectively.

We then combine the two analyses with SMT solving to establish the decision procedure

(Section 6.6.3). In what follows, we denote the data constraints by r1 and r2 and their

symbolic representations by φ1 and φ2 for demonstration.

6.6.1 Divergence Analysis

Based on Definition 6.5.3, φ1 and φ2 depict the semantics of two data constraints faith-

fully. We can safely refute the equivalence if there exists an interpretation I making them

163

evaluate to different truth values. However, it is non-trivial to obtain such a desired inter-

pretation efficiently. The random sampling may hit a desired interpretation successfully

after failing many attempts, which can degrade the efficiency significantly. To resolve the

problem, we attempt to explore specific Boolean structures of φ1 and φ2 and concretize

the data variables within the structures. Formally, we introduce the degrees of freedom to

guide the exploration.

Definition 6.6.1 (Degrees of Freedom) For two symbolic representations φ1 and φ2, the de-

grees of freedom of a clause ϕ occurring in φ1 is

DF(ϕ | φ1,φ2) =
1

h(ϕ)
·

∑
M∈{Vd,L,O}

|M(ϕ) \M(φ2)|

h(ψ) is the height of the parse tree of ψ. Vd(ψ) contains the data variables in ψ but excludes

arithmetic operands. L(ψ) and O(ψ) contain the literals and operators in ψ, respectively.

Intuitively, a larger degrees of freedom indicates a higher possibility of making ϕ eval-

uate to a target truth value:

• First, a smaller value of h(ϕ) indicates the opportunity of finding the desired inter-

pretation with fewer explorations.

• Second, a larger value of |M(ϕ) \M(φ2)| indicates that ϕ has more unique lexical

tokens absent in φ2. The concretizations of data variables in ϕ and φ2 are less inter-

twined.

• Third, Vd(ϕ) excludes arithmetic operands, as arithmetic operations can increase the

difficulty of concretization.

Example 6.6.1 Consider the data constraints in Figure 6.1(a) and Figure 6.1(b). According

to Section 6.5, their symbolic representations are
φ1 = ((t.in > 0 ∧ϕc)∨ (t.out > 0 ∧¬ϕc))∧ϕa ∧ϕo

φ2 = ((t.out > 0 ∧¬ϕc)∨ (t.new > 0 ∧ϕc))∧ϕa ∧ϕi

whereϕa = (t.amt > 0),ϕo = (t.oid ̸= 0),ϕi = (t.iid ̸= 0), andϕc = contains(t.ty, ‘IN’).

Let ϕ denote the first clause of φ1. We have Vd(ϕ) \ Vd(φ2) = {t.in}, L(ϕ) ⊆ L(φ2), and

164

Algorithm 5: Divergence analysis
Input: φ1,φ2: Two symbolic representations;
Output: Whether ∃I : ¬(I |= φ1 ↔ I |= φ2)

1 foreach (ϕ1,ϕ2) ∈ {(φ1,φ2), (φ2,φ1)} do
2 I← ⊥;
3 status← T ;
4 explore(ϕ1, ϕ1, ϕ2, F);
5 explore(ϕ2, ϕ2, ϕ1, T);
6 if status is T then
7 return true;

8 return unknown;
9 Procedure explore(ϕ, φ, φ ′, tv)

10 if status then
11 if ϕ is atomic then
12 if FreeVar(ϕ, I) ̸= ∅ then
13 I← concretize(ϕ, tv);
14 else
15 status← check(I |= ϕ = tv);

16 else if (LC(ϕ), tv) ∈ {(∧, T), (∨, F)} then
17 foreach ϕi ∈ C(ϕ) do
18 explore(ϕi, φ, φ ′, tv);

19 else
20 ϕ ′ ← arg maxϕi∈C(ϕ) DF(ϕi | φ,φ ′);
21 explore(ϕ ′, φ, φ ′, tv);

O(ϕ) ⊆ O(φ2) Thus, we have DF(ϕ | φ1,φ2) = 1
3 . Similarly, we have DF(ϕa | φ1,φ2) = 0

and DF(ϕo | φ1,φ2) = 1.

Based on the degrees of freedom, we propose the divergence analysis to generate a

desired interpretation. Algorithm 5 shows its technical details. It receives two symbolic

representations φ1 and φ2 and attempts to generate a desired interpretation enforcing

them evaluate differently (lines 1–7). The function explore traverses the clauses level by

level (lines 9–21), handling three kinds of clauses ϕ with specific strategies:

• If ϕ is atomic, we concretize the free variables to make ϕ evaluate to tv (lines 12–13).

If there is no free variable, we check whether ϕ evaluates to tv under I (line 15).

• If ϕ is a connected with ∧ and tv is true, or ϕ is connected with ∨ and tv is false, we

explore all the clauses in ϕ and enforce them evaluates to tv (lines 16–18).

165

• Otherwise, we select the clause ϕ ′ with the maximal degrees of freedom and enforce

it evaluate to tv (lines 20–21).

If each clause evaluates to the target value, Algorithm 5 finds the desired interpretation,

thereby refuting the equivalence.

Example 6.6.2 In Example 6.6.1, φ1 is connected with the logical conjunction. We only need to

select and explore one of its clauses if we want to make φ1 evaluate to false. The third clause ϕo

has a larger degrees of freedom than the other two, so we select it and assign 0 to t.oid. Similarly,

we can enforce φ2 evaluate to true, which finally refutes the equivalence.

Lastly, it is worth mentioning that the data constraints with different lexical tokens are

often non-equivalent, while it is unsound to refute the equivalence directly based on lex-

ical differences. In contrast, our divergence analysis essentially utilizes lexical differences

to guide the interpretation generation, which supports refuting the equivalence soundly.

6.6.2 Isomorphism Analysis

As the FOL formulas, the symbolic representations φ1 and φ2 are logically equivalent if

we can transform φ1 to φ2 by reordering commutative sub-formulas and terms in φ1. For

example, the evaluation of a FOL formula does not depend on the order of the clauses

connected with the logical disjunction and conjunction. Also, any permutation of the

operands of commutative arithmetic operators, such as addition and multiplication, al-

ways yields the logically equivalent formula. In other words, we can prove the data con-

straint equivalence safely by identifying the isomorphism between φ1 and φ2.

Based on the above key idea, we propose the isomorphism analysis to determine

whether the parse trees of φ1 and φ2 are isomorphic, which is formulated in Algorithm 6.

Using the AHU algorithm [191] for tree isomorphism checking, Algorithm 6 proves the

data constraint equivalence if the parse trees are isomorphic (lines 1–2). Particularly, the

functions SCT and STT process the clauses and terms of a symbolic representation in a

top-down manner, respectively, creating tree nodes and leaf nodes in the parse tree.

• When processing a non-atomic formulaφ, SCT creates a tree node to store the logical

connective, and appends all the parse trees of its clauses (lines 5–6).

166

Algorithm 6: Isomorphism analysis
Input: φ1,φ2: Two symbolic representations;
Output: Whether ∀I : I |= φ1 ↔ I |= φ2

1 if AHUcheck(SCT(φ1), SCT(φ2)) then
2 return true;
3 return unknown;
4 Procedure SCT(ϕ)
5 if ϕ : ϕ1 ⊛ · · ·⊛ϕk and ⊛ ∈ {∧,∨,¬} then
6 return Tree(⊛, {SCT(ϕi) | 1 ⩽ i ⩽ k});
7 else if ϕ : τ1 ⊛ τ2 or ϕ : ⊛(τ1, τ2) then
8 if ⊛ ∈ {=, ̸=, equals} then
9 return Tree(⊛, {STT(τ1),STT(τ2)});

10 else if ⊛ ∈ {<,⩽} then
11 ⊛ ′ ← flip(⊛);
12 return Leaf(⊛ ′,STT(τ1),STT(τ2));
13 else
14 return Leaf(⊛,STT(τ1),STT(τ2));

15 Procedure STT(τ)
16 if Op(τ) = {⊛} and ⊛ ∈ {+, ∗} then
17 return Tree(⊛,Operand(τ));
18 else if τ : τ1 ⊕ τ2 then
19 return Leaf(⊕,STT(τ1),STT(τ2));
20 else
21 return Leaf(τ);

• For an atomic condition, SCT creates a tree node if the comparison operator is in

{=, ̸=} or the string predicate is equals (lines 8–9). Otherwise, it adds a leaf node to

make sub-trees nonexchangeable (lines 10–14). Notably, it normalizes inequalities

to enforce them using > and ⩾ only, which supports discovering more equivalent

inequalities.

• STT constructs a tree node if a term τ only uses addition or multiplication (lines

16–17). For other cases, STT creates a leaf node (lines 18–21).

Example 6.6.3 Figure 6.7(a) and Figure 6.7(b) show the parse trees of the symbolic represen-

tations for the data constraints in Figure 6.1(d) and Figure 6.1(c), respectively. φ∗ represents

contains(t.ty, ‘IN’). Their isomorphism proves the data constraint equivalence.

It is worth noting that the AHU algorithm in Algorithm 6 is slightly different from

the standard one [191]. Originally, the AHU algorithm sorts the sub-trees by level, as the

167

∨

∧

≠≠

t.iid0t.oid 0∧∧

+t.old

= ¬

t.outt.new

𝜑∗=

t.new-t.in
t.old 𝜑∗

(a)

∨

∧

≠≠

t.iid 0 t.oid 0
∧ ∧

+ t.old

= ¬

t.out t.new

=

t.new-t.in

t.old

𝜑∗

𝜑∗

(b)

Figure 6.7: Two isomorphic parse trees

orders of the sub-trees do not matter. In our case, however, only the sub-trees of tree

nodes can be arbitrarily permuted. Thus, we modify the AHU algorithm to adapt it to the

isomorphism analysis, not sorting the sub-trees of each leaf node.

6.6.3 Equivalence Verification with EqDAC

Combining the above analyses with the SMT solving, we obtain the decision procedure

EQDAC in Algorithm 7. We first construct the symbolic representationsφ1 andφ2 via the

semantic encoding. If we can not refute or prove the equivalence with the first two analy-

ses (lines 2–5), an SMT solver examines whether φ1 and φ2 are logically equivalent (line

6) for general cases. Notably, the function Divergent invokes Algorithm 5 at the line 2, and

explores the Boolean structures of φ1 and φ2 at most two times, ensuring the efficiency of

the first stage.

The divergence analysis and isomorphism analysis over and under-approximate the

equivalence, respectively. Although the analyses do not always determine the equiva-

lence, they can handle a large proportion of data constraints in practice, evidenced by our

evaluation. Formally, we state two theorems to formulate the theoretical guarantee.

Theorem 6.6.1 (Time Complexity) The steps in Algorithm 7 before line 6 run in polynomial

time to N, where N is the upper bound of the numbers of AST nodes for the two data constraints.

Before proving Theorem 6.6.1, we first propose and prove Lemma 6.6.1 and Lemma 6.6.2

as follows.

168

Algorithm 7: Decision procedure
Input: r1, r2: Two data constraints;
Output: Whether r1 ≃ r2 or not

1 φ1,φ2 ← getSymReps(r1, r2);
2 if Divergent(φ1,φ2) is true then
3 return false;

4 if Isomorphic(φ1,φ2) is true then
5 return true;

6 return (SMT-Solve(¬(φ1 ↔ φ2)) is UNSAT);

Lemma 6.6.1 We define the size of a symbolic condition ϕ as follows:

δ(ϕ) =


1 ϕ is atomic

1 + δ(ϕ0) ϕ = ¬ϕ0
δ(ϕ1) + δ(ϕ2) ϕ = ϕ1 ∨ϕ2 or ϕ = ϕ1 ∧ϕ2

Given any data constraint r, denote the node number of its abstract syntax tree by N. The size of

its symbolic representation δ(φ) is polynomial to N.

Proof of Lemma 6.6.1. For clarity, we introduce two functions α and β:

• α(E, e) is the number of terms that emay be equal to.

• β(E, e) is the maximal size of the symbolic condition under which e is equal to a

specific term. i.e., β(E, e) = max(τ,ϕ)∈E(e) δ(ϕ).

According to the rules in Figure 6.5 and Figure 6.6, E is only updated by the rules

ASSIGN, SEQ, and ITE-S.

• Let’s considerα(E ′, v) andβ(E ′, v) after applying the rule ASSIGN. If the rule ASSIGN

applies the rule VAR, we have

α(E ′, v) = 1, β(E ′, v) = 1

If the rule ASSIGN applies the rule AE, we have

α(E ′, v) = 1, β(E ′, v) = β(E,a1) +β(E,a2)

169

• After applying the rule ITE-S, for any e ∈ dom(E ′), we have

α(E ′, e) = O(α(E1, e) +α(E2, e))

β(E ′, e) = max
i∈{1,2}

β(Ei, e) = O(β(E1, e) +β(E2, e))

• After applying the rule SEQ, the effects of the involved rules accumulate.

Based on the above equations, we can find that α(E, e) and β(E, e) are both linear to

the times of applying the rules. Thus, for any program location, we have

max
e in r

α(E, e) = O(N), max
e in r

β(E, e) = O(N)

Now, we can estimate the upper bound of δ(φ). According to the rules in Figure 6.5

and Figure 6.6, Φ is only updated by the rules ASSERT, ITE-S, and SEQ.

• Let’s consider δ(Φ ′) after applying the rule ASSERT. If the rule ASSERT applies the

rule ACmp, we have

δ(Φ ′) − δ(Φ) =
∑

(ti,ϕi)∈Ei(ui)

(1 + δ(ϕ1) + δ(ϕ2)) = O(N
2)

If the rule ASSERT applies the rule ITE-E, we have

δ(Φ ′) − δ(Φ) = δ(γ1) + δ(γ2) + 3

Observe that γ1 and γ2 are obtained by applying the rules ACmp and ITE-E. We can

sum up the above two equations and obtain that

δ(Φ ′) − δ(Φ) = O(N3)

• After applying the rule ITE-S, we have the following relation:

δ(Φ ′) = 3 + δ(Φ1) + δ(Φ2)

• The rule SEQ accumulates the effects upon δ(Φ).

170

By summating all the above equations, we have

δ(Φe) = O(N
4)

Notice that the negation elimination can reduce the size of the FOL formula. Therefore,

we have

δ(φ) ⩽ δ(Φe) = O(N
4)

Notably, the estimated upper bounds of maxe in r α(E, e), maxe in r β(E, e), and δ(Φe)

are not tight. For clarify, we only attempt to bound them with the polynomial function

of N. The upper bounds can be further strengthened by the polynomial functions of the

numbers of specific AST nodes.

Lemma 6.6.2 Given a data constraint r, its symbolic representationφ can be constructed in poly-

nomial time to N, where N is the node number of the abstract syntax tree of r.

Proof of Lemma 6.6.2. We examine the time complexity of the rules in Figure 6.5 and

Figure 6.6. The rules ACmp and AE can be applied inO(N2) time, as they have to iterate two

sets pairwise. The other rules are all applied inO(1) time, as they only need to construct a

constant number of FOL formulas. Each of the above rules is applied at mostO(N) times.

Therefore, the symbolic representation can finally be constructed in O(N3).

Proof of Theorem 6.6.1. Now, we present the proof of Theorem 6.6.1 as follows.

• First, we can obtain thatφ1 andφ2 can be constructed in polynomial time toN based

on Lemma 6.6.2.

• Second, the divergence analysis actually traverses the parse trees of φ1 and φ2, of

which the sizes are both polynomial to N, as Lemma 6.6.1 indicates that δ(φ1) and

δ(φ2) are polynomial to N. Thus, the divergence analysis also works in polynomial

time.

• Third, the function SCTree constructs the parse trees inO(δ(φ1)+ δ(φ2)) time, which

is polynomial to N. The AHU algorithm also works in O(M) time, where M is the

node number of the tree. According to Lemma 6.6.1, M is polynomial to N. Thus,

the isomorphism analysis works in polynomial time.

171

Therefore, the steps in Algorithm 7 before line 6 run in polynomial time to N. Q.E.D.

At the end of the section, we want to emphasize the following two points. First, we

omit the discussion of several rules that are not shown in Figure 6.5 and Figure 6.6 when

proving the two lemmas, e.g., the rules of evaluating the boolean expressions with logical

connectives. However, the arguments are similar to the rules that are discussed in the

proofs. Actually, the two lemmas hold for any data constraints in the syntax shown in

Figure 6.4. Second, we do not provide the tight estimation of the complexity. As shown

in the proof of Lemma 6.6.1, the upper bound of δ(Φe) would be quite sophisticated,

involving with the numbers of program constructs in different kinds, if we want to give a

tight bound. In this work, we only tend to show that the steps before the SMT solving can

be achieved in polynomial time, while the SMT solving may consume exponential time

cost theoretically.

Theorem 6.6.2 (Soundness and Completeness) For the syntax in Figure 6.4, the data con-

straints are semantically equivalent if Algorithm 7 returns true and vice versa.

Proof. If two data constraints r1 and r2 are semantically equivalent, the divergence

analysis does not return true, as it can not find an interpretation making their symbolic

representations φ1 and φ2 evaluate to different truth values. Meanwhile, φ1 and φ2 are

essentially the FOL formulas in the fragment of bit-vector theory, floating-point arithmetic

theory, and word equations, which is theoretically decidable. Therefore, the SMT solving

must terminate and return UNSAT, making Algorithm 7 returns true.

If Algorithm 7 returns true, the isomorphism analysis returns true or the SMT solving

returns UNSAT. In the first case, the parse trees of two symbolic representationsφ1 andφ2

are isomorphic, indicating that they must evaluate to the same truth values under a given

interpretation, so the data constraints are semantically equivalent. In the second case,

we have φ1 and φ2 are logically equivalent, implying the data constraint equivalence.

Therefore, EQDAC is sound and complete. Q.E.D.

172

6.7 Implementation

We have implemented EQDAC in Python and deployed it in Ant Group. EQDAC first

generates the AST of a data constraint and then translates it to the symbolic representa-

tion. We leverage the Z3 SMT solver [161] to support the SMT solving in the third stage.

Particularly, we utilize the bit-vector, floating-point arithmetic, and string theory to en-

code variables and literals in the finite-length integer, floating point, and string types,

respectively.

Based on EQDAC, we have further implemented two bots, which are shown in Fig-

ure 6.2, to conduct the equivalence clustering and searching, respectively. In the equiva-

lence clustering, we verify the equivalence of data constraints by invoking EQDAC pair-

wise. Particularly, we cache the symbolic representation of each data constraint to avoid

redundant construction in different invocations. Similarly, we examine the equivalence

of a new data constraint and each existing one sequentially in the equivalence searching,

and also generate the symbolic representation for a data constraint only once.

6.8 Evaluation

To quantify the effectiveness and efficiency, we evaluate EQDAC upon the data con-

straints in a FinTech system by investigating the following research questions:

• RQ1: How many equivalent data constraints are identified?

• RQ2: How efficient is EQDAC in the equivalence clustering and searching?

• RQ3: How important is each of the three stages?

Subjects. We collect 30,801 data constraints from a FinTech system in Ant Group,

which are in the syntax shown in Figure 6.4. Averagely, a data constraint contains 9.4

data constraints and 17.6 lines of code. Despite the moderate average size, we still need

to handle the large set of data constraints efficiently, which is non-trivial yet crucial in

industrial scenarios. Lastly, there are 1,497 data constraints not obeying our syntax, which

are not selected as the subjects. They mainly contain advanced string operations, e.g.,

173

5 10 15 20 25 30 35 40 45

Size of Clusters

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

lo
g
1
0
(c
o
u
n
t
+
1
)

Figure 6.8: The counts and sizes of clusters

substring and replaceAll, and system calls, e.g., getTimeZone. In this work, EQDAC focuses

on the data constraints in our given syntax, covering most of the data constraints (95.4%)

in the FinTech system of Ant Group.

Environment. We conduct all the experiments on a 64-bit machine with 40 Intel(R)

Xeon(R) CPU E5-2698 v4 @ 2.20 GHz and 512 GB of physical memory. We invoke the Z3

SMT solver with its default options. We run the experiments with a time limit of 12 hours

and a memory limit of 16 GB.

Availability. We release the code and sample constraints in GitHub repository [194].

The whole set of data constraints cannot be shared because of confidentiality agreements.

6.8.1 Equivalent Data Constraint Identification

To answer the first question, we evaluate EQDAC upon 30,801 data constraints by verify-

ing the data constraint equivalence pairwise. Specifically, each pair of data constraints is

fed to EQDAC to determine whether they are equivalent.

Result. We find that 11,538 data constraints (37.5%) have one or more equivalent vari-

ants, forming 26,789 equivalent pairs and 3,696 equivalence clusters. Particularly, we can

leave one data constraint in each equivalence cluster and eliminate 7,842 data constraints

without compromising the validity of the data validation. Due to our limited permission,

we sample a subset of the data constraints and measure the CPU time reduction when

174

avoiding checking redundant ones. The result shows that the CPU time reduction ratio

reaches 15.48%. According to the feedback of the experts, any reduction can bring a dras-

tic benefit to the overall system in the long run, as data constraints are frequently checked

online during a long development cycle.

We also count the data constraints in each cluster, in which data constraints are equiv-

alent to each other. Figure 6.8 shows that the size of a cluster ranges from 2 to 48. Specifi-

cally, the number of clusters with a size of 2 is 2,233. For the largest cluster with the size of

48, a violation of any data constraint will generate 48 alerts. Therefore, identifying equiv-

alent data constraints can provide practical guidance in reusing the checking results and

support the redundant alert elimination.

Answer to RQ1: EQDAC identifies 26,789 equivalent pairs from 30,801 data con-
straints, which indicates that 7,842 data constraints can be safely removed.

6.8.2 Performance Evaluation

We investigate the time consumption and memory usage of EQDAC in the equivalence

clustering and searching. The experimental configurations are set up as follows.

• Equivalence clustering: To quantify the cost of clustering different sizes of data con-

straint sets, we construct eight sets of the data constraints, of which the sizes range

from 100 to 30,801, and measure the time and memory usage of the clustering. All

the data constraints are selected randomly.

• Equivalence searching: We select 1,000 data constraints from 30,801 data constraints as

the recently-submitted ones and regard the remaining as the existing ones. Specif-

ically, half of the selected ones are equivalent to at least one data constraint in the

remaining set to quantify the cost of the equivalence searching in the worst case.

Result. As shown by Figure 6.9, EQDAC finishes analyzing 30,801 data constraints in

2.89 hours within 5.01 GB of peak memory. We perform the regression analysis to quan-

tify the scalability, choosing the quadratic and linear functions as the templates of the

175

0 5000 10000 15000 20000 25000 30000

Size

0

2000

4000

6000

8000

10000

T
im

e
(s
e
c
)/
P
e
a
k
M
e
m
o
ry
(M

B
)

y=0.177 x−86.990

R2 = 0.987

y=1.127 * 10−5 x2 − 0.011 x+20.201

R2 = 0.999

time

peak memory

Figure 6.9: Time and memory cost of equivalence clustering

regression analyses for the time and memory cost, respectively, as we construct a sym-

bolic representation for each data constraint only once and invoke the decision procedure

in a pairwise manner. The R-squared values for memory and time are 0.987 and 0.999,

respectively. Also, the coefficients in the quadratic and linear terms are quite small, in-

dicating that the overhead increases gently. In summary, EQDAC supports the scalable

equivalence clustering.

Figure 6.10a shows the cost of the equivalence searching. All the analyses finish in 2.5

seconds within 528 MB of peak memory. Specifically, there is little difference in memory

cost, ranging from 525.85 MB to 527.87 MB, while the time cost has a relatively large vari-

ance. The analyses of several data constraints demand SMT solving, which introduces

more time costs. Typically, most of the cases can be analyzed in 1.5 seconds, and the av-

erage time cost is only 1.22 seconds. Thus, EQDAC supports searching equivalent data

constraints efficiently, which is essential for maintenance.

Answer to RQ2: EQDAC supports the equivalence clustering of 30,801 data con-
straints in 2.89 hours within 6 GB peak memory, and the equivalence searching in
1.22 seconds within 527.1 MB peak memory on average, promoting it to be adopted
in the practical use.

176

Table 6.1: The statistics of the equivalence clustering

Variant Time(h) Mem(GB) #Eq Pair #Redundant

EQDAC-ND OOT 7.27 141 53
EQDAC-NI 4.48 6.80 26,789 7,842
EQDAC-NS 2.13 3.94 25,952 7,296
EQDAC 2.89 5.01 26,789 7,842

526.0 526.5 527.0 527.5 528.0

Peak Memory (MB)

0.75

1.00

1.25

1.50

1.75

2.00

2.25

T
im
e
(S
e
c
)

(a)

566 567 568

Peak Memory (MB)

1

2

3

4

5

6

T
im
e
(S
e
c
)

(b)

526.0 526.5 527.0 527.5 528.0

Peak Memory (MB)

0.6

0.8

1.0

1.2

1.4

T
im
e
(S
e
c
)

(c)

Figure 6.10: Time and memory cost of EQDAC, EQDAC-NI, and EQDAC-NS

6.8.3 Ablation Study

We set three ablations, namely EQDAC-ND, EQDAC-NI, and EQDAC-NS, which skip

the divergence analysis, the isomorphism analysis, and SMT solving, respectively. The

first two ablations are sound and complete, while EQDAC-NS can return unknown due to

its incompleteness

Result. Table 6.1 shows the results of the ablation study in the equivalence cluster-

ing. As we can see, EQDAC-ND does not finish analyzing 30,801 data constraints in

12 hours, and its peak memory reaches nearly 7.27 GB. Specifically, EQDAC-ND only

finishes comparing seven data constraints with the remaining data constraints pairwise,

discovering 141 equivalent pairs and 53 redundant data constraints. EQDAC-NI discov-

ers the same equivalent pairs as EQDAC. However, it has to perform the SMT solving

for all the data constraint pairs of which the equivalence is not refuted by the divergence

analysis, increasing the time cost to 4.48 hours. EQDAC-NS skips the SMT solving and

consumes less time and memory than EQDAC, spending 1.78 and 0.35 hours on the di-

vergence analysis and the isomorphism analysis, respectively. It does not discover 837

177

/* Data contraint 1 */
assert(t.id != t.pid);
assert(ut.oid != ut.iid);
if (t.id == ut.oid){

assert(t.pid == ut.iid);
} else {

assert(t.id == ut.iid);
assert(t.pid == ut.oid);

}

/* Data contraint 2 */
if (t.id == ut.iid){
assert(ut.oid == t.pid);

} else {
assert(t.id == ut.oid);
assert(t.pid == ut.iid);

}
assert(ut.iid != ut.oid);
assert(t.pid != t.id);

Figure 6.11: An example of case study

equivalent pairs, and thus, misses 546 redundant constraints. Particularly, our divergence

analysis identifies 38,964 non-equivalent pairs even if their symbolic representations have

the same sets of data variables, literals, and operators. Thus, the divergence analysis not

only refutes the equivalence soundly but also provides the possibility of refuting more

non-equivalent pairs.

Figure 6.10 shows the cost of the equivalence searching. EQDAC-NI costs more in

each equivalence searching task, as the SMT solver consumes more resources to prove

the equivalence. Specifically, its average time cost is 2.53 seconds, and its peak mem-

ory reaches 566.98 MB. In the worst case, it takes 6.56 seconds to finish the equivalence

searching of a data constraint, degrading its usability in real-world production. EQDAC-

NS consumes less time because it does not invoke SMT solvers in all the cases. However,

it can not identify the equivalent variants for 37 data constraints due to incompleteness.

EQDAC-ND does not finish the equivalence searching of 1,000 data constraints in the

given time budget. It has to invoke the SMT solver to prove the non-equivalence, making

the overall time cost unacceptable.

Case Study. Figure 6.11 shows an equivalent pair discovered via the SMT solving. The

data constraints both examine whether the IDs of the income and expense accounts match

with the ones in the transaction. Unfortunately, we can not deduce the equivalence from

the parse trees of their symbolic representations. Instead, we have to reason multiple

assertions in a relational manner. The two assertions in the sequencing are the premise

of the equivalence of two ites statements. Determining their equivalence is beyond the

ability of the isomorphism analysis.

Answer to RQ3: All the three stages in EQDAC are necessary for making the deci-
sion procedure practical in the real-world scenario.

178

6.8.4 Discussion

In what follows, we demonstrate the discussions on the feedback from the users, threats

to validity, limitations, and future work.

Feedback from the Users. EQDAC has been integrated into the production line of

Ant Group, serving as the core building block of two bots in the CI/CD workflow. To

obtain the feedback of users, we assigned the questionnaires to the developers and the

quality assurance managers in the forum of the company, which received rave reviews

from users. For example, a developer comments the search bot in the forum as follows,

showing his appreciation for the instant response and useful results.

“The search is so smooth! I had been expecting such an assistant for data constraint mainte-
nance. The results are mostly fetched in just one or two seconds, assisting in merging data
constraints.”

Threats to Validity. A threat to validity is whether the way of producing data con-

straints affects the evaluation result of EQDAC. As introduced in Section 6.2.1, ineffective

communication between developers could increase the number of equivalent data con-

straints, as they are unaware of the data constraints submitted by others. For a small Fin-

Tech system with only a few data constraints, the benefit of resolving redundancy could

be less significant. EQDAC mainly targets systems with thousands of data constraints

and shows excellent potential to optimize data validation process.

Limitations and Future Work. First, our syntax excludes several string operations.

Theoretically, solving general string constraints is undecidable [195, 140, 196], while the

first two stages of EQDAC can still work in the presence of advanced string operations.

It would be interesting to reason more string operations even though, according to our

experience, they do not widely exist. Second, EQDAC focuses on equivalence relations

in this work. It is meaningful to examine whether a data constraint subsumes others for

consolidation [197]. Third, data constraints are widely utilized in general data-centric sys-

tems that take databases as their backend storages. They can also be instantiated in SQL

and other domain-specific languages. Hence, it would be promising to extend EQDAC

to support lightweight equivalence checking for the data constraints in other languages,

179

such as SQL queries [75, 198] and data validation scripts.

6.9 Conclusion

We have presented EQDAC, an efficient, sound, and complete decision procedure for ver-

ifying the data constraint equivalence in FinTech systems. It supports two typical clients,

namely equivalence clustering and searching, in the production line of a global FinTech

company. EQDAC scales to a large number of data constraints with high efficiency and

promotes the optimization of data validation in the systems. We believe that the insight

behind EQDAC can further promote equivalence checking in other domains.

180

CHAPTER 7

CONCLUSION AND FUTURE WORKS

7.1 Conclusion

Data-centric systems are crucial for real-world production. As the backbone of industrial

infrastructure, their reliability and performance have a significant impact on the overall

productivity and efficiency of the industrial sector. In this thesis, we thoroughly investi-

gate data-centric systems from three typical perspectives: the application side, the library

side, and the database side. Our works offer a systematic solution that enables us to un-

derstand how developers organize, propagate, manipulate, and validate data in these sys-

tems, ultimately improving their reliability and performance systematically. Our research

fills the gap in existing static analysis techniques and will significantly impact future re-

search on data-centric systems.

Specifically, our first work proposes CRES, a synthesis framework for optimizing data

organization with efficient container types in the application code. CRES leverages in-

sights from container semantic abstraction and complexity abstraction to discover more

efficient container types for the replacement. We state and prove the soundness and com-

plexity of our synthesis algorithm. Our empirical evaluation demonstrates CRES can suc-

cessfully reduce the execution time of application code by 8.1% on average, showing its

value in optimizing the performance of data-centric systems from the application side.

Our second work presents a value-flow analysis framework, ANCHOR, which targets

the container semantic reasoning to understand the data propagation in the application

code. Conducting strong updates on the memory layouts of anchored containers, AN-

CHOR improves the precision of identifying value-flows through containers, which bene-

fits various downstream clients, including thin slicing and value-flow bug detection. Our

evaluation demonstrates that ANCHOR successfully detects 20 null pointer exceptions

with a 9.1% false-positive ratio, showing its great potential to improve system reliability.

181

Our third work, DAINFER, concentrates on the data manipulation conduced by library

APIs and infers the API aliasing specifications from library documentation. Utilizing a

tagging model and a large language model, DAINFER effectively interprets the informal

semantic information in the documentation and efficiently infers the API aliasing speci-

fications with neurosymbolic optimization. The inferred specifications can promote un-

derstanding indirect value flows in the data-centric applications even when the library

implementations are unavailable. Our evaluation offers strong empirical evidence that

DAINFER can achieve the API aliasing specification inference with high precision and re-

call, further offering valuable program facts for bug detection and program optimization.

Finally, our fourth work presents a decision procedure, namely EQDAC, for identi-

fying equivalent data constraints to avoid unnecessary data validation in the database.

EQDAC supports equivalence searching and equivalence clustering efficiently, enabling

developers to resolve equivalent data constraints and improve system performance. It

utilizes the lexical difference and isomorphic structures in the data constraints and in-

vokes an SMT solver to ensure the completeness of the decision procedure for a decidable

fragment. Our experiments over a large dataset from a real-world FinTech system demon-

strate the high efficiency of EQDAC in supporting equivalence clustering and searching.

The elimination of redundant data constraints significantly improve the efficiency of data

validation process, reducing the CPU time by 15.48%, which promote the system perfor-

mance from the database side.

7.2 Future Works

ORM Usage Optimization. As a typical data-centric system, database-backed applica-

tions manipulate the database tables to achieve specific application logic. Developers of-

ten use object-relational mapping (ORM) libraries to establish mappings between records

in tables and objects. The APIs provided by ORM libraries enable developers to con-

struct SQL queries for database table manipulation, such as CRUD operations, which sig-

nificantly simplifies the development of database-backed applications, decoupling SQL

statement construction from application logic implementation. Unfortunately, it is widely

observed that developers can introduce inefficient ORM usage in application code. This is

182

because developers may choose different ORM APIs and compose them together to imple-

ment the same functionality, while those implementations significantly differ in efficiency.

To address the efficiency issue, existing techniques mainly focus on specific patterns of in-

efficient ORM usage. For example, Yang et al. [32] collect a set of anti-patterns from Stack

Overflow and design a series of detectors for each inefficient pattern. Alexi et al. [199] con-

centrate on the N+1 problem and avoid unnecessary database queries. However, previous

efforts do not propose a general and fully automatic solution to discover anti-patterns for

general ORM libraries. In the future, it would be meaningful and promising to explore

this direction and design a general mechanism to optimize the usage of any ORM library.

Blockchain Application Analysis. This thesis focuses on Web2 applications that store

application-specific data in the database on a single server. However, recent years have

witnessed the increasing popularity of Web3 applications, which utilize blockchain tech-

nology for decentralization and privacy. They are built on smart contracts as backends,

which enable data storage in a distributed manner, enhancing security and tamper re-

sistance. Such new computation architecture has led to new types of applications, e.g.,

decentralized finance and non-fungible tokens. Various kinds of bugs, such as reentrancy,

integer overflow/underflow, and logic errors, can have significant security impacts [200],

potentially leading to the loss of assets stored in the contract. In addition, inefficient smart

contract implementation can result in high gas costs [6] and even lead to the gas-out-of-

bound vulnerability [201]. In the future, it is promising to ensure the reliability and per-

formance of blockchain applications with domain-specific static analysis techniques.

Networking Systems Analysis. As critical systems transmitting data, networking sys-

tems have gained many attentions from the system research community, especially when

the network virtualization techniques like NFV [202, 203] have brought interesting ideas

to distributed systems. Nowadays, networks can be programmed just like a software

system [204, 205, 206]. Many research efforts have lied on the performance aspects of

systems [207, 208, 209, 210, 211]. Applying software engineering techniques, such as auto-

mated testing and program analysis, can improve not only the efficiency of a distributed

system’s implementation [212], but also the correctness of such software artifacts. Thus,

we also plan to explore new opportunities in this field.

183

PUBLICATIONS

Thesis related publications

• Chengpeng Wang, Peisen Yao, Wensheng Tang, Qingkai Shi, and Charles Zhang,

Complexity-Guided Container Replacement Synthesis, In OOPSLA 2022 : The ACM

SIGPLAN Conference on Objected Oriented Programming, Systems, Languages and

Applications, Dec, 2022. (SIGPLAN Distinguished Paper Award)

• Chengpeng Wang, Wenyang Wang, Peisen Yao, Qingkai Shi, Jinguo Zhou, Xiao

Xiao, and Charles Zhang, Anchor: Fast and Precise Value-Flow Analysis for Con-

tainers via Memory Orientation, In TOSEM: The ACM Transactions on Software

Engineering and Methodology, Sept, 2022.

• Chengpeng Wang, Gang Fan, Peisen Yao, Fuxiong Pan, and Charles Zhang, Verify-

ing Data Constraint Equivalence in FinTech Systems, In ICSE 2023: The IEEE/ACM

International Conference on Software Engineering, May, 2023.

• Chengpeng Wang, Jipeng Zhang, Rongxin Wu, and Charles Zhang, DAInfer: In-

ferring API Aliasing Specifications from Library Documentation via Neurosymbolic

Optimization, In FSE 2024: The ACM International Conference on the Foundations

of Software Engineering, July, 2024.

Other publications

• Hao Ling, Heqing Huang, Chengpeng Wang, Yuandao Cai, and Charles Zhang,

GiantSan: Efficient Memory Sanitization with Segment Folding, In ASPLOS 2024:

the ACM International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, April, 2024

• Wensheng Tang, Dejun Dong, Shijie Li, Chengpeng Wang∗, Peisen Yao, Jinguo Zhou,

and Charles Zhang, Octopus: Scaling Value-Flow Analysis via Parallel Collection of

Realizable Path Conditions, In TOSEM: The ACM Transactions on Software Engi-

neering and Methodology, Oct, 2023.

184

• Rongxin Wu, Yuxuan He, Jiafeng Huang, Chengpeng Wang∗, Wensheng Tang, Qingkai

Shi, Xiao Xiao, and Charles Zhang, LibAlchemy: A Two-Layer Persistent Summary

Design for Taming Third-Party Libraries in Static Bug-Finding Systems, In ICSE

2024: The IEEE/ACM International Conference on Software Engineering, April,

2024.

• Wensheng Tang†, Chengpeng Wang†, Peisen Yao, Rongxin Wu, Xianjin Fu, Gang

Fan, and Charles Zhang, DCLink: Bridging Data Constraint Changes and Imple-

mentations in FinTech Systems, In ASE 2023: IEEE/ACM International Conference

on Automated Software Engineering, Sept, 2023.

• Chengpeng Wang, Peisen Yao, Wensheng Tang, Gang Fan, and Charles Zhang, Syn-

thesizing Conjunctive Queries for Code Search, In ECOOP 2023: European Confer-

ence on Object-Oriented Programming, July, 2023.

• Zongyin Hao, Quanfeng Huang, Chengpeng Wang, Jianfeng Wang, Yushan Zhang,

Rongxin Wu, and Charles Zhang, Detecting Logical Bugs in Database Management

Systems with Approximate Query Synthesis, In ATC 2023: USENIX Annual Techni-

cal Conference, July, 2023.

• Chengpeng Wang, CodeSpider: Automatic Code Querying with Multi-modal Con-

junctive Query Synthesis, In SPLASH SRC 2022: The ACM SIGPLAN conference

on Systems, Programming, Languages, and Applications: Software for Humanity,

Student Research Competition, Dec, 2022.

• Rongxin Wu, Minglei Chen, Chengpeng Wang∗, Gang Fan, Jiguang Qiu, and Charles

Zhang, Accelerating Build Dependency Error Detection via Virtual Build, In ASE

2022: The IEEE/ACM International Conference on Automated Software Engineer-

ing, Oct, 2022.

• Gang Fan, Chengpeng Wang, Rongxin Wu, Xiao Xiao, Qingkai Shi, and Charles

Zhang, Escaping Dependency Hell: Finding Build Dependency Errors with the Uni-

fied Dependency Graph, In ISSTA 2020: The ACM SIGSOFT International Sympo-

sium on Software Testing and Analysis, July, 2020.

† means equal contribution. ∗ means corresponding author.

185

REFERENCES

[1] Donglin Liang and Mary Jean Harrold. Efficient computation of parameterized

pointer information for interprocedural analyses. In Patrick Cousot, editor, Static

Analysis, 8th International Symposium, SAS 2001, Paris, France, July 16-18, 2001, Pro-

ceedings, volume 2126 of Lecture Notes in Computer Science, pages 279–298. Springer,

2001.

[2] Yulei Sui, Sen Ye, Jingling Xue, and Jie Zhang. Making context-sensitive inclusion-

based pointer analysis practical for compilers using parameterised summarisation.

Softw. Pract. Exp., 44(12):1485–1510, 2014.

[3] Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and Charles Zhang.

Pinpoint: fast and precise sparse value flow analysis for million lines of code. In

Jeffrey S. Foster and Dan Grossman, editors, Proceedings of the 39th ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI 2018, Philadel-

phia, PA, USA, June 18-22, 2018, pages 693–706. ACM, 2018.

[4] Gang Fan, Rongxin Wu, Qingkai Shi, Xiao Xiao, Jinguo Zhou, and Charles Zhang.

Smoke: scalable path-sensitive memory leak detection for millions of lines of code.

In Joanne M. Atlee, Tevfik Bultan, and Jon Whittle, editors, Proceedings of the 41st

International Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada,

May 25-31, 2019, pages 72–82. IEEE / ACM, 2019.

[5] Thomas W. Reps. Program analysis via graph reachability. In Jan Maluszynski, edi-

tor, Logic Programming, Proceedings of the 1997 International Symposium, Port Jefferson,

Long Island, NY, USA, October 13-16, 1997, pages 5–19. MIT Press, 1997.

[6] Yanju Chen, Yuepeng Wang, Maruth Goyal, James Dong, Yu Feng, and Isil Dillig.

Synthesis-powered optimization of smart contracts via data type refactoring. Proc.

ACM Program. Lang., 6(OOPSLA2):560–588, 2022.

[7] Shankara Pailoor, Yuepeng Wang, Xinyu Wang, and Isil Dillig. Synthesizing data

structure refinements from integrity constraints. In Stephen N. Freund and Eran

186

Yahav, editors, PLDI ’21: 42nd ACM SIGPLAN International Conference on Program-

ming Language Design and Implementation, Virtual Event, Canada, June 20-25, 20211,

pages 574–587. ACM, 2021.

[8] Malavika Samak, Deokhwan Kim, and Martin C. Rinard. Synthesizing replacement

classes. Proc. ACM Program. Lang., 4(POPL):52:1–52:33, 2020.

[9] Microsoft. Containers-C++ Reference. https://www.cplusplus.com/

reference/stl/, 2022. [Online; accessed 7-Sept-2022].

[10] Oracle. Collections Framework Overview. https://docs.oracle.com/

javase/8/docs/technotes/guides/collections/overview.html, 2023.

[Online; accessed 1-March-2023].

[11] Apache. Apache Commons Collections. https://commons.apache.org/

proper/commons-collections/, 2023. [Online; accessed 1-March-2023].

[12] Anastasios Antoniadis, Nikos Filippakis, Paddy Krishnan, Raghavendra Ramesh,

Nicholas Allen, and Yannis Smaragdakis. Static analysis of java enterprise applica-

tions: frameworks and caches, the elephants in the room. In Alastair F. Donaldson

and Emina Torlak, editors, Proceedings of the 41st ACM SIGPLAN International Con-

ference on Programming Language Design and Implementation, PLDI 2020, London, UK,

June 15-20, 2020, pages 794–807. ACM, 2020.

[13] Jie Wang, Yunguang Wu, Gang Zhou, Yiming Yu, Zhenyu Guo, and Yingfei Xiong.

Scaling static taint analysis to industrial SOA applications: a case study at alibaba.

In Prem Devanbu, Myra B. Cohen, and Thomas Zimmermann, editors, ESEC/FSE

’20: 28th ACM Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, Virtual Event, USA, November 8-13, 2020, pages

1477–1486. ACM, 2020.

[14] Xiaoxuan Liu, Shuxian Wang, Mengzhu Sun, Sicheng Pan, Ge Li, Siddharth Jha,

Cong Yan, Junwen Yang, Shan Lu, and Alvin Cheung. Leveraging application

data constraints to optimize database-backed web applications. Proc. VLDB Endow.,

16(6):1208–1221, 2023.

187

https://www.cplusplus.com/reference/stl/
https://www.cplusplus.com/reference/stl/
https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html
https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html
https://commons.apache.org/proper/commons-collections/
https://commons.apache.org/proper/commons-collections/

[15] Junwen Yang, Utsav Sethi, Cong Yan, Alvin Cheung, and Shan Lu. Managing data

constraints in database-backed web applications. In Gregg Rothermel and Doo-

Hwan Bae, editors, ICSE ’20: 42nd International Conference on Software Engineering,

Seoul, South Korea, 27 June - 19 July, 2020, pages 1098–1109. ACM, 2020.

[16] Tianxiao Wang, Chen Zhi, Xiaoqun Zhou, Jinjie Wu, Jianwei Yin, and Shuiguang

Deng. Data constraint mining for automatic reconciliation scripts generation. In

René Just and Gordon Fraser, editors, Proceedings of the 32nd ACM SIGSOFT Interna-

tional Symposium on Software Testing and Analysis, ISSTA 2023, Seattle, WA, USA, July

17-21, 2023, pages 1119–1130. ACM, 2023.

[17] Eclipse. Eclipse Collections Main Library. https://mvnrepository.com/

artifact/org.eclipse.collections/eclipse-collections/, 2023.

[Online; accessed 1-March-2023].

[18] Fastutil. Fastutil. https://mvnrepository.com/artifact/it.unimi.dsi/

fastutil, 2023. [Online; accessed 1-March-2023].

[19] Michail Basios, Lingbo Li, Fan Wu, Leslie Kanthan, and Earl T Barr. Darwinian

data structure selection. In Proceedings of the 2018 26th ACM Joint Meeting on Eu-

ropean Software Engineering Conference and Symposium on the Foundations of Software

Engineering, pages 118–128, 2018.

[20] Isil Dillig, Thomas Dillig, and Alex Aiken. Symbolic heap abstraction with demand-

driven axiomatization of memory invariants. In William R. Cook, Siobhán Clarke,

and Martin C. Rinard, editors, Proceedings of the 25th Annual ACM SIGPLAN Confer-

ence on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA

2010, October 17-21, 2010, Reno/Tahoe, Nevada, USA, pages 397–410. ACM, 2010.

[21] Ayse Isil Dillig. Precise and Automatic Verification of Container-Manipulating Programs.

Citeseer, 2011.

[22] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. Active learning of

points-to specifications. In Jeffrey S. Foster and Dan Grossman, editors, Proceedings

of the 39th ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018, pages 678–692. ACM, 2018.

188

https://mvnrepository.com/artifact/org.eclipse.collections/eclipse-collections/
https://mvnrepository.com/artifact/org.eclipse.collections/eclipse-collections/
https://mvnrepository.com/artifact/it.unimi.dsi/fastutil
https://mvnrepository.com/artifact/it.unimi.dsi/fastutil

[23] Jan Eberhardt, Samuel Steffen, Veselin Raychev, and Martin T. Vechev. Unsuper-

vised learning of API alias specifications. In Kathryn S. McKinley and Kathleen

Fisher, editors, Proceedings of the 40th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019,

pages 745–759. ACM, 2019.

[24] Android. Android Platform Documentation. https://developer.android.

com/docs/, 2023. [Online; accessed 1-March-2023].

[25] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,

Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick D. McDaniel. Flowdroid:

precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for an-

droid apps. In Michael F. P. O’Boyle and Keshav Pingali, editors, ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI ’14, Edinburgh,

United Kingdom - June 09 - 11, 2014, pages 259–269. ACM, 2014.

[26] Khushboo Chitre, Piyus Kedia, and Rahul Purandare. The road not taken: explor-

ing alias analysis based optimizations missed by the compiler. Proc. ACM Program.

Lang., 6(OOPSLA2):786–810, 2022.

[27] Chengpeng Wang, Peisen Yao, Wensheng Tang, Qingkai Shi, and Charles Zhang.

Complexity-guided container replacement synthesis. Proc. ACM Program. Lang.,

6(OOPSLA):1–31, 2022.

[28] Chengpeng Wang, Wenyang Wang, Peisen Yao, Qingkai Shi, Jinguo Zhou, Xiao

Xiao, and Charles Zhang. Anchor: Fast and precise value-flow analysis for contain-

ers via memory orientation. ACM Transactions on Software Engineering and Methodol-

ogy, 2022.

[29] Chengpeng Wang, Gang Fan, Peisen Yao, Fuxiong Pan, and Charles Zhang. Verify-

ing data constraint equivalence in fintech systems. In 45th IEEE/ACM International

Conference on Software Engineering, ICSE 2023, Melbourne, Australia, May 14-20, 2023,

pages 1329–1341. IEEE, 2023.

[30] Qingkai Shi, Rongxin Wu, Gang Fan, and Charles Zhang. Conquering the exten-

sional scalability problem for value-flow analysis frameworks. In Gregg Rothermel

189

https://developer.android.com/docs/
https://developer.android.com/docs/

and Doo-Hwan Bae, editors, ICSE ’20: 42nd International Conference on Software En-

gineering, Seoul, South Korea, 27 June - 19 July, 2020, pages 812–823. ACM, 2020.

[31] JavaEE. Java(TM) EE 8 Specification APIs. https://javaee.github.io/

javaee-spec/javadocs/, 2023. [Online; accessed 1-March-2023].

[32] Junwen Yang, Pranav Subramaniam, Shan Lu, Cong Yan, and Alvin Cheung. How

not to structure your database-backed web applications: a study of performance

bugs in the wild. In Michel Chaudron, Ivica Crnkovic, Marsha Chechik, and Mark

Harman, editors, Proceedings of the 40th International Conference on Software Engineer-

ing, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, pages 800–810. ACM,

2018.

[33] Guoqing Xu and Atanas Rountev. Detecting inefficiently-used containers to avoid

bloat. In Benjamin G. Zorn and Alexander Aiken, editors, Proceedings of the 2010

ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI

2010, Toronto, Ontario, Canada, June 5-10, 2010, pages 160–173. ACM, 2010.

[34] Guoqing (Harry) Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, Edith Schon-

berg, and Gary Sevitsky. Finding low-utility data structures. In Benjamin G. Zorn

and Alexander Aiken, editors, Proceedings of the 2010 ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI 2010, Toronto, Ontario,

Canada, June 5-10, 2010, pages 174–186. ACM, 2010.

[35] Juan Manuel Florez, Jonathan Perry, Shiyi Wei, and Andrian Marcus. Retriev-

ing data constraint implementations using fine-grained code patterns. In 44th

IEEE/ACM 44th International Conference on Software Engineering, ICSE 2022, Pitts-

burgh, PA, USA, May 25-27, 2022, pages 1893–1905. ACM, 2022.

[36] Juan Manuel Florez, Laura Moreno, Zenong Zhang, Shiyi Wei, and Andrian Marcus.

An empirical study of data constraint implementations in java. Empir. Softw. Eng.,

27(5):119, 2022.

[37] Haochen Huang, Bingyu Shen, Li Zhong, and Yuanyuan Zhou. Protecting data

integrity of web applications with database constraints inferred from application

code. In Tor M. Aamodt, Natalie D. Enright Jerger, and Michael M. Swift, editors,

190

https://javaee.github.io/javaee-spec/javadocs/
https://javaee.github.io/javaee-spec/javadocs/

Proceedings of the 28th ACM International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, Volume 2, ASPLOS 2023, Vancouver, BC,

Canada, March 25-29, 2023, pages 632–645. ACM, 2023.

[38] Google. A high performance expression evaluator for java. https://code.

google.com/archive/p/aviator/, 2022. [Online; accessed 7-Sept-2022].

[39] Irene Manotas, Lori Pollock, and James Clause. Seeds: A software engineer’s

energy-optimization decision support framework. In Proceedings of the 36th Inter-

national Conference on Software Engineering, pages 503–514, 2014.

[40] Changhee Jung, Silvius Rus, Brian P Railing, Nathan Clark, and Santosh Pande.

Brainy: Effective selection of data structures. ACM SIGPLAN Notices, 46(6):86–97,

2011.

[41] Ohad Shacham, Martin T. Vechev, and Eran Yahav. Chameleon: adaptive selection

of collections. In Michael Hind and Amer Diwan, editors, Proceedings of the 2009

ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI

2009, Dublin, Ireland, June 15-21, 2009, pages 408–418. ACM, 2009.

[42] Wellington Oliveira, Renato Oliveira, Fernando Castor, Benito Fernandes, and Gus-

tavo Pinto. Recommending energy-efficient java collections. In Margaret-Anne D.

Storey, Bram Adams, and Sonia Haiduc, editors, Proceedings of the 16th Interna-

tional Conference on Mining Software Repositories, MSR 2019, 26-27 May 2019, Montreal,

Canada, pages 160–170. IEEE / ACM, 2019.

[43] Wellington Oliveira, Renato Oliveira, Fernando Castor, Gustavo Pinto, and

João Paulo Fernandes. Improving energy-efficiency by recommending java collec-

tions. Empir. Softw. Eng., 26(3):55, 2021.

[44] Calvin Loncaric, Emina Torlak, and Michael D. Ernst. Fast synthesis of fast col-

lections. In Chandra Krintz and Emery Berger, editors, Proceedings of the 37th ACM

SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2016,

Santa Barbara, CA, USA, June 13-17, 2016, pages 355–368. ACM, 2016.

191

https://code.google.com/archive/p/aviator/
https://code.google.com/archive/p/aviator/

[45] Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin C. Rinard, and Mooly Sagiv.

Data representation synthesis. In Mary W. Hall and David A. Padua, editors, Pro-

ceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pages 38–49. ACM,

2011.

[46] Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin C. Rinard, and Mooly Sagiv.

Concurrent data representation synthesis. In Jan Vitek, Haibo Lin, and Frank Tip,

editors, ACM SIGPLAN Conference on Programming Language Design and Implementa-

tion, PLDI ’12, Beijing, China - June 11 - 16, 2012, pages 417–428. ACM, 2012.

[47] Stratos Idreos, Kostas Zoumpatianos, Brian Hentschel, Michael S. Kester, and Demi

Guo. The data calculator: Data structure design and cost synthesis from first prin-

ciples and learned cost models. In Gautam Das, Christopher M. Jermaine, and

Philip A. Bernstein, editors, Proceedings of the 2018 International Conference on Man-

agement of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, pages

535–550. ACM, 2018.

[48] Shmuel Sagiv, Thomas W. Reps, and Susan Horwitz. Precise interprocedural

dataflow analysis with applications to constant propagation. Theor. Comput. Sci.,

167(1&2):131–170, 1996.

[49] Eric Bodden. Inter-procedural data-flow analysis with IFDS/IDE and soot. In Eric

Bodden, Laurie J. Hendren, Patrick Lam, and Elena Sherman, editors, Proceedings of

the ACM SIGPLAN International Workshop on State of the Art in Java Program analysis,

SOAP 2012, Beijing, China, June 14, 2012, pages 3–8. ACM, 2012.

[50] Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. Boomerang:

Demand-driven flow- and context-sensitive pointer analysis for java. In Shriram

Krishnamurthi and Benjamin S. Lerner, editors, 30th European Conference on Object-

Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy, volume 56 of

LIPIcs, pages 22:1–22:26. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

[51] Johannes Späth, Karim Ali, and Eric Bodden. Ideal: efficient and precise alias-aware

dataflow analysis. Proc. ACM Program. Lang., 1(OOPSLA):99:1–99:27, 2017.

192

[52] Vini Kanvar and Uday P. Khedker. Heap abstractions for static analysis. ACM

Comput. Surv., 49(2):29:1–29:47, 2016.

[53] Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodík. Demand-driven

points-to analysis for java. In Ralph E. Johnson and Richard P. Gabriel, editors,

Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications, OOPSLA 2005, October 16-20, 2005, San

Diego, CA, USA, pages 59–76. ACM, 2005.

[54] Yulei Sui and Jingling Xue. SVF: interprocedural static value-flow analysis in LLVM.

In Ayal Zaks and Manuel V. Hermenegildo, editors, Proceedings of the 25th Interna-

tional Conference on Compiler Construction, CC 2016, Barcelona, Spain, March 12-18,

2016, pages 265–266. ACM, 2016.

[55] Pratik Fegade and Christian Wimmer. Scalable pointer analysis of data structures

using semantic models. In Louis-Noël Pouchet and Alexandra Jimborean, editors,

CC ’20: 29th International Conference on Compiler Construction, San Diego, CA, USA,

February 22-23, 2020, pages 39–50. ACM, 2020.

[56] Shmuel Sagiv, Thomas W. Reps, and Reinhard Wilhelm. Parametric shape analysis

via 3-valued logic. ACM Trans. Program. Lang. Syst., 24(3):217–298, 2002.

[57] Bertrand Jeannet, Alexey Loginov, Thomas W. Reps, and Mooly Sagiv. A rela-

tional approach to interprocedural shape analysis. ACM Trans. Program. Lang. Syst.,

32(2):5:1–5:52, 2010.

[58] Arlen Cox, Bor-Yuh Evan Chang, and Xavier Rival. Automatic analysis of open

objects in dynamic language programs. In Markus Müller-Olm and Helmut Seidl,

editors, Static Analysis - 21st International Symposium, SAS 2014, Munich, Germany,

September 11-13, 2014. Proceedings, volume 8723 of Lecture Notes in Computer Science,

pages 134–150. Springer, 2014.

[59] Arlen Cox, Bor-Yuh Evan Chang, and Xavier Rival. Desynchronized multi-state

abstractions for open programs in dynamic languages. In Jan Vitek, editor, Pro-

gramming Languages and Systems - 24th European Symposium on Programming, ESOP

2015, Held as Part of the European Joint Conferences on Theory and Practice of Software,

193

ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, volume 9032 of Lecture Notes

in Computer Science, pages 483–509. Springer, 2015.

[60] Jiangchao Liu, Liqian Chen, and Xavier Rival. Automatic verification of embedded

system code manipulating dynamic structures stored in contiguous regions. IEEE

Trans. Comput. Aided Des. Integr. Circuits Syst., 37(11):2311–2322, 2018.

[61] Patrick Cousot and Radhia Cousot. Systematic design of program analysis frame-

works. In Alfred V. Aho, Stephen N. Zilles, and Barry K. Rosen, editors, Conference

Record of the Sixth Annual ACM Symposium on Principles of Programming Languages,

San Antonio, Texas, USA, January 1979, pages 269–282. ACM Press, 1979.

[62] Isil Dillig, Thomas Dillig, and Alex Aiken. Fluid updates: Beyond strong vs. weak

updates. In Andrew D. Gordon, editor, Programming Languages and Systems, 19th

European Symposium on Programming, ESOP 2010, Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March

20-28, 2010. Proceedings, volume 6012 of Lecture Notes in Computer Science, pages

246–266. Springer, 2010.

[63] Isil Dillig, Thomas Dillig, and Alex Aiken. Precise reasoning for programs using

containers. In Thomas Ball and Mooly Sagiv, editors, Proceedings of the 38th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011,

Austin, TX, USA, January 26-28, 2011, pages 187–200. ACM, 2011.

[64] Victor Chibotaru, Benjamin Bichsel, Veselin Raychev, and Martin T. Vechev. Scal-

able taint specification inference with big code. In Kathryn S. McKinley and Kath-

leen Fisher, editors, Proceedings of the 40th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019,

pages 760–774. ACM, 2019.

[65] Timon Gehr, Dimitar K. Dimitrov, and Martin T. Vechev. Learning commutativity

specifications. In Daniel Kroening and Corina S. Pasareanu, editors, Computer Aided

Verification - 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-

24, 2015, Proceedings, Part I, volume 9206 of Lecture Notes in Computer Science, pages

307–323. Springer, 2015.

194

[66] Atanas Rountev, Mariana Sharp, and Guoqing Xu. IDE dataflow analysis in the

presence of large object-oriented libraries. In Laurie J. Hendren, editor, Compiler

Construction, 17th International Conference, CC 2008, Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March

29 - April 6, 2008. Proceedings, volume 4959 of Lecture Notes in Computer Science, pages

53–68. Springer, 2008.

[67] Steven Arzt and Eric Bodden. Stubdroid: automatic inference of precise data-flow

summaries for the android framework. In Laura K. Dillon, Willem Visser, and Lau-

rie A. Williams, editors, Proceedings of the 38th International Conference on Software

Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016, pages 725–735. ACM,

2016.

[68] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. Com-

positional shape analysis by means of bi-abduction. J. ACM, 58(6):26:1–26:66, 2011.

[69] Bor-Yuh Evan Chang, Cezara Dragoi, Roman Manevich, Noam Rinetzky, and

Xavier Rival. Shape analysis. Found. Trends Program. Lang., 6(1-2):1–158, 2020.

[70] George C. Necula. Translation validation for an optimizing compiler. In Monica S.

Lam, editor, Proceedings of the 2000 ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation (PLDI), Vancouver, Britith Columbia, Canada, June 18-

21, 2000, pages 83–94. ACM, 2000.

[71] Thomas Arthur Leck Sewell, Magnus O. Myreen, and Gerwin Klein. Translation

validation for a verified OS kernel. In Hans-Juergen Boehm and Cormac Flanagan,

editors, ACM SIGPLAN Conference on Programming Language Design and Implementa-

tion, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pages 471–482. ACM, 2013.

[72] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. In

Vivek Sarkar and Rastislav Bodík, editors, Architectural Support for Programming Lan-

guages and Operating Systems, ASPLOS 2013, Houston, TX, USA, March 16-20, 2013,

pages 305–316. ACM, 2013.

[73] Chandrakana Nandi, Max Willsey, Adam Anderson, James R. Wilcox, Eva

Darulova, Dan Grossman, and Zachary Tatlock. Synthesizing structured CAD mod-

195

els with equality saturation and inverse transformations. In Alastair F. Donaldson

and Emina Torlak, editors, Proceedings of the 41st ACM SIGPLAN International Con-

ference on Programming Language Design and Implementation, PLDI 2020, London, UK,

June 15-20, 2020, pages 31–44. ACM, 2020.

[74] Qi Zhou, Joy Arulraj, Shamkant B. Navathe, William Harris, and Jinpeng Wu. SPES:

A two-stage query equivalence verifier. CoRR, abs/2004.00481, 2020.

[75] Qi Zhou, Joy Arulraj, Shamkant B. Navathe, William Harris, and Dong Xu. Auto-

mated verification of query equivalence using satisfiability modulo theories. Proc.

VLDB Endow., 12(11):1276–1288, 2019.

[76] Federico Mora, Yi Li, Julia Rubin, and Marsha Chechik. Client-specific equivalence

checking. In Marianne Huchard, Christian Kästner, and Gordon Fraser, editors,

Proceedings of the 33rd ACM/IEEE International Conference on Automated Software En-

gineering, ASE 2018, Montpellier, France, September 3-7, 2018, pages 441–451. ACM,

2018.

[77] Anna Trostanetski, Orna Grumberg, and Daniel Kroening. Modular demand-

driven analysis of semantic difference for program versions. In International Static

Analysis Symposium, pages 405–427. Springer, 2017.

[78] Hiroshi Unno, Tachio Terauchi, and Eric Koskinen. Constraint-based relational ver-

ification. In International Conference on Computer Aided Verification, pages 742–766.

Springer, 2021.

[79] Marcelo Sousa and Isil Dillig. Cartesian hoare logic for verifying k-safety proper-

ties. In Chandra Krintz and Emery D. Berger, editors, Proceedings of the 37th ACM

SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2016,

Santa Barbara, CA, USA, June 13-17, 2016, pages 57–69. ACM, 2016.

[80] Berkeley R. Churchill, Oded Padon, Rahul Sharma, and Alex Aiken. Semantic pro-

gram alignment for equivalence checking. In Kathryn S. McKinley and Kathleen

Fisher, editors, Proceedings of the 40th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019,

pages 1027–1040. ACM, 2019.

196

[81] Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Tachio Terauchi,

and Shiyi Wei. Decomposition instead of self-composition for proving the absence

of timing channels. In Proceedings of the 38th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, PLDI 2017, page 362–375, New York, NY,

USA, 2017. Association for Computing Machinery.

[82] Suzette Person, Matthew B. Dwyer, Sebastian G. Elbaum, and Corina S. Pasareanu.

Differential symbolic execution. In Mary Jean Harrold and Gail C. Murphy, editors,

Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of Soft-

ware Engineering, 2008, Atlanta, Georgia, USA, November 9-14, 2008, pages 226–237.

ACM, 2008.

[83] Shuvendu K Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique Rebêlo.

Symdiff: A language-agnostic semantic diff tool for imperative programs. In In-

ternational Conference on Computer Aided Verification, pages 712–717. Springer, 2012.

[84] Sahar Badihi, Faridah Akinotcho, Yi Li, and Julia Rubin. Ardiff: scaling program

equivalence checking via iterative abstraction and refinement of common code. In

Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering, pages 13–24, 2020.

[85] Jia Chen, Jiayi Wei, Yu Feng, Osbert Bastani, and Isil Dillig. Relational verification

using reinforcement learning. Proceedings of the ACM on Programming Languages,

3(OOPSLA):1–30, 2019.

[86] Benjamin Goldberg, Lenore D. Zuck, and Clark W. Barrett. Into the loops: Practi-

cal issues in translation validation for optimizing compilers. Electron. Notes Theor.

Comput. Sci., 132(1):53–71, 2005.

[87] Shumo Chu, Konstantin Weitz, Alvin Cheung, and Dan Suciu. Hottsql: prov-

ing query rewrites with univalent SQL semantics. In Albert Cohen and Martin T.

Vechev, editors, Proceedings of the 38th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017,

pages 510–524. ACM, 2017.

197

[88] Shumo Chu, Brendan Murphy, Jared Roesch, Alvin Cheung, and Dan Suciu. Ax-

iomatic foundations and algorithms for deciding semantic equivalences of SQL

queries. Proc. VLDB Endow., 11(11):1482–1495, 2018.

[89] Chandrakana Nandi, Max Willsey, Amy Zhu, Yisu Remy Wang, Brett Saiki, Adam

Anderson, Adriana Schulz, Dan Grossman, and Zachary Tatlock. Rewrite rule infer-

ence using equality saturation. Proc. ACM Program. Lang., 5(OOPSLA):1–28, 2021.

[90] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock,

and Pavel Panchekha. egg: Fast and extensible equality saturation. Proc. ACM

Program. Lang., 5(POPL):1–29, 2021.

[91] Simon Guilloud and Viktor Kuncak. Equivalence checking for orthocomplemented

bisemilattices in log-linear time. In Dana Fisman and Grigore Rosu, editors, Tools

and Algorithms for the Construction and Analysis of Systems - 28th International Confer-

ence, TACAS 2022, Held as Part of the European Joint Conferences on Theory and Practice

of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part II, vol-

ume 13244 of Lecture Notes in Computer Science, pages 196–214. Springer, 2022.

[92] Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-query containment and con-

straint satisfaction. In Alberto O. Mendelzon and Jan Paredaens, editors, Proceed-

ings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems, June 1-3, 1998, Seattle, Washington, USA, pages 205–213. ACM

Press, 1998.

[93] Shumo Chu, Daniel Li, Chenglong Wang, Alvin Cheung, and Dan Suciu. Demon-

stration of the cosette automated SQL prover. In Semih Salihoglu, Wenchao Zhou,

Rada Chirkova, Jun Yang, and Dan Suciu, editors, Proceedings of the 2017 ACM In-

ternational Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL,

USA, May 14-19, 2017, pages 1591–1594. ACM, 2017.

[94] Chenglong Wang, Alvin Cheung, and Rastislav Bodík. Speeding up symbolic rea-

soning for relational queries. Proc. ACM Program. Lang., 2(OOPSLA):157:1–157:25,

2018.

198

[95] Qi Zhou, Joy Arulraj, Shamkant Navathe, William Harris, and Jinpeng Wu. A sym-

bolic approach to proving query equivalence under bag semantics. arXiv preprint

arXiv:2004.00481, 2020.

[96] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data ex-

change: Semantics and query answering. In Diego Calvanese, Maurizio Lenzerini,

and Rajeev Motwani, editors, Database Theory - ICDT 2003, 9th International Con-

ference, Siena, Italy, January 8-10, 2003, Proceedings, volume 2572 of Lecture Notes in

Computer Science, pages 207–224. Springer, 2003.

[97] Qi Zhou, Joy Arulraj, Shamkant B. Navathe, William Harris, and Jinpeng Wu. SIA:

optimizing queries using learned predicates. In Guoliang Li, Zhanhuai Li, Stratos

Idreos, and Divesh Srivastava, editors, SIGMOD ’21: International Conference on

Management of Data, Virtual Event, China, June 20-25, 2021, pages 2169–2181. ACM,

2021.

[98] Samir Hasan, Zachary King, Munawar Hafiz, Mohammed Sayagh, Bram Adams,

and Abram Hindle. Energy profiles of java collections classes. In Laura K. Dillon,

Willem Visser, and Laurie A. Williams, editors, Proceedings of the 38th International

Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016,

pages 225–236. ACM, 2016.

[99] Rocco De Nicola. Behavioral equivalences. In David A. Padua, editor, Encyclopedia

of Parallel Computing, pages 120–127. Springer, 2011.

[100] Sumit Gulwani, Krishna K. Mehra, and Trishul M. Chilimbi. SPEED: precise and ef-

ficient static estimation of program computational complexity. In Zhong Shao and

Benjamin C. Pierce, editors, Proceedings of the 36th ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages, POPL 2009, Savannah, GA, USA, January

21-23, 2009, pages 127–139. ACM, 2009.

[101] Sumit Gulwani, Sagar Jain, and Eric Koskinen. Control-flow refinement and

progress invariants for bound analysis. In Michael Hind and Amer Diwan, edi-

tors, Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language De-

sign and Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009, pages 375–385.

199

ACM, 2009.

[102] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan

Thesing, David B. Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heck-

mann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter P. Puschner, Jan Staschulat,

and Per Stenström. The worst-case execution-time problem - overview of methods

and survey of tools. ACM Trans. Embed. Comput. Syst., 7(3):36:1–36:53, 2008.

[103] Oliver Kennedy and Lukasz Ziarek. Just-in-time data structures. In Seventh Bien-

nial Conference on Innovative Data Systems Research, CIDR 2015, Asilomar, CA, USA,

January 4-7, 2015, Online Proceedings. www.cidrdb.org, 2015.

[104] Guoqing Xu. Coco: Sound and adaptive replacement of java collections. In

Giuseppe Castagna, editor, ECOOP 2013 - Object-Oriented Programming - 27th Euro-

pean Conference, Montpellier, France, July 1-5, 2013. Proceedings, volume 7920 of Lecture

Notes in Computer Science, pages 1–26. Springer, 2013.

[105] Cres. Report of container replacement synthesis, 2021.

[106] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. Synthe-

sis of loop-free programs. In Mary W. Hall and David A. Padua, editors, Proceedings

of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pages 62–73. ACM, 2011.

[107] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodík. Sketching

concurrent data structures. In Rajiv Gupta and Saman P. Amarasinghe, editors,

Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language Design

and Implementation, Tucson, AZ, USA, June 7-13, 2008, pages 136–148. ACM, 2008.

[108] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund

Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Tor-

lak, and Abhishek Udupa. Syntax-guided synthesis. In Formal Methods in Computer-

Aided Design, FMCAD 2013, Portland, OR, USA, October 20-23, 2013, pages 1–8. IEEE,

2013.

200

[109] Xiaofei Xie, Bihuan Chen, Yang Liu, Wei Le, and Xiaohong Li. Proteus: comput-

ing disjunctive loop summary via path dependency analysis. In Thomas Zimmer-

mann, Jane Cleland-Huang, and Zhendong Su, editors, Proceedings of the 24th ACM

SIGSOFT International Symposium on Foundations of Software Engineering, FSE 2016,

Seattle, WA, USA, November 13-18, 2016, pages 61–72. ACM, 2016.

[110] Akhilesh Srikanth, Burak Sahin, and William R. Harris. Complexity verification us-

ing guided theorem enumeration. In Giuseppe Castagna and Andrew D. Gordon,

editors, Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Program-

ming Languages, POPL 2017, Paris, France, January 18-20, 2017, pages 639–652. ACM,

2017.

[111] Tomás Fiedor, Lukás Holík, Adam Rogalewicz, Moritz Sinn, Tomás Vojnar, and Flo-

rian Zuleger. From shapes to amortized complexity. In Isil Dillig and Jens Pals-

berg, editors, Verification, Model Checking, and Abstract Interpretation - 19th Interna-

tional Conference, VMCAI 2018, Los Angeles, CA, USA, January 7-9, 2018, Proceedings,

volume 10747 of Lecture Notes in Computer Science, pages 205–225. Springer, 2018.

[112] Tianhan Lu, Bor-Yuh Evan Chang, and Ashutosh Trivedi. Selectively-amortized

resource bounding. In Cezara Dragoi, Suvam Mukherjee, and Kedar S. Namjoshi,

editors, Static Analysis - 28th International Symposium, SAS 2021, Chicago, IL, USA,

October 17-19, 2021, Proceedings, volume 12913 of Lecture Notes in Computer Science,

pages 286–307. Springer, 2021.

[113] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. Optimizing

database-backed applications with query synthesis. In Hans-Juergen Boehm and

Cormac Flanagan, editors, ACM SIGPLAN Conference on Programming Language De-

sign and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pages 3–14.

ACM, 2013.

[114] Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig. Sqlizer: query

synthesis from natural language. Proc. ACM Program. Lang., 1(OOPSLA):63:1–63:26,

2017.

[115] Qingkai Shi, Peisen Yao, Rongxin Wu, and Charles Zhang. Path-sensitive sparse

201

analysis without path conditions. In Stephen N. Freund and Eran Yahav, editors,

PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming Language De-

sign and Implementation, Virtual Event, Canada, June 20-25, 2021, pages 930–943. ACM,

2021.

[116] Chris Lattner and Vikram S. Adve. LLVM: A compilation framework for lifelong

program analysis & transformation. In 2nd IEEE / ACM International Symposium on

Code Generation and Optimization (CGO 2004), 20-24 March 2004, San Jose, CA, USA,

pages 75–88. IEEE Computer Society, 2004.

[117] Qirun Zhang, Michael R. Lyu, Hao Yuan, and Zhendong Su. Fast algorithms for

dyck-cfl-reachability with applications to alias analysis. In Hans-Juergen Boehm

and Cormac Flanagan, editors, ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pages 435–

446. ACM, 2013.

[118] Lian Li, Cristina Cifuentes, and Nathan Keynes. Boosting the performance of flow-

sensitive points-to analysis using value flow. In Tibor Gyimóthy and Andreas

Zeller, editors, SIGSOFT/FSE’11 19th ACM SIGSOFT Symposium on the Foundations of

Software Engineering (FSE-19) and ESEC’11: 13th European Software Engineering Con-

ference (ESEC-13), Szeged, Hungary, September 5-9, 2011, pages 343–353. ACM, 2011.

[119] Michael P Fay and Michael A Proschan. Wilcoxon-mann-whitney or t-test? on as-

sumptions for hypothesis tests and multiple interpretations of decision rules. Statis-

tics surveys, 4:1, 2010.

[120] Andrea Arcuri and Lionel C. Briand. A practical guide for using statistical tests

to assess randomized algorithms in software engineering. In Richard N. Taylor,

Harald C. Gall, and Nenad Medvidovic, editors, Proceedings of the 33rd International

Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28,

2011, pages 1–10. ACM, 2011.

[121] Rashmi Mudduluru and Murali Krishna Ramanathan. Efficient flow profiling for

detecting performance bugs. In Andreas Zeller and Abhik Roychoudhury, editors,

202

Proceedings of the 25th International Symposium on Software Testing and Analysis, ISSTA

2016, Saarbrücken, Germany, July 18-20, 2016, pages 413–424. ACM, 2016.

[122] Björn Franke, Zhibo Li, John Magnus Morton, and Michel Steuwer. Collection skele-

tons: Declarative abstractions for data collections. In Bernd Fischer, Lola Burgueño,

and Walter Cazzola, editors, Proceedings of the 15th ACM SIGPLAN International Con-

ference on Software Language Engineering, SLE 2022, Auckland, New Zealand, December

6-7, 2022, pages 189–201. ACM, 2022.

[123] Manu Sridharan, Stephen J. Fink, and Rastislav Bodík. Thin slicing. In Jeanne

Ferrante and Kathryn S. McKinley, editors, Proceedings of the ACM SIGPLAN 2007

Conference on Programming Language Design and Implementation, San Diego, California,

USA, June 10-13, 2007, pages 112–122. ACM, 2007.

[124] Susan Horwitz, Thomas W. Reps, and David W. Binkley. Interprocedural slicing

using dependence graphs. ACM Trans. Program. Lang. Syst., 12(1):26–60, 1990.

[125] Roman Manevich, Manu Sridharan, Stephen Adams, Manuvir Das, and Zhe Yang.

PSE: explaining program failures via postmortem static analysis. In Richard N. Tay-

lor and Matthew B. Dwyer, editors, Proceedings of the 12th ACM SIGSOFT Interna-

tional Symposium on Foundations of Software Engineering, 2004, Newport Beach, CA,

USA, October 31 - November 6, 2004, pages 63–72. ACM, 2004.

[126] V. Benjamin Livshits and Monica S. Lam. Finding security vulnerabilities in java ap-

plications with static analysis. In Patrick D. McDaniel, editor, Proceedings of the 14th

USENIX Security Symposium, Baltimore, MD, USA, July 31 - August 5, 2005. USENIX

Association, 2005.

[127] Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri Weisman.

TAJ: effective taint analysis of web applications. In Michael Hind and Amer Diwan,

editors, Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009, pages 87–97.

ACM, 2009.

[128] Sam Blackshear, Bor-Yuh Evan Chang, and Manu Sridharan. Thresher: precise refu-

tations for heap reachability. In Hans-Juergen Boehm and Cormac Flanagan, edi-

203

tors, ACM SIGPLAN Conference on Programming Language Design and Implementation,

PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pages 275–286. ACM, 2013.

[129] Zhiqiang Zuo, John Thorpe, Yifei Wang, Qiuhong Pan, Shenming Lu, Kai Wang,

Guoqing Harry Xu, Linzhang Wang, and Xuandong Li. Grapple: A graph sys-

tem for static finite-state property checking of large-scale systems code. In George

Candea, Robbert van Renesse, and Christof Fetzer, editors, Proceedings of the Four-

teenth EuroSys Conference 2019, Dresden, Germany, March 25-28, 2019, pages 38:1–

38:17. ACM, 2019.

[130] Zhiqiang Zuo, Yiyu Zhang, Qiuhong Pan, Shenming Lu, Yue Li, Linzhang Wang,

Xuandong Li, and Guoqing Harry Xu. Chianina: an evolving graph system for

flow- and context-sensitive analyses of million lines of C code. In Stephen N. Freund

and Eran Yahav, editors, PLDI ’21: 42nd ACM SIGPLAN International Conference on

Programming Language Design and Implementation, Virtual Event, Canada, June 20-25,

20211, pages 914–929. ACM, 2021.

[131] Mark Marron, Cesar Sanchez, and Zhendong Su. High-level heap abstractions for

debugging programs, 2010.

[132] Hiralal Agrawal. Towards automatic debugging of computer programs. PhD thesis, Pur-

due University, 1991.

[133] Yu Feng, Xinyu Wang, Isil Dillig, and Thomas Dillig. Bottom-up context-sensitive

pointer analysis for java. In Xinyu Feng and Sungwoo Park, editors, Programming

Languages and Systems - 13th Asian Symposium, APLAS 2015, Pohang, South Korea,

November 30 - December 2, 2015, Proceedings, volume 9458 of Lecture Notes in Computer

Science, pages 465–484. Springer, 2015.

[134] Minseok Jeon, Sehun Jeong, and Hakjoo Oh. Precise and scalable points-to analysis

via data-driven context tunneling. Proc. ACM Program. Lang., 2(OOPSLA):140:1–

140:29, 2018.

[135] Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. A principled approach

to selective context sensitivity for pointer analysis. ACM Trans. Program. Lang. Syst.,

42(2):10:1–10:40, 2020.

204

[136] Bertrand Jeannet and Antoine Miné. Apron: A library of numerical abstract do-

mains for static analysis. In Ahmed Bouajjani and Oded Maler, editors, Computer

Aided Verification, 21st International Conference, CAV 2009, Grenoble, France, June 26

- July 2, 2009. Proceedings, volume 5643 of Lecture Notes in Computer Science, pages

661–667. Springer, 2009.

[137] Bill McCloskey, Thomas W. Reps, and Mooly Sagiv. Statically inferring complex

heap, array, and numeric invariants. In Radhia Cousot and Matthieu Martel, ed-

itors, Static Analysis - 17th International Symposium, SAS 2010, Perpignan, France,

September 14-16, 2010. Proceedings, volume 6337 of Lecture Notes in Computer Science,

pages 71–99. Springer, 2010.

[138] Jiangchao Liu and Xavier Rival. Abstraction of optional numerical values. In Xinyu

Feng and Sungwoo Park, editors, Programming Languages and Systems - 13th Asian

Symposium, APLAS 2015, Pohang, South Korea, November 30 - December 2, 2015, Pro-

ceedings, volume 9458 of Lecture Notes in Computer Science, pages 146–166. Springer,

2015.

[139] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Precise anal-

ysis of string expressions. In Radhia Cousot, editor, Static Analysis, 10th International

Symposium, SAS 2003, San Diego, CA, USA, June 11-13, 2003, Proceedings, volume

2694 of Lecture Notes in Computer Science, pages 1–18. Springer, 2003.

[140] Adam Kiezun, Vijay Ganesh, Shay Artzi, Philip J. Guo, Pieter Hooimeijer, and

Michael D. Ernst. HAMPI: A solver for word equations over strings, regular ex-

pressions, and context-free grammars. ACM Trans. Softw. Eng. Methodol., 21(4):25:1–

25:28, 2012.

[141] Pieter Hooimeijer and Margus Veanes. An evaluation of automata algorithms for

string analysis. In Ranjit Jhala and David A. Schmidt, editors, Verification, Model

Checking, and Abstract Interpretation - 12th International Conference, VMCAI 2011,

Austin, TX, USA, January 23-25, 2011. Proceedings, volume 6538 of Lecture Notes in

Computer Science, pages 248–262. Springer, 2011.

[142] Xiaofei Xie, Yang Liu, Wei Le, Xiaohong Li, and Hongxu Chen. S-looper: automatic

205

summarization for multipath string loops. In Michal Young and Tao Xie, editors,

Proceedings of the 2015 International Symposium on Software Testing and Analysis, ISSTA

2015, Baltimore, MD, USA, July 12-17, 2015, pages 188–198. ACM, 2015.

[143] Henry Gordon Rice. Classes of recursively enumerable sets and their decision prob-

lems. Transactions of the American Mathematical Society, 74(2):358–366, 1953.

[144] David L. Heine and Monica S. Lam. Static detection of leaks in polymorphic con-

tainers. In Leon J. Osterweil, H. Dieter Rombach, and Mary Lou Soffa, editors, 28th

International Conference on Software Engineering (ICSE 2006), Shanghai, China, May 20-

28, 2006, pages 252–261. ACM, 2006.

[145] Huisong Li, Francois Berenger, Bor-Yuh Evan Chang, and Xavier Rival. Semantic-

directed clumping of disjunctive abstract states. In Giuseppe Castagna and An-

drew D. Gordon, editors, Proceedings of the 44th ACM SIGPLAN Symposium on Prin-

ciples of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017, pages

32–45. ACM, 2017.

[146] Isil Dillig, Thomas Dillig, and Alex Aiken. Cuts from proofs: A complete and prac-

tical technique for solving linear inequalities over integers. In Ahmed Bouajjani and

Oded Maler, editors, Computer Aided Verification, 21st International Conference, CAV

2009, Grenoble, France, June 26 - July 2, 2009. Proceedings, volume 5643 of Lecture Notes

in Computer Science, pages 233–247. Springer, 2009.

[147] OWASP. Open Web Application Security Project. http://www.owasp.org/,

2023. [Online; accessed 1-March-2023].

[148] Anchor. Bug reports of Anchor. https://containeranalyzer.github.io/,

2023. [Online; accessed 1-March-2023].

[149] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth

Zadeck. Efficiently computing static single assignment form and the control depen-

dence graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, 1991.

[150] Timotej Kapus, Oren Ish-Shalom, Shachar Itzhaky, Noam Rinetzky, and Cristian

Cadar. Computing summaries of string loops in C for better testing and refactoring.

206

http://www.owasp.org/
https://containeranalyzer.github.io/

In Kathryn S. McKinley and Kathleen Fisher, editors, Proceedings of the 40th ACM

SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2019,

Phoenix, AZ, USA, June 22-26, 2019, pages 874–888. ACM, 2019.

[151] Sumit Gulwani, Tal Lev-Ami, and Mooly Sagiv. A combination framework for

tracking partition sizes. In Zhong Shao and Benjamin C. Pierce, editors, Proceed-

ings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, POPL 2009, Savannah, GA, USA, January 21-23, 2009, pages 239–251. ACM,

2009.

[152] Sumit Gulwani and Ashish Tiwari. Combining abstract interpreters. ACM SIG-

PLAN Notices, 41(6):376–386, 2006.

[153] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model

for static analysis of programs by construction or approximation of fixpoints. In

Robert M. Graham, Michael A. Harrison, and Ravi Sethi, editors, Conference Record

of the Fourth ACM Symposium on Principles of Programming Languages, Los Angeles,

California, USA, January 1977, pages 238–252. ACM, 1977.

[154] Peisen Yao, Jinguo Zhou, Xiao Xiao, Qingkai Shi, Rongxin Wu, and Charles Zhang.

Efficient path-sensitive data-dependence analysis. arXiv preprint arXiv:2109.07923,

2021.

[155] Thomas W. Reps. Program analysis via graph reachability. In Jan Maluszynski, edi-

tor, Logic Programming, Proceedings of the 1997 International Symposium, Port Jefferson,

Long Island, NY, USA, October 13-16, 1997, pages 5–19. MIT Press, 1997.

[156] Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay. Ef-

fective typestate verification in the presence of alias. In Lori L. Pollock and Mauro

Pezzè, editors, Proceedings of the ACM/SIGSOFT International Symposium on Software

Testing and Analysis, ISSTA 2006, Portland, Maine, USA, July 17-20, 2006, pages 133–

144. ACM, 2006.

[157] Sigmund Cherem, Lonnie Princehouse, and Radu Rugina. Practical memory leak

detection using guarded value-flow analysis. In Jeanne Ferrante and Kathryn S.

McKinley, editors, Proceedings of the ACM SIGPLAN 2007 Conference on Programming

207

Language Design and Implementation, San Diego, California, USA, June 10-13, 2007,

pages 480–491. ACM, 2007.

[158] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. Apposcopy: semantics-

based detection of android malware through static analysis. In Shing-Chi Cheung,

Alessandro Orso, and Margaret-Anne D. Storey, editors, Proceedings of the 22nd ACM

SIGSOFT International Symposium on Foundations of Software Engineering, (FSE-22),

Hong Kong, China, November 16 - 22, 2014, pages 576–587. ACM, 2014.

[159] Ondrej Lhoták and Laurie J. Hendren. Evaluating the benefits of context-sensitive

points-to analysis using a bdd-based implementation. ACM Trans. Softw. Eng.

Methodol., 18(1):3:1–3:53, 2008.

[160] Yannis Smaragdakis, George Kastrinis, and George Balatsouras. Introspective anal-

ysis: context-sensitivity, across the board. In Michael F. P. O’Boyle and Keshav Pin-

gali, editors, ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014, pages 485–495.

ACM, 2014.

[161] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver.

In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Con-

struction and Analysis of Systems, 14th International Conference, TACAS 2008, Held as

Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008,

Budapest, Hungary, March 29-April 6, 2008. Proceedings, volume 4963 of Lecture Notes

in Computer Science, pages 337–340. Springer, 2008.

[162] Rong Gu, Zhiqiang Zuo, Xi Jiang, Han Yin, Zhaokang Wang, Linzhang Wang, Xuan-

dong Li, and Yihua Huang. Towards efficient large-scale interprocedural program

static analysis on distributed data-parallel computation. IEEE Trans. Parallel Dis-

tributed Syst., 32(4):867–883, 2021.

[163] Yichen Xie and Alexander Aiken. Scalable error detection using boolean satisfi-

ability. In Jens Palsberg and Martín Abadi, editors, Proceedings of the 32nd ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2005,

Long Beach, California, USA, January 12-14, 2005, pages 351–363. ACM, 2005.

208

[164] Yue Li, Tian Tan, Yifei Zhang, and Jingling Xue. Program tailoring: Slicing by

sequential criteria. In Shriram Krishnamurthi and Benjamin S. Lerner, editors,

30th European Conference on Object-Oriented Programming, ECOOP 2016, July 18-22,

2016, Rome, Italy, volume 56 of LIPIcs, pages 15:1–15:27. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2016.

[165] Facebook. Infer Static Analyzer. https://fbinfer.com/, 2022. [Online; ac-

cessed 7-Sept-2022].

[166] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn.

Scaling static analyses at facebook. Commun. ACM, 62(8):62–70, 2019.

[167] David A. Tomassi and Cindy Rubio-González. On the real-world effectiveness of

static bug detectors at finding null pointer exceptions. In 36th IEEE/ACM Interna-

tional Conference on Automated Software Engineering, ASE 2021, Melbourne, Australia,

November 15-19, 2021, pages 292–303. IEEE, 2021.

[168] David Mitchel Perry, Andrea Mattavelli, Xiangyu Zhang, and Cristian Cadar. Ac-

celerating array constraints in symbolic execution. In Tevfik Bultan and Koushik

Sen, editors, Proceedings of the 26th ACM SIGSOFT International Symposium on Soft-

ware Testing and Analysis, Santa Barbara, CA, USA, July 10 - 14, 2017, pages 68–78.

ACM, 2017.

[169] Trove. High Speed Object and Primitive Collections for Java. http://trove.

starlight-systems.com/, 2023. [Online; accessed 1-March-2023].

[170] Guava. Google Core Libraries for Java. https://github.com/google/guava,

2023. [Online; accessed 1-March-2023].

[171] John Toman and Dan Grossman. Taming the static analysis beast. In Benjamin S.

Lerner, Rastislav Bodík, and Shriram Krishnamurthi, editors, 2nd Summit on Ad-

vances in Programming Languages, SNAPL 2017, May 7-10, 2017, Asilomar, CA, USA,

volume 71 of LIPIcs, pages 18:1–18:14. Schloss Dagstuhl - Leibniz-Zentrum für In-

formatik, 2017.

[172] Ying Wang, Ming Wen, Zhenwei Liu, Rongxin Wu, Rui Wang, Bo Yang, Hai Yu,

Zhiliang Zhu, and Shing-Chi Cheung. Do the dependency conflicts in my project

209

https://fbinfer.com/
http://trove.starlight-systems.com/
http://trove.starlight-systems.com/
https://github.com/google/guava

matter? In Gary T. Leavens, Alessandro Garcia, and Corina S. Pasareanu, editors,

Proceedings of the 2018 ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018,

Lake Buena Vista, FL, USA, November 04-09, 2018, pages 319–330. ACM, 2018.

[173] Simon Butler, Michel Wermelinger, and Yijun Yu. A survey of the forms of java

reference names. In Andrea De Lucia, Christian Bird, and Rocco Oliveto, editors,

Proceedings of the 2015 IEEE 23rd International Conference on Program Comprehension,

ICPC 2015, Florence/Firenze, Italy, May 16-24, 2015, pages 196–206. IEEE Computer

Society, 2015.

[174] W Nelson Francis and Henry Kucera. Computational analysis of present-day amer-

ican english. Providence, RI: Brown University Press. Kuperman, V., Estes, Z., Brysbaert,

M., & Warriner, AB (2014). Emotion and language: Valence and arousal affect word recog-

nition. Journal of Experimental Psychology: General, 143:1065–1081, 1967.

[175] OpenAI. Introducing chatgpt. 2022.

[176] OpenAI. Gpt-4 technical report, 2023.

[177] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-

fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,

Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon

Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-

pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,

Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,

and Dario Amodei. Language models are few-shot learners. In Hugo Larochelle,

Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, ed-

itors, Advances in Neural Information Processing Systems 33: Annual Conference on Neu-

ral Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,

2020.

[178] Nikolaj S. Bjørner, Anh-Dung Phan, and Lars Fleckenstein. νz - an optimizing SMT

solver. In Christel Baier and Cesare Tinelli, editors, Tools and Algorithms for the Con-

struction and Analysis of Systems - 21st International Conference, TACAS 2015, Held as

210

Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015,

London, UK, April 11-18, 2015. Proceedings, volume 9035 of Lecture Notes in Computer

Science, pages 194–199. Springer, 2015.

[179] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. A machine-learning approach

for classifying and categorizing android sources and sinks. In 21st Annual Network

and Distributed System Security Symposium, NDSS 2014, San Diego, California, USA,

February 23-26, 2014. The Internet Society, 2014.

[180] Yunlong Lyu, Yi Fang, Yiwei Zhang, Qibin Sun, Siqi Ma, Elisa Bertino, Kangjie Lu,

and Juanru Li. Goshawk: Hunting memory corruptions via structure-aware and

object-centric memory operation synopsis. In 43rd IEEE Symposium on Security and

Privacy, SP 2022, San Francisco, CA, USA, May 22-26, 2022, pages 2096–2113. IEEE,

2022.

[181] NLTK. Natural Language Toolkit. https://www.nltk.org/index.html, 2023.

[Online; accessed 7-Sep-2023].

[182] OpenAI. GPT-3.5. https://platform.openai.com/docs/models/

gpt-3-5, 2023. [Online; accessed 7-Sep-2023].

[183] DAInfer. Source code and Data of DAInfer. https://github.com/DAInfer/

DAInferTool, 2023. [Online; accessed 13-Sept-2023].

[184] ATLAS. Soure code of ATLAS. https://github.com/obastani/atlas, 2023.

[Online; accessed 13-Sept-2023].

[185] F-Droid. F-Droid. https://f-droid.org/, 2023. [Online; accessed 1-Sept-

2023].

[186] Feifei Li. Cloud native database systems at alibaba: Opportunities and challenges.

Proc. VLDB Endow., 12(12):2263–2272, 2019.

[187] Neil Ernst, Rick Kazman, and Julien Delange. Technical Debt in Practice: How to Find

It and Fix It. MIT Press, 2021.

211

https://www.nltk.org/index.html
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://github.com/DAInfer/DAInferTool
https://github.com/DAInfer/DAInferTool
https://github.com/obastani/atlas
https://f-droid.org/

[188] Andrés Letelier, Jorge Pérez, Reinhard Pichler, and Sebastian Skritek. Static analysis

and optimization of semantic web queries. ACM Trans. Database Syst., 38(4):25:1–

25:45, 2013.

[189] Sahar Badihi, Faridah Akinotcho, Yi Li, and Julia Rubin. Ardiff: scaling program

equivalence checking via iterative abstraction and refinement of common code. In

Prem Devanbu, Myra B. Cohen, and Thomas Zimmermann, editors, ESEC/FSE ’20:

28th ACM Joint European Software Engineering Conference and Symposium on the Foun-

dations of Software Engineering, Virtual Event, USA, November 8-13, 2020, pages 13–24.

ACM, 2020.

[190] Malik Bouchet, Byron Cook, Bryant Cutler, Anna Druzkina, Andrew Gacek,

Liana Hadarean, Ranjit Jhala, Brad Marshall, Daniel Peebles, Neha Rungta, Cole

Schlesinger, Chriss Stephens, Carsten Varming, and Andy Warfield. Block public

access: trust safety verification of access control policies. In Prem Devanbu, Myra B.

Cohen, and Thomas Zimmermann, editors, ESEC/FSE ’20: 28th ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Software Engi-

neering, Virtual Event, USA, November 8-13, 2020, pages 281–291. ACM, 2020.

[191] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of

Computer Algorithms. Addison-Wesley, 1974.

[192] Fiorella Zampetti, Salvatore Geremia, Gabriele Bavota, and Massimiliano Di Penta.

CI/CD pipelines evolution and restructuring: A qualitative and quantitative study.

In IEEE International Conference on Software Maintenance and Evolution, ICSME 2021,

Luxembourg, September 27 - October 1, 2021, pages 471–482. IEEE, 2021.

[193] Stephen A. Cook. The complexity of theorem-proving procedures. In Michael A.

Harrison, Ranan B. Banerji, and Jeffrey D. Ullman, editors, Proceedings of the 3rd

Annual ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker Heights, Ohio,

USA, pages 151–158. ACM, 1971.

[194] EqDAC. Equivalence Verification of Data Constraints. https://github.com/

EqDAC/EqDACTool, 2022. [Online; accessed 7-Sept-2022].

212

https://github.com/EqDAC/EqDACTool
https://github.com/EqDAC/EqDACTool

[195] Taolue Chen, Yan Chen, Matthew Hague, Anthony W Lin, and Zhilin Wu. What

is decidable about string constraints with the replaceall function. Proceedings of the

ACM on Programming Languages, 2(POPL):1–29, 2017.

[196] Taolue Chen, Matthew Hague, Anthony W Lin, Philipp Rümmer, and Zhilin Wu.

Decision procedures for path feasibility of string-manipulating programs with com-

plex operations. Proceedings of the ACM on Programming Languages, 3(POPL):1–30,

2019.

[197] Marcelo Sousa, Isil Dillig, Dimitrios Vytiniotis, Thomas Dillig, and Christos Gkant-

sidis. Consolidation of queries with user-defined functions. In Michael F. P. O’Boyle

and Keshav Pingali, editors, ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014,

pages 554–564. ACM, 2014.

[198] K. Venkatesh Emani, Karthik Ramachandra, Subhro Bhattacharya, and S. Sudar-

shan. Extracting equivalent SQL from imperative code in database applications. In

Fatma Özcan, Georgia Koutrika, and Sam Madden, editors, Proceedings of the 2016

International Conference on Management of Data, SIGMOD Conference 2016, San Fran-

cisco, CA, USA, June 26 - July 01, 2016, pages 1781–1796. ACM, 2016.

[199] Alexi Turcotte, Mark W. Aldrich, and Frank Tip. reformulator: Automated refactor-

ing of the N+1 problem in database-backed applications. In 37th IEEE/ACM Inter-

national Conference on Automated Software Engineering, ASE 2022, Rochester, MI, USA,

October 10-14, 2022, pages 84:1–84:12. ACM, 2022.

[200] Zhuo Zhang, Brian Zhang, Wen Xu, and Zhiqiang Lin. Demystifying exploitable

bugs in smart contracts. In 45th IEEE/ACM International Conference on Software Engi-

neering, ICSE 2023, Melbourne, Australia, May 14-20, 2023, pages 615–627. IEEE, 2023.

[201] Asem Ghaleb, Julia Rubin, and Karthik Pattabiraman. etainter: detecting gas-

related vulnerabilities in smart contracts. In Sukyoung Ryu and Yannis Smarag-

dakis, editors, ISSTA ’22: 31st ACM SIGSOFT International Symposium on Software

Testing and Analysis, Virtual Event, South Korea, July 18 - 22, 2022, pages 728–739.

ACM, 2022.

213

[202] Arjun Singhvi, Junaid Khalid, Aditya Akella, and Sujata Banerjee. SNF: Serverless

Network Functions. In Proceedings of the 11th ACM Symposium on Cloud Computing,

SoCC ’20, pages 296–310, New York, NY, USA, 2020. Association for Computing

Machinery.

[203] Jianfeng Wang, Tamás Lévai, Zhuojin Li, Marcos A. M. Vieira, Ramesh Govindan,

and Barath Raghavan. Quadrant: A cloud-deployable nf virtualization platform.

In Proceedings of the 13th Symposium on Cloud Computing, SoCC ’22, pages 493–509,

New York, NY, USA, 2022. Association for Computing Machinery.

[204] Jane Yen, Jianfeng Wang, Sucha Supittayapornpong, Marcos A. M. Vieira, Ramesh

Govindan, and Barath Raghavan. Meeting slos in cross-platform nfv. In Proceedings

of the 16th International Conference on Emerging Networking EXperiments and Technolo-

gies, CoNEXT ’20, pages 509–523, New York, NY, USA, 2020. Association for Com-

puting Machinery.

[205] Zhipeng Zhao, Hugo Sadok, Nirav Atre, James C. Hoe, Vyas Sekar, and Justine

Sherry. Achieving 100gbps intrusion prevention on a single server. In 14th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 20), pages 1083–

1100. USENIX Association, November 2020.

[206] Jed Liu, William Hallahan, Cole Schlesinger, Milad Sharif, Jeongkeun Lee, Robert

Soulé, Han Wang, Călin Caşcaval, Nick McKeown, and Nate Foster. P4v: Practical

verification for programmable data planes. In Proceedings of the 2018 Conference of

the ACM Special Interest Group on data communication, pages 490–503, 2018.

[207] Tamás Lévai, Felicián Németh, Barath Raghavan, and Gabor Retvari. Batchy: Batch-

scheduling data flow graphs with service-level objectives. In 17th USENIX Sym-

posium on Networked Systems Design and Implementation (NSDI 20), pages 633–649,

Santa Clara, CA, February 2020. USENIX Association.

[208] Jianfeng Wang, Tamás Lévai, Zhuojin Li, Marcos AM Vieira, Ramesh Govindan,

and Barath Raghavan. Galleon: Reshaping the square peg of nfv. arXiv preprint

arXiv:2101.06466, 2021.

214

[209] Hamid Ghasemirahni, Tom Barbette, Georgios P. Katsikas, Alireza Farshin, Amir

Roozbeh, Massimo Girondi, Marco Chiesa, Gerald Q. Maguire Jr., and Dejan Kostić.

Packet order matters! improving application performance by deliberately delaying

packets. In 19th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 22), pages 807–827, Renton, WA, April 2022. USENIX Association.

[210] Barath Raghavan, Ramesh Govindan, Zhuojin Li, and Jianfeng Wang. Methods and

systems for efficient and secure network function execution, June 2023. US Patent

App. 18/082,873.

[211] Jianfeng Wang, Siddhant Gupta, Marcos A. M. Vieira, Barath Raghavan, and

Ramesh Govindan. Scheduling network function chains under sub-millisecond la-

tency slos. 2023.

[212] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and P Brighten Godfrey. Veri-

flow: Verifying network-wide invariants in real time. In Proceedings of the first work-

shop on Hot topics in software defined networks, pages 49–54, 2012.

215

	Title Page
	Authorization Page
	Signature Page
	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Chapter 1 Introduction
	Motivation
	Data Organization: Inefficient Container Types
	Data Propagation: Indirect Value-Flows through Containers
	Data Manipulation: Store-Load Library APIs
	Data Validation: Redundant Data Constraints

	Contribution
	Complexity-Guided Container Replacement Synthesis
	Container-Aware Value-Flow Analysis
	Documentation-based API Aliasing Specification Inference
	Data Constraint Equivalence Verification

	Outline

	Chapter 2 Background and Previous Studies
	Data-Centric System
	Container
	Store-Load API Pair
	Data Constraint

	Related Work
	Data Structure Synthesis
	Value-Flow Analysis
	Library Specification Inference
	Program Equivalence Verification

	Chapter 3 Complexity-Guided Container Replacement Synthesis
	Introduction
	Cres in a Nutshell
	Motivating Example
	Synthesizing Replacement

	Problem Formulation
	Program Syntax and Concrete State
	Behavioral Equivalence
	Problem Statement

	Program Abstraction
	Container Property Abstraction
	Behavior Constraint
	Complexity Guidance

	Synthesis Algorithm
	Container Property Analysis
	Method Candidate Identification
	Container Replacement Synthesis
	Summary

	Implementation
	Evaluation
	Experimental Setup
	Answers to Research Questions
	Ablation Study
	Discussion

	Conclusion

	Chapter 4 Container-Aware Value-Flow Analysis via Memory Orientation
	Introduction
	Overview
	Category of Containers
	Motivating Example
	Our Approach

	Preliminaries
	Program Syntax
	Concrete Memory and Concrete Semantics
	Value-Flow Graph

	Container-Aware Value-Flow Problem
	Abstract Memory
	Abstract Memory State
	Join Operator and Partial Order
	Layout Operator for Strong Update
	Summary

	Memory Orientation Analysis
	Abstract Semantics of Non-Container Operation
	Partial Abstract Transformer of Container Method Call
	Witness Operator
	Abstract Semantics of Container Method Call
	Semantics of Container Traversal
	Value-Flow Graph Construction
	Discussion

	Demand-Driven Reachability Analysis
	Thin Slicing
	Value-Flow Bug Detection
	Summary

	Implementation
	Evaluation
	Identifying Anchored Containers
	Constructing Value-Flow Graph
	Answering Thin Slicing Queries
	Detecting Value-Flow Bugs
	Threats to Validity
	Discussion

	Conclusion

	Chapter 5 Inferring API Aliasing Specifications From Library Documentation
	Introduction
	Background and Overview
	Library-Aware Alias Analysis
	Different Perspectives of Inferring API Aliasing Specifications
	Overview of DAInfer

	Problem Formulation
	Documentation Model
	API Aliasing Specification
	Problem Statement

	Documentation Model Abstraction
	API Value Graph
	Label Abstraction
	Problem Reduction

	Inferring Specification via Neurosymbolic Optimization
	Overall Algorithm
	Label Abstraction Instantiation
	Neurosymbolic Optimization
	Summary

	Implementation
	Evaluation
	Experimental Setup
	Effectiveness and Efficiency
	Comparison with Existing Techniques
	Effects on Client Analysis
	Discussion

	Conclusion

	Chapter 6 Verifying Data Constraint Equivalence in FinTech Systems
	Introduction
	Background and Motivation
	Equivalent Data Constraints in FinTech Systems
	Resolving Equivalent Data Constraints

	EqDAC in a Nutshell
	Motivating Examples
	Outline of Decision Procedure

	Problem Formulation
	Data Constraint Syntax
	Data Constraint Equivalence Problem

	Semantic Encoding
	Symbolic Representation
	Symbolic Evaluation
	Summary

	Decision Procedure
	Divergence Analysis
	Isomorphism Analysis
	Equivalence Verification with EqDAC

	Implementation
	Evaluation
	Equivalent Data Constraint Identification
	Performance Evaluation
	Ablation Study
	Discussion

	Conclusion

	Chapter 7 Conclusion and Future Works
	Conclusion
	Future Works

	References

