
Validating Network Protocol Parsers with Traceable RFC
Document Interpretation
MINGWEI ZHENG, Purdue University, USA
DANNING XIE, Purdue University, USA
QINGKAI SHI, State Key Laboratory for Novel Software Technology, Nanjing University, China
CHENGPENG WANG, Purdue University, USA
XIANGYU ZHANG, Purdue University, USA

Validating the correctness of network protocol implementations is highly challenging due to the oracle and
traceability problems. The former determines when a protocol implementation can be considered buggy,
especially when the bugs do not cause any observable symptoms. The latter allows developers to understand
how an implementation violates the protocol specification, thereby facilitating bug fixes. Unlike existing
works that rarely take both problems into account, this work considers both and provides an effective solution
using recent advances in large language models (LLMs). Our key observation is that network protocols are
often released with structured specification documents, a.k.a. RFC documents, which can be systematically
translated to formal protocol message specifications via LLMs. Such specifications, which may contain errors
due to the hallucination of LLMs, are used as a quasi-oracle to validate protocol parsers, while the validation
results in return gradually refine the oracle. Since the oracle is derived from the document, any bugs we find
in a protocol implementation can be traced back to the document, thus addressing the traceability problem.
We have extensively evaluated our approach using nine network protocols and their implementations written
in C, Python, and Go. The results show that our approach outperforms the state-of-the-art and has detected 69
bugs, with 36 confirmed. The project also demonstrates the potential for fully automating software validation
based on natural language specifications, a process previously considered predominantly manual due to the
need to understand specification documents and derive expected outputs for test inputs.

CCS Concepts: • Networks→ Protocol testing and verification; • Software and its engineering→
Correctness; • Computing methodologies→ Natural language processing.

Additional Key Words and Phrases: Network protocol parsers, Traceability, Large language model

ACM Reference Format:
Mingwei Zheng, Danning Xie, Qingkai Shi, Chengpeng Wang, and Xiangyu Zhang. 2025. Validating Network
Protocol Parsers with Traceable RFCDocument Interpretation. Proc. ACM Softw. Eng. 2, ISSTA, Article ISSTA078
(July 2025), 23 pages. https://doi.org/10.1145/3728955

1 Introduction
Network protocols play a key role in the Internet of Things era as they define how devices world-
wide connect to and communicate with each other. As essential components in network protocol
implementations, network protocol parsers parse and validate network messages, which ensures
network messages follow specific syntactic and semantic rules, thus preventing invalid or mali-
cious data from disrupting system operations or compromising security. Despite their importance,

Authors’ Contact Information: Mingwei Zheng, Purdue University, West Lafayette, USA, zheng618@purdue.edu; Danning
Xie, Purdue University, West Lafayette, USA, xie342@purdue.edu; Qingkai Shi, State Key Laboratory for Novel Software
Technology, Nanjing University, Nanjing, China, qingkaishi@nju.edu.cn; Chengpeng Wang, Purdue University, West
Lafayette, USA, wang6590@purdue.edu; Xiangyu Zhang, Purdue University, West Lafayette, USA, xyzhang@cs.purdue.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2994-970X/2025/7-ARTISSTA078
https://doi.org/10.1145/3728955

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA078. Publication date: July 2025.

HTTPS://ORCID.ORG/0009-0003-6032-6045
HTTPS://ORCID.ORG/0000-0002-4359-4625
HTTPS://ORCID.ORG/0000-0002-8297-8998
HTTPS://ORCID.ORG/0000-0003-0617-5322
HTTPS://ORCID.ORG/0000-0002-9544-2500
https://doi.org/10.1145/3728955
https://orcid.org/0009-0003-6032-6045
https://orcid.org/0000-0002-4359-4625
https://orcid.org/0000-0002-4359-4625
https://orcid.org/0000-0002-8297-8998
https://orcid.org/0000-0003-0617-5322
https://orcid.org/0000-0002-9544-2500
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3728955

ISSTA078:2 Mingwei Zheng, Danning Xie, Qingkai Shi, Chengpeng Wang, and Xiangyu Zhang

building high-quality network protocol parsers is challenging and error-prone [37, 45]. According
to MITRE, input (e.g., network messages) validation issues [33] are among the top four in the CWE
Top 25 Most Dangerous Software Weaknesses [32], emphasizing the critical risks that improperly
handled inputs pose to system security and reliability.
Existing Works. Our work targets input validation bugs in network protocol parsers, where the
parser incorrectly accepts invalid packets or rejects valid packets. Unfortunately, existing test oracles
are insufficient to thoroughly detect such bugs because many of them are silent, not causing obvious
runtime symptoms (e.g., crashes) or violating other well-established properties (e.g., memory-safety
and data-privacy). As a result, conventional fuzzing [19, 36] and static analyzers [9, 43] that rely on
non-protocol-specific oracles can hardly detect them. Model checking [15, 34] constructs protocol-
specific oracles to detect these bugs. However, formal specifications are often missing. Manually
constructing them is time-consuming since network protocols are often described in natural
language (e.g., in RFC documents). To address these oracle issues, differential analysis techniques,
including both static differential analysis [11, 58] and dynamic differential analysis [6, 38], identify
bugs by comparing multiple implementations of the same protocol. While they are effective in
many cases, they fail to detect bugs shared by multiple implementations. For instance, the bug in
Figure 1 actually exists in multiple Babel implementations, including FRRouting Protocol Suite [12]
and Jech/Babel [8], where differential analysis techniques become ineffective.
Our Approach. A popular software validation method is to extract testable properties from
specification documents and then construct inputs to test these properties. The key challenge
is deriving the expected outputs for given inputs based solely on the documents, which often
requires substantial manual effort. Our paper presents ParCleanse, which uses Large Language
Models (LLMs) to automate this process. In particular, it extracts formal protocol specifications
from RFC documents and derives inputs together with the expected outputs from the specifications
to validate parser implementations. ParCleanse generates a set of valid packets (conforming to
the format) and invalid packets (violating the format) based on the LLM-extracted protocol formats
to test whether target parsers accept valid packets and reject invalid ones. If a parser deviates
from this expected behavior, it may indicate a potential inconsistency between the specification
and its implementation. Since RFC documents are widely accepted as network protocol standards,
ParCleanse overcomes the limitations of differential analysis, which cannot detect bugs shared
across multiple implementations. Furthermore, the LLM-based format extraction process is highly
automated, reducing the human effort to generate protocol-specific oracles.

However, many RFC documents are lengthy and complex, causing substantial LLM hallucinations.
As such, extracted protocol formats may contain errors, leading to misinterpretation of parser
behavior. For example, an incorrect field constraint in the extracted format could cause us to
mistakenly flag a parser bug if the parser accepts a packet that violates the constraint. To mitigate
LLM hallucinations, our approach incorporates two key designs:

• First, our approach uses a divide-and-conquer strategy to systematically decompose an RFC
document into smaller and manageable sections while preserving their structural relationships
within a knowledge graph called the DocTree. This decomposition mitigates LLM hallucinations
across large contexts and enables precise extraction of subformats, which are then combined into
a complete protocol format with the hierarchical guidance of the DocTree.
• Second, our approach features traceable inconsistency identification: when an inconsistency
between the LLM-extracted format and parser behavior is detected, it is traced back to the relevant
sections of the RFC document. This traceability supports an additional validation step to determine
whether the inconsistency stems from the LLM’s hallucination or a parser implementation bug.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA078. Publication date: July 2025.

Validating Network Protocol Parsers with Traceable RFC Document Interpretation ISSTA078:3

parse_packet(unsigned char *pkt, int pktlen) {

if (pktlen < 4 || pkt[0] != 42 || pkt[1] != 2) return -1;
memcpy(bodylength, pkt + 2, 2);
if(bodylength + 4 > pktlen) return -1;
type = pkt[4];
if (type == MESSAGE_ROUTER_ID) {
 memcpy(RouterId, message + 4, 8);
 if (RouterId == 0 || RouterId == 0xFFFFFFFFFFFFFFFF)

 return -1;
}
return 1;

}

4.4.7 Router-Id

Type Set to 6 to indicate a Router-Id TLV.
Length The length of the body in octets
Reserved Sent as 0 and must be ignored on reception.
RouterId The router-id for routes. This MUST NOT consist of all zeroes or all ones.

+
+

Source Code

Document

Bug Fix

Fig. 1. A bug detected by ParCleanse, its fix, and the corresponding documentation.

To thoroughly validate parser implementations, ParCleanse performs both field-level and
structure-level mutations (referred to as property-level mutations) to generate comprehensive
test cases. It generates both positive and negative inputs for each property, allowing thorough
validation of parser implementations by verifying each protocol property against its specification.
Contribution. In summary, we make the following contributions.
• We propose a novel validation approach to detect bugs in network protocol parsers by “comparing”
them with protocol formats extracted from RFC documents.
– It conducts a divide-and-conquer format extraction to interpret the official RFC documents of
network protocols to precise and complete network protocol format specifications.

– It features fine-grained property-level input mutations to thoroughly test parser implementa-
tions guided by the extracted specifications.

– It leverages a traceable inconsistency identification technique, allowing any identified incon-
sistencies to be traced back to the original specification for a more accurate diagnosis.

• We implement our approach as a prototype tool, ParCleanse,1 and evaluate it on nine network
protocols implemented in C, Python, and Go. The experimental results show that ParCleanse
effectively extracts protocol formats from RFCs, achieving 100% precision and recall for message
types and 99% precision and 95% recall for field names, outperforming the state-of-the-art LLM-
based method, ChatAFL. ParCleanse identifies 69 bugs, with 36 confirmed, outperforming the
state-of-the-art protocol parser testing tool, ParDiff.

2 Motivation
In this section, we first present a real-world bug detected by ParCleanse (Section 2.1) and illustrate
the limitations of existing methods (Section 2.2). We then discuss the inherent challenges of the
problem and introduce the design of our technique (Section 2.3).

2.1 A Real-World Example
Figure 1 shows a buggy code snippet of the Babel network routing protocol (from the FRRouting
Protocol Suit [12]) and its RFC document. The document specifies the Babel protocol format,
which includes four fields: Type, Length, Reserved, and RouterId. In RFC documents, the width
of each field in the structure table indicates its byte length. In this example, Type is one byte,
while RouterId is eight bytes. This document also restricts RouterId from being all zeroes (0)
or all ones (0xFFFFFFFFFFFFFFFF for eight bytes), as these could lead to ambiguities in Babel’s
routing strategies. The check on RouterId helps Babel maintain stability and prevent routing
loops, especially in dynamic or frequently changing network topologies. However, this validation is
missing in the buggy implementation. Malicious attackers could exploit this oversight to introduce
packets with an invalid RouterId into the network and disrupt the network, causing instability in
path calculation and failure to properly update routing tables.

1ParCleanse is publicly available at https://github.com/zmw12306/ParCleanse.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA078. Publication date: July 2025.

https://github.com/zmw12306/ParCleanse

ISSTA078:4 Mingwei Zheng, Danning Xie, Qingkai Shi, Chengpeng Wang, and Xiangyu Zhang

4. Protocol
Encoding

4.1 Packet
Format

4.2 TLV
Format

4.4 Specific TLVs

4.4.1
Pad 1

4.4.2
Pad 2 …

4.1
entrypoint struct BabelPacket {
 ...
 UINT8 PacketBody[BodyLen];
}

4.2
struct TLV {
 UINT8 Type;
 UINT8 payload[...];
}

4.4
casetype Payload (UINT8
Type){
 // Empty
}

4.4.7
struct RouterIdTLV{
 UINT8 Type { Type == 6 };
 UINT8 Length { Length >= 10 };
 UINT16 Reserved { Reserved == 0 };
 UINT64 RouterId { RouterId != 0 && RouterId !=
0xFFFFFFFFFFFFFFFF };
}

4. Protocol Encoding

RFC Document
DocTree before Format Merging

1.1

2

A
B

4.1=4.2

4.4

4.4.7

DocTree

3

4.4.7 Router-id
“RouterId:
not all zeros or all ones”

entrypoint struct BabelPacket {
 ...
 TLV PacketBody[BodyLen];
};

struct TLV {
 UINT8 Type;
 Payload(Type) payload;
} ;
casetype Payload (UINT8 Type){
 switch(Type)

 case 0: unit Empty; //Pad1
 case 1: ... //PadN;
 ...

 case 6: struct RouterIdTLV{

 UINT8 Length { Length >= 10 };
 UINT16 Reserved { Reserved == 0 };
 UINT64 RouterId { RouterId != 0 &&
 RouterId != 0xFFFFFFFFFFFFFFFF };
 };
} ;

4. Protocol Encoding

4.4.1

C

4.1 4.2 4.4

D Positive and Negative Inputs

…

…

4.4.2

parse_packet(Type = 6, Length = 10, Reserved = 0, RouterId = 0, …)

parse_packet(Type = 6, Length = 10, Reserved = 0, RouterId = 1, …)

…

1.2

Positive

Negative

<content> <summary>

<content> <summary>

<content> <summary>

<content> <summary>

Expected Actual

PASS PASS

FAIL PASS

Fig. 2. ParCleanse extracts specifications from documents to build DocTree. Dashed arrows in B
indicate hierarchical relationships for forming the protocol format in C . ParCleanse then generates
test cases to detect inconsistencies and backtraces the relevant document section for LLM diagnosis.

2.2 Limitations of Existing Work
Despite the severity of this issue, existing techniques struggle to detect the bug. A key limitation
of existing work is the lack of high-quality oracles. Traditional static analyzers (e.g., KLEE [9],
Pinpoint [43]) and conventional fuzzing techniques (e.g., SAGE [19], BooFuzz [36]) rely on general
oracles, such as the violations of safety properties and the abnormal behaviors in the runtime, to
detect and trigger bugs, respectively. Existing LLM-based testing approaches like ChatAFL [31] and
Fuzz4All [53] also rely on crash-based oracles. However, the bug in Figure 1 does not violate such
general properties, but rather protocol-specific properties causing silent system state corruptions.
Differential analysis tools like ParDiff [58] and DPIFuzz [38] partially address the need for

protocol-specific oracles by comparing multiple implementations of the same protocol. However,
these approaches require at least one correct implementation to flag inconsistencies. For the bug in
Figure 1, alternative implementations (e.g., Jech/Babel [8]) also miss checking the specific condition.
As such, differential analysis cannot detect the bug. Additionally, although model checking could
theoretically verify protocol-specific properties, it requires a formal protocol specification, which
is missing for Babel. Unfortunately, constructing a formal model from Babel’s natural language
RFC document would require substantial manual effort.

2.3 Our Approach in a Nutshell
We propose ParCleanse, which leverages LLMs to automatically generate oracles (i.e., network
protocol format specifications) from protocol documents and create fine-grained test cases to
effectively discover bugs with a low false positive rate. The extracted oracles have two main
benefits: (1) covering all formats described in the document, allowing comprehensive testing of
protocol parsers; and (2) providing traceability, which enhances bug understanding, reduces false
positives, and facilitates fixes. We will walk through the motivating example, introduce the three
phases of ParCleanse, and outline the challenges and solutions at each step.
Phase 1: Protocol Format Extraction (Section 4.1). An intuitive approach is to extract formal
specifications directly from RFC documents, as they define expected input and output behaviors
with high quality. However, RFC documents are often long and complex, ranging from tens to
hundreds of pages. Feeding the entire document into an LLM to automatically generate protocol
format specifications (or formats for simplicity) often leads to incomplete or incorrect formats due
to LLMs’ inherent hallucinations. A more effective approach is to divide the document into smaller
pieces and prompt the LLM to generate the format for each piece. However, a challenge arises:

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA078. Publication date: July 2025.

Validating Network Protocol Parsers with Traceable RFC Document Interpretation ISSTA078:5

Challenge 1: While dividing a lengthy RFC document into smaller pieces can reduce errors
from LLM outputs, these pieces are often interdependent, making it difficult to directly combine
inferred sub-protocol formats.

We implement a divide-and-conquer strategy using a data structure, DocTree, to capture hi-
erarchical relationships within RFC documents. As shown in Figure 2, we begin by dividing the
RFC 8966 for the Babel protocol into sections (A). In step 1.1 , the LLM summarizes each section
and generates the corresponding protocol format sub-specification. Based on the segmentation,
we construct an initial DocTree (B) that mirrors the document’s table of contents, treating each
section as a node. However, the hierarchical structure in the table of contents doesn’t align with
the protocol’s message structure. For example, while “section 4.1” (packet format) and “section
4.2” (TLV format) appear at the same level in the table of contents, they actually have a nested
relationship. Specifically, “4.1” should be the parent of “4.2”, as “4.2” represents a subset of the
network packet outlined by “4.1”. To correct this misalignment, we prompt the LLM in step 1.2
to refine the DocTree hierarchy based on the relationships between sections as shown with the
dashed arrows, producing a structure that accurately reflects the protocol’s format. This refined
DocTree enables us to generate a coherent, hierarchical protocol format as shown in C .
Phase 2: Test Case Generation (Section 4.2). Given the protocol formats with field constraints
in C , we generate test cases based on the constraints. While solvers like Z3 can efficiently produce
both valid and invalid inputs that satisfy or violate these constraints, using the full set of constraints
alone does not sufficiently explore the input space, nor does it guarantee diversity in bug discovery.
This limitation arises because the generated tests do not isolate specific fields or individual

constraints. As a result, although direct test generation based on the whole specification may
trigger some exceptions, it tends to uncover only a small set of bugs, leaving large portions of
the input space untested and essential format properties (field-level properties and structure-level
properties) unchecked (see the ablation studies in Section 5.5.4 for further discussions).

Challenge 2: Naively generating inputs based on the whole protocol specification is insufficient
to validate each format property and exhaustively explore parser behaviors.

ParCleanse addresses this challenge with a fine-grained test-generation strategy. In step 2 , we
produce both positive and negative inputs that conform and violate the individual constraints (D),
respectively. A negative input violates only a single format property. If the target parser accepts
both types, it indicates a lack of enforcement of the property, highlighting inconsistencies between
the specification and the implementation. This systematic, property-level mutation provides a
comprehensive protocol validation.

As shown in D , to validate the format property for the field RouterId, we generate two network
messages: one with RouterId = 1 conforming the constraint, and the other with RouterId = 0
violating it. In the negative test case, all other fields are identical to the positive case. However,
both test cases are accepted by the parser, indicating an inconsistency where the parser fails to
enforce the RouterId constraint specified by the protocol format.
Phase 3: Inconsistency Identification (Section 4.3). Even when an inconsistency is detected,
inaccuracies in the extracted specification may cause false positives, posing this challenge:

Challenge 3:How can we distinguish real inconsistencies from false positives caused by incorrect
specifications?

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA078. Publication date: July 2025.

ISSTA078:6 Mingwei Zheng, Danning Xie, Qingkai Shi, Chengpeng Wang, and Xiangyu Zhang

Thus, when an inconsistency arises between the extracted specification and the parser imple-
mentation, it is crucial to determine whether it stems from an implementation bug or an error in
the LLM-extracted format. ParCleanse enables this by providing complete traceability from the
triggered inconsistency back to the exact RFC section where the relevant property is defined. By
linking each format property with its source RFC section during format extraction (Phase 1), we
establish traceability, allowing an accurate diagnosis of potential format violations in parsers.
In the motivating example, we generate the negative input by intentionally violating the con-

straint for RouterId as specified in “section 4.4.7”. To diagnose this inconsistency, we retrieve
“section 4.4.7” through “backtrace” (indicated by the dashed arrow) from the RFC document and
prompt the LLM to analyze the discrepancy. To enhance accuracy, we use chain-of-thought prompt-
ing, which requires the LLM to explain its reasoning steps, thereby reducing errors and improving
decision reliability. In this case, the LLM concludes that it is due to a bug in the parser implemen-
tation. We hence report the bug (i.e., missing checks for RouterId not being all zeros or all ones).
On the other hand, if the LLM concludes that the inconsistency is due to the incorrect extracted
format, it will refine the format accordingly to improve the testing effectiveness.

3 Problem Formulation
This section introduces key preliminaries, including the formal definitions of network packets and
their format syntax, followed by a formal statement of the problem addressed in this paper.

3.1 Protocol Packet and Its Format Syntax
Network protocols establish the standards of data transmission and interpretation for the communi-
cation between devices. Typically, data is encoded and transmitted as a sequence of bytes, referred
to as a packet. Similar to object fields in memory, the bytes located in a consecutive segment of a
protocol packet can indicate a specific unit of information, such as message types and message
contents. Concretely, a packet should consist of the following five key elements:
• Message Types: The different formats a protocol use for various kinds of messages.
• Field Names: The names of individual data fields within a specific type of message.
• Field Types: The data types of fields (e.g., byte, bit, struct, and array) and their sizes, which
can be either fixed or variable (i.e., depending on some other field).
• Independent Constraints: Restrictions on individual fields, such as numeric ranges or fixed
values, that do not rely on other fields.
• Dependent Constraints: Constraints that involve relationships across multiple fields.

Packet p ∈ Struct Type

Type Type := pType | ArrayType | CaseType | StructType
Identifier identifier ∈ String

Primitive Type pType := UINT8 | UINT16 | UINT32 | UINT64 | · · ·
Array Type ArrayType := Type[const] | Type[f (identifier+)]
Case Type CaseType := switch(identifier) {case const : Type}+

Struct Type StructType := struct identifier {field+ } (f (field+) ⊙ 0)∗

Field field := Type identifier

Constant const ∈ UINT64

Function f ∈ ArithFunction

Cmp Operator ⊙ := ≥ | ≤ | > | < | = | ≠

Fig. 3. The format syntax of protocol packets

To ensure correct interpretation,
these elements must be organized in a
specific form defined in Figure 3. Each
packet is a Struct Type object, aggre-
gating multiple fields, each defined by
a type and identifier, with optional con-
straints. Apart from the Struct Type,
a type in the protocol format may
be a Primitive Type, Array Type, or
Case Type. Primitive Type (e.g., UINT8,
UINT16) defines fixed-size fields. Ar-
ray Type represents a sequence of el-
ements of the same type. The length of
an Array-Typed object can be constant

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA078. Publication date: July 2025.

Validating Network Protocol Parsers with Traceable RFC Document Interpretation ISSTA078:7

Document DocTree Format GraphSection

Syntax Check

Node
Protocol
Format

Complete
Protocol Format

Positive Inputs

Negative Inputs

Inconsistencies

False Positive

Phase 1: Protocol Format Extraction Phase 2: Test Case Generation

Phase 3: Inconsistency Identification

Target Parser

Extract

Bottom-up
Merge

Get
Root Transform

Fine-Grained Test
Generation

Execute

Refine

Backtrace

Extraction

Diagnose

§

Fig. 4. The pipeline of ParCleanse

or determined by an arithmetic expression relating to some other Primitive-Typed fields. Case
Type defines different possible layouts for a field or group of fields, depending on the value of a
control field. This structure enables different formats for various message types, assigning a unique
structure to each type based on its specific functionality. Without loss of generality, we suppose
that the constraints upon the fields in a Struct-Typed object are arithmetic constraints, which are
in the form of f (field+) ⊙ 0. Here f is an arithmetic function and ⊙ is a comparison operator.
Example. In Figure 2, C : "UINT8" is a Primitive Type. TLV is a Struct Typewith two fields: Type and
Payload, arranged sequentially in memory. ‘TLV PacketBody[BodyLength]’ defines PacketBody
as a sequence of TLVs, occupying a total of BodyLength bytes. Payload is a Case Type controlled
by Type. For Type = 0, Payload is an empty struct, representing Pad1; for Type = 6, Payload
represents RouterIdTLV.

3.2 Problem Statement
Definition 1 (Network Protocol Parser). A network protocol parser is a function 𝑓 that maps
a network packet 𝑝 to an element in the set {pass, fail, crash}. Specifically, 𝑓 (𝑝) = pass or fail
indicates whether the packet conforms to the protocol format, while 𝑓 (𝑝) = crash indicates a
failure of the parser when processing 𝑝 .

Definition 2 (Network Protocol Document and Approximate Format). An RFC document specifies
the valid format of protocol packets in natural language. Ideally, we would derive a precise protocol
format F from the RFC document, a function where F (𝑝) = pass if a packet 𝑝 is valid, and fail
otherwise. However, due to inaccuracies in automated format extraction, we obtain an approximate
format F ′ instead of F . This approximation F ′ may not fully align with F , and therefore F ′ (𝑝)
may or may not match F (𝑝) for any given packet 𝑝 . Consequently, observing 𝑓 (𝑝) ≠ F ′ (𝑝) does
not directly imply 𝑓 (𝑝) ≠ F (𝑝), as the discrepancy could be due to inaccuracies in F ′.

Our objective is to identify packets 𝑝 for which 𝑓 (𝑝) ≠ F ′ (𝑝) and to determine if these discrep-
ancies are due to (1) errors in the parser 𝑓 , or (2) errors in the extracted approximation F ′. For
case (2), we iteratively refine F ′ to more closely align it with F .

4 Design
We present ParCleanse, which automatically extracts complete protocol formats from RFC docu-
ments and validates network protocol parsers with traceability-assisted inconsistency identification.
As shown in Figure 4, ParCleanse consists of three phases. Specifically, Phase 1 (Section 4.1)
extracts the complete protocol format from the RFC document via divide-and-conquer. This is
achieved by extracting the protocol format from each section, followed by a bottom-up merge to get
the complete protocol format. The DocTree maintains a mapping between document content and
extracted format to enable traceability. Phase 2 (Section 4.2) generates fine-grained test cases for the

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA078. Publication date: July 2025.

ISSTA078:8 Mingwei Zheng, Danning Xie, Qingkai Shi, Chengpeng Wang, and Xiangyu Zhang

target parser, including both positive and negative inputs created via property-level mutation, which
ensures that each protocol property is thoroughly tested against the parser. If an inconsistency is
detected between parser executables and the extracted formats, Phase 3 (Section 4.3) identifies the
root cause by tracing back to the relevant document section and either reports a bug or diagnoses
it as a false positive and refines the format.

4.1 Phase 1: Protocol Format Extraction
As shown in Figure 4, Phase 1 extracts complete protocol formats from RFC documents using a
divide-and-conquer approach with a hierarchical DocTree structure. Each document section is
represented as a node in the DocTree, with edges capturing hierarchical relationships. Protocol
formats are extracted from each node (i.e., RFC section) individually, with syntax checks conducted
on generated formats. If invalid, the error is fed back to the LLM for regeneration. These formats
are then merged bottom-up within the DocTree, with the root node ultimately representing the
complete protocol format. In what follows, we first introduce the DocTree structure and its initial
generation in Section 4.1.1. Then, we discuss howDocTree supports the divide-and-conquer strategy
for format extraction in Section 4.1.2. Finally, we discuss how traceability is maintained throughout
this phase in Section 4.1.3.

4.1.1 DocTree Initialization. DocTree is a hierarchical representation of an RFC document, designed
to reflect its structure. It preserves relationships between different sections, essential for combining
extracted formats into a complete protocol format.

Definition 3. A DocTree is formally defined as a tuple TDocTree = (𝑁, 𝐸), where:
• 𝑁 is a set of nodes, with each node𝑛𝑖 defined as𝑛𝑖 = (content, summary, format), representing
a specific RFC document section. Each node includes (1) the section content and summary and
(2) the protocol format extracted from that section.
• 𝐸 ⊆ 𝑁×𝑁 is a set of directed edges. Each edge (𝑛1, 𝑛2) ∈ 𝐸 represents a hierarchical relationship
where 𝑛2 is a subcomponent or dependent section of 𝑛1. These edges preserve the document’s
structure, supporting the accurate merging of section formats into a complete protocol format.

ParCleanse begins by constructing the initial DocTree using the RFC document’s table of
contents. However, sections at the same level often have implicit dependencies that are not reflected
in the table of contents, which are critical for accurately merging extracted formats. To capture these
hidden dependencies, ParCleanse employs a rule-based prompting method. First, ParCleanse
prompts LLMs to summarize each section. Then, it re-prompts the LLMs with the summaries of
sections at the same hierarchical level, asking them to identify any dependencies between them.
The prompts are as follows:

Prompt to generate section summaries

Task: Please summarize a given RFC section: {Section}

Prompt to identify hierarchy dependencies among sections

Task: Analyze the hierarchical structure of the following sections in an RFC document: {Section Summaries}
Instructions: Identify Parent-Child relationships where one section provides a detailed breakdown of another.

This method allows ParCleanse to uncover hidden dependencies, ensuring a detailed and
accurate DocTree representation for later format merge.

Example 1. For the RFC example in Figure 2 A , document sections “4.1”, “4.2”, and “4.4” are listed
at the same hierarchy level in the table of contents. “section 4.1” introduces the general packet
format, “section 4.2” details the TLV format (a component of the format specified by “section 4.1”),

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA078. Publication date: July 2025.

Validating Network Protocol Parsers with Traceable RFC Document Interpretation ISSTA078:9

and “section 4.4” elaborates on specific TLVs. Therefore, “section 4.2” should be a subcomponent of
“section 4.1”, and “4.4” should expand on “4.2”. The LLM outputs for section summaries and hierarchy
dependencies are listed below in Figure 5. After parsing the LLM’s responses, ParCleanse adjusts
the DocTree by setting the node representing “section 4.1” as the parent node for “section 4.2”,
and “section 4.2” as the parent node for “section 4.4”. By repeating this process across all sections,
ParCleanse constructs the DocTree without format.

Algorithm 1: Protocol Formats Extraction using DocTree
Input: TDocTree: DocTree, 𝐷𝑆𝐿: Protocol format syntax
Output: 𝐹complete: Complete Protocol Format

1 Function ProtocolFormatExtraction(TDocTree, 𝐷𝑆𝐿):
2 foreach 𝑛𝑖 ∈ TDocTree do
3 𝐹𝑖 ← LLMGenerateFormat(𝑛𝑖 .content, 𝐷𝑆𝐿);
4 (𝑣, errorMsg) ← SyntaxChecker(𝐹𝑖);
5 while 𝑣 == False do
6 𝐹𝑖 ←

LLMSyntaxRefine(𝑛𝑖 .content, errorMsg, 𝐷𝑆𝐿);
7 (𝑣, errorMsg) ← SyntaxChecker(𝐹𝑖);

8 𝑛𝑖 .𝐹 ← 𝐹𝑖 ;

9 𝐹complete ← MergeFormats(TDocTree);
10 return 𝐹complete;

11 Function MergeFormats(TDocTree):
12 foreach 𝑛𝑖 ∈ TDocTree in bottom-up order do
13 if 𝑛𝑖 .hasChildren() then
14 𝐶children ← {(𝑛𝑐 .summary, 𝑛𝑐 .𝐹) |

for each child 𝑛𝑐 ∈ children of 𝑛𝑖 };
15 𝑛𝑖 .𝐹 , 𝑛𝑖 .summary←

LLMMergeFormats(𝑛𝑖 .content, 𝑛𝑖 .𝐹 ,𝐶children);

16 return TDocTree .root.𝐹 ;

4.1 Packet Format: General packet
format, including a 4-octet header followed
by a sequence of TLVs as packet body.

4.2 TLV Format: the structure of TLVs in
Babel packet.

4.4 Details of Specific TLVs: details on
various specific TLVs including Pad1,
PadN, ...

Section 4.1 is the Parent of Section 4.2
because Section 4.1 introduces the packet
format, which contains TLVs, and Section
4.2 details the TLV structure.

Section 4.2 is the Parent of Section 4.4
because Section 4.2 explains the general
TLV format, while Section 4.4 details
specific TLVs.

Section Summaries

Hierarchy Dependencies

Fig. 5. LLM Output for Generating
Section Summaries and Identifying
Hierarchy Dependences

4.1.2 Protocol Format Extraction via Divide-and-Conquer. Algorithm 1 outlines the overall process
of protocol format generation, with inputs DocTree (TDocTree) and protocol format syntax (𝐷𝑆𝐿).
Here, 𝐷𝑆𝐿 is a detailed description for format syntax defined in Section 3.1, guiding LLMs to
generate outputs satisfying this syntax.
Node-level Protocol Format Generation (Divide). The protocol format for each DocTree node
is generated as described by lines 3–8 in Algorithm 1. First, the content of each node and 𝐷𝑆𝐿 are
passed to the LLM to produce an initial protocol format (line 3). A syntax checker then validates the
format (line 4). If syntax errors are found, they are returned to the LLM for refinement (lines 5–7).
This cycle of validation and refinement repeats until the format is syntax-correct. Once validated,
the final format is saved in the corresponding DocTree node (line 8). This process is repeated for
every node in the DocTree (lines 2–8).
Merge Format (Conquer). After generating formats for all nodes, the algorithm merges them into
a single protocol format (lines 11–16). The merging process starts from the leaf nodes and moves
upwards, following the hierarchy defined by the DocTree (line 12). For each node with child nodes,
the algorithm gathers the summaries and formats of its children as pairs (line 14). These pairs,
represented by 𝐶𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 (line 14), along with the content and current format of the node itself, are
provided to the LLM to produce a unified format and an updated summary for that node (line 15).
Nodes without children retain their original format and summary. This merging process continues

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA078. Publication date: July 2025.

ISSTA078:10 Mingwei Zheng, Danning Xie, Qingkai Shi, Chengpeng Wang, and Xiangyu Zhang

until it reaches the root node, whose final format represents the protocol format for the entire
document, resulting in a complete DocTree. The prompt used for merging formats is as follows:

Prompt to merge formats (LLMGenerateFormats)

Task: Merge multiple protocol formats into a single comprehensive format. Current section: {section}; Current format: {format};
Summaries and formats of child nodes: {children}.

Example 2. In the DocTree shown in Figure 2 B , “section 4.4” serves as the parent to “section
4.4.1” through “section 4.4.7”, each defining a specific TLV (Type-Length-Value) format. Each TLV
begins with a Type field, followed by its unique structure. Since the original format for “section 4.4”
is empty, merging its child formats creates a unified TLV structure, shown in Figure 6 (a). The TLV
struct contains a Type field and a Payload field whose structure depends on the value of Type. By
applying this merging strategy iteratively, we obtain a complete DocTree shown in Figure 2 C ,
with the root node containing the complete protocol format.

4.1.3 Traceability between RFCDocuments and Extracted Protocol Formats. In this phase, traceability
is established by linking each part of the generated protocol format to its corresponding section
in the original RFC document. The DocTree structure maintains these links by storing both the
section content and its generated format in each node. Even when multiple formats are combined
into a single structure (like a Case Type switch), this traceability remains intact. For instance, the
RouterIdTLV format can be traced directly back to “section 4.4.7”.

4.2 Phase 2: Fine-Grained Testing by Property-Level Mutation
As shown in Figure 4, Phase 2 transforms the complete protocol format into a Format Graph, where
each path represents a valid protocol format. By iterating over each path in the Format Graph, both
positive and negative test cases are generated. These test cases are then used to validate the parser
executables. In what follows, we first describe how the format is transformed into a Format Graph
in Section 4.2.1, and then illustrate how test inputs are generated in Section 4.2.2.

4.2.1 Format Graph Construction. A Format Graph is a Directed Acyclic Graph (DAG) that repre-
sents the protocol format. Each Primitive Type (defined in Section 3.1) is represented by a node in
the Format Graph. Complex types such as Struct Type and Array Type are represented as subgraphs,
which are connected to form a complete Format Graph.

Definition 4. A Format Graph is a tuple 𝐺 = (𝑁, 𝑆, 𝐸), where:
• 𝑁 is the set of nodes, with each node 𝑛𝑖 as a tuple 𝑛𝑖 = (name, type, constraint), representing
a field with a Primitive Type. constraint defines the field-level constraint.
• 𝑆 is the set of subgraphs, where each subgraph 𝑠𝑖 = (𝑁𝑖 , 𝑆𝑖 , 𝐸𝑖) is a Format Graph and represents
a subgraph of the complete Format Graph. Subgraphs are used to represent complex types such
as Struct Type, Array Type, and Case Type in protocol formats.
• 𝐸 ⊆ (𝑁 ∪ 𝑆) × (𝑁 ∪ 𝑆) is the set of directed edges, allowing connections between nodes,
subgraphs, or both. Each edge is a triplet (𝑥, constraint, 𝑦), indicating that𝑦 can only follow 𝑥

if certain conditions, defined by constraint, are met. If no such condition exists, constraint
is set to None. This constraint is a structural constraint that applies primarily to Array
Type (to define variable lengths within arrays) and Case Type (to map specific case values to
corresponding case formats). It is distinct from the field-level constraints in each node, which
apply directly to individual fields.

Each complete path in the Format Graph is an ordered sequence of fields and constraints, repre-
senting a valid protocol format. The combinations of these paths define all valid protocol formats.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA078. Publication date: July 2025.

Validating Network Protocol Parsers with Traceable RFC Document Interpretation ISSTA078:11

Algorithm 2: Format Graph Generation
Input: 𝐹complete: Complete Protocol Format
Output:𝐺 = (𝑁,𝑆, 𝐸) : Format Graph

1 Function GenerateFormatGraph(𝐹complete):
2 return GenerateStructGraph(𝐹complete .EntryStruct)

3 Function GenerateStructGraph(struct):
4 𝑁 ← ∅, 𝑆 ← ∅, 𝐸 ← ∅, prevnodes← ∅;
5 foreach field ∈ struct.fields do
6 if field is PrimitiveType then
7 𝑛 ← (field.name, field.type, field.constraint) ;
8 Connect(prevnodes, 𝑛), update 𝑁 , 𝐸;
9 prevnodes← {𝑛};

10 else
11 𝑠 ← GenerateSubgraph(field);
12 Connect(prevnodes, 𝑠’s start node), update 𝑆 , 𝐸;
13 prevnodes← {𝑠’s end nodes};

14 return (𝑁,𝑆, 𝐸) ;
15 Function GenerateSubgraph(field):
16 if field is StructType then return GenerateStructGraph(field);
17 else if field is ArrayType then
18 if array length is fixed then
19 return a single subgraph with sequential instances of field.type;

20 else
21 return multiple subgraphs for different possible lengths;

22 else if field is CaseType then
23 return a graph where each case has a subgraph, connected to the control field based on its value;

Algorithm 2 constructs the Format Graph from the complete protocol format 𝐹complete generated
in Phase 1. It begins by calling GenerateStructGraph on the entry struct of 𝐹complete (lines 1–2).
GenerateStructGraph constructs the graph for a Struct Type by first initializing empty sets for
nodes 𝑁 , subgraphs 𝑆 , and edges 𝐸 (line 4). It then iterates through each field in the struct and
builds the graph incrementally (lines 5–13): (1) Primitive Type: Each field of Primitive Type is
represented as an individual node (lines 6–9). Connect adds edges between the current node and all
previously processed nodes (line 8), ensuring connectivity within the Format Graph. (2) Complex
types (Struct, Array, or Case types): subgraphs are created recursively for each field (lines 11–13).
For Struct Type, a subgraph is constructed by recursively calling GenerateStructGraph(line 16).
For Array Type, if the array length is fixed, a single sequential subgraph is created (lines 18–19). If
the length is dynamic (i.e., dependent on other fields), multiple subgraphs are generated to represent
different possible lengths (lines 20–21). These subgraphs are connected with the previous nodes
via edges that enforce length constraints. For Case Type, each case is represented by a subgraph
connected to the node representing the control field (lines 22–23). The edge between the control
field node and each case subgraph enforces the constraint that the control field’s value must match
the corresponding case value. By following the field order in the protocol format, the final Format
Graph accurately represents the protocol structure and is ready for test case generation (line 14).

Example 3. The format in Figure 6 (a) is transformed into the Format Graph shown in Figure 6 (b).
First, the algorithm creates a node for the Type field in the TLV struct, including its type (UINT8)
and constraint (None). Since the Payload field is a Case Type, it then generates a subgraph for
each possible value of the control field Type. For example, when Type equals 0, an empty subgraph

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA078. Publication date: July 2025.

ISSTA078:12 Mingwei Zheng, Danning Xie, Qingkai Shi, Chengpeng Wang, and Xiangyu Zhang

struct TLV {
 UINT8 Type;
 Payload(Type) payload;
}

Type, UINT8, None

Length, UINT8,
Length >= 10

Reserved, UINT16,
Reserved == 0

RouterId, UINT64,
RouterId != 0 &&

RouterId !=
0xFFFFFFFFFFFFFFFF

RouterId

Pad1 PadN

…

Type==0 Type==1 Type==6

name, type, constrain

casetype Payload (UINT8 Type){
 switch(Type)
 case 0: unit Empty; //Pad1
 case 1: … //PadN
 …
 case 6: struct RouterIdTLV {
 UINT8 Length { Length >= 10 };
 UINT16 Reserved { Reserved == 0 };
 UINT64 RouterId { RouterId != 0 &&
 RouterId != 0xFFFFFFFFFFFFFFFF };
 };
 }

1
2
3
4
5
6
7
8
9
10
11
12

1
2
3
4

(a) Protocol Format (b) Format Graph

RouterIdTLV

Fig. 6. Transform Protocol Format to Format Graph for Test Generation

representing Pad1 is created, as Pad1 has no additional fields. This subgraph is connected to the
Type node with the constraint Type == 0. Similarly, when Type is 6, a subgraph for RouterIdTLV
is created, containing sequential nodes for length, reserved, and RouterId. This subgraph is
connected to the Type node with the constraint Type == 6.

4.2.2 Fine-Grained Test Generation. To thoroughly validate protocol parsers, we first encode each
path in the Format Graph into a Z3 formula. Nodes (representing fields) and edges (representing
additional constraints) along the path are converted into Z3 expressions, which are combined
into an entire formula representing a valid format. Then, for each path formula, both positive and
negative inputs are generated:
Positive Inputs. For each path formula, the Z3 SMT solver generates a satisfiable assignment,
providing concrete values for the fields. These values are used to construct a binary packet, which
is tested against the target parser. If the parser accepts the packet, it is considered temporarily
consistent. If the parser rejects it, an inconsistency between the extracted format and the parser
implementation is detected. Typically, protocol parsers indicate whether a packet is successfully
parsed or rejected using status codes (e.g., returning 0 for success and -1 for failure) or error
messages logged through specific functions. Otherwise, we annotate the expected endpoint of
successful parsing. If the parser reaches this point, the packet is considered successfully parsed;
otherwise, an early exit indicates rejection.
Negative Inputs. Negative inputs are generated by property-level mutations on positive in-
puts. Format properties can be divided into two categories: field-level properties, which define
constraints on individual fields, and structure-level properties, which address the overall format
and structure of the packet. Hence, we apply two types of mutations: (1) Field-level mutation:
This mutation negates one field value at a time against its constraint, keeping other field values
unchanged. Constraints on edges (from Case Type or Array Type) are not negated in this case, as
this would lead to a different path in the Format Graph. (2) Structural mutation: This mutation adds
or removes specific fields or bytes to violate the structural properties of the packet (e.g., adding or
removing bytes to violate the length constraint in Array Type, or adding/removing a field from the
packet). Mutations are applied by negating the constraint corresponding to the selected property
while adding additional constraints to enforce that all other field values remain unchanged. The
modified Z3 formula is then solved again using the Z3 SMT solver to generate a mutated packet. If
the target parser rejects the mutated packet as expected, the extracted format aligns with the parser
implementation. Otherwise, if the parser accepts the mutated packet, this reveals an inconsistency
between the LLM-extracted format and the parser implementation.
Example 4. For the path highlighted in red in Figure 6 (b), the Z3 formula is:

0 ≤ Type ≤ 28 − 1 ∧ Type = 6 ∧ 0 ≤ Length ≤ 28 − 1 ∧ Length ≥ 10 ∧ 0 ≤ Reserved ≤ 216 − 1

∧ Reserved = 0 ∧ 0 ≤ RouterId ≤ 264 − 1 ∧ RouterId ≠ 0 ∧ RouterId ≠ 0𝑥𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

In this formula, Type is constrained between 0 and 28−1 because it is of type UINT8. Similar for other
variables. Solving this Z3 formula produces a positive input: Type = 6, Length = 10, Reserved = 0,

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA078. Publication date: July 2025.

Validating Network Protocol Parsers with Traceable RFC Document Interpretation ISSTA078:13

RouterId = 1. The parser accepts the binary packet constructed from this assignment, indicating
temporary consistency. Next, negative test cases are generated by mutating the positive test case.
When we negate the constraint Length ≥ 10, the Z3 formula is:

0 ≤ Type ≤ 28 − 1 ∧ Type = 6 ∧ 0 ≤ Length ≤ 28 − 1 ∧ ¬(Length ≥ 10) ∧ 0 ≤ Reserved ≤ 216 − 1

∧ Reserved = 0 ∧ 0 ≤ RouterId ≤ 264 − 1 ∧ RouterId ≠ 0 ∧ RouterId ≠ 0𝑥𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
∧ Type = 6 ∧ Reserved = 0 ∧ RouterId = 1

Solving this Z3 formula produces a negative input: Type = 6, Length = 0, Reserved = 0,
RouterId = 1. This negative input changed the value of Length to 0, while keeping other field
values unchanged. The parser correctly rejects it, confirming its adherence to the specification on
this field-level property. However, when we set RouterId to 0 — violating the format constraint:
RouterId ≠ 0 — the parser still accepts the packet. This indicates an inconsistency, as the parser
does not enforce this constraint on RouterId required by the LLM-extracted protocol format.

4.3 Phase 3: Traceability-Assisted Inconsistency Identification
As shown in Figure 4, Phase 3 identifies each inconsistency. When an inconsistency is detected
during testing, there are two potential causes: an error in the LLM-extracted protocol format (as the
input is generated based on this format) or a bug in the implementation. Therefore, inconsistencies
should not be immediately treated as implementation bugs. An additional validation step is needed
to identify the source of the inconsistency by cross-referencing relevant sections of the RFC
document. To achieve this, we backtrace the inconsistency to its corresponding RFC section in the
document, retrieve that section, and prompt the LLM to diagnose it with the following prompt:

Prompt to identify inconsistencies

Task: {Constraint} is allowed by [myformat/parser] but not by [myformat/parser]. According to the RFC section: {Section}, identify
whether myformat or parser is correct, and provide evidence from the RFC section.

This process helps determine whether the inconsistencies are caused by mistakes in the extracted
format or bugs in the implementation. If the LLM validator identifies an inconsistency as an
implementation error, we report it as a bug. On the other hand, if it is identified as a format
extraction mistake, we use this feedback to further refine the extracted format.
Traceability between Inconsistencies and RFC Documents. Each inconsistency is directly
tied to a specific constraint or set of constraints. Since traceability between the format and the
corresponding RFC section is maintained, any inconsistency can be traced back to the exact section
of the RFC where the relevant constraint is defined. This traceability-based approach ensures that
every step, from extracting the format to finding bugs, is linked to the original RFC document.

Example 5. Consider the inconsistency regarding RouterId introduced in Example 4. This
constraint comes from the subgraph RouterId shown in Figure 6 (b), which is derived from
RouterIdTLV in the LLM-extracted protocol format shown in Figure 6 (a). RouterIdTLV corre-
sponds to RFC document “section 4.4.7” (Figure 2 B). So we backtrace and retrieve the content of
RFC “section 4.4.7” and provide it to the LLM validator to identify the root cause of the inconsistency.
The LLM validator determines that it is a bug in the implementation instead of the extracted format.
So we report the bug to the developers. It is confirmed and now fixed as shown in Figure 1.

5 Evaluation
We implement our tool using OpenAI’s GPT-4o API [35] and the Z3 SMT solver (version 4.11.2) [13].
We choose GPT-4o for its strong natural language understanding and DSL grammar extraction
capabilities [28], which are essential for interpreting protocol specifications from RFC documents.
Additionally, GPT-4o has shown strong performance in software testing [7, 17], including protocol

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA078. Publication date: July 2025.

ISSTA078:14 Mingwei Zheng, Danning Xie, Qingkai Shi, Chengpeng Wang, and Xiangyu Zhang

Table 1. Protocol Dataset and Ground Truth Format.

Protocol Dataset Ground Truth Format

RFC (Pages) Repo. Lang. Description Msg Type Field Indep. Constr. Dep. Constr. LoC Time

BABEL 8966 (54) FRR C Distance-vector routing protocol 11 97 66 8 171 5h
BFD 5880 (49) FRR C Bidirectional forwarding detection 6 43 22 2 69 2h
BGP-4 4271 (104) FRR C Border Gateway Protocol 4 4 62 46 6 164 6h
IPv4 791 (45) Go Net Go Internet protocol v4 1 14 3 1 16 0.5h
ICMPv4 791, 792 (66) Go Net Go Internet Control Message Protocol for IPv4 11 73 27 3 106 2h
ICMPv6 8200, 4443 (66) Go Net Go Internet Control Message Protocol for IPv6 6 29 14 0 66 2h
IPv6 8200 (42) Impacket Python Internet protocol v6 1 8 1 0 11 0.5h
DHCP 2131 (45) Impacket Python Dynamic host configuration protocol 1 16 4 1 21 0.5h
TCP 793 (85) Impacket Python Extensible Authentication Protocol 1 23 6 4 43 2h

validation [56]. We set the temperature to 0 for minimal randomness and better reproducibility. For
protocol format extraction (Section 4.1), we use everparse [39] as the syntax checker. To evaluate the
effectiveness of our approach, we conduct experiments to address the following research questions.
• RQ1: How accurate are the message formats extracted from the RFC documents?
• RQ2: How effective is ParCleanse in inconsistency identification and bug detection?
• RQ3: How effective is ParCleanse compared to existing approaches?
• RQ4: How effective is each component of ParCleanse?

5.1 Dataset
To evaluate ParCleanse’s capability to support multiple programming languages, we construct
a new protocol dataset, as existing datasets [31, 58] only include protocol implementations in
C or C++. We filter GitHub repositories related to network protocol implementations with over
2,000 stars and actively maintained. To increase diversity in implementations, we select three
repositories, each using a different programming language: C, Go, and Python. Based on these
criteria, we choose FRR [12], Go Networking [2], and Impacket [4]. For each repository, we select
three protocols with RFC documents longer than 40 pages. In total, we get nine different protocols
with a maximum document length of 104 pages and an average of 62 pages per protocol. For each
protocol, we download the corresponding RFC documents from the IETF DataTracker [3] as input
for ParCleanse. For each protocol implementation, we built the parsing executables, as our tool
does not require access to source code. This makes our method applicable to both source-available
and source-unavailable scenarios. The protocol and codebase information is available in Table 1.

5.2 RQ1: Effectiveness of ParCleanse on Message Format Extraction
5.2.1 Setup and Metrics. To evaluate the accuracy of protocol formats generated by ParCleanse,
we first establish a ground truth for network protocol formats. Two authors, each with more than
three years of expertise in network protocols, independently reviewed the relevant RFC documents
and manually wrote the input formats. They tracked the time taken to complete the formats for
each protocol, compared their results, discussed inconsistencies, and reached a consensus.
To quantify the correctness of extracted formats, we define format metrics across five element

types: Message Types, Field Names/Types, Independent Constraints, and Dependent Constraints,
as introduced in Section 3.1. Table 1 lists the count of each element type for each protocol’s ground
truth format (column “Ground Truth Format”), the line count for each (column “LoC”), and the
average manual time spent labeling the ground truth (column “Time”). Column “Field” in column
“Ground Truth Format” represents the count for Field Names and Field Types. Since the number of
field names and types is identical, we merge them into a single column. The statistics in the table
reflect the complexity of protocol formats. For example, BABEL has 11 message types, 97 fields, and
74 constraints (66 independent, 8 dependent), totaling 171 LoC, and takes an average of 5 hours to
manually construct the ground truth format, indicating high complexity. Simpler protocols like
IPv4 and IPv6 have fewer fields and constraints, and require less time to manually write the ground

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA078. Publication date: July 2025.

Validating Network Protocol Parsers with Traceable RFC Document Interpretation ISSTA078:15

Table 2. ParCleanse Protocol Format Extraction Results: Precision/Recall(%).

Protocol Msg Type Field Name Field Type Indep. Constr. Dep. Constr.

BABEL 100/100 100/91 95/87 98/86 100/75
BFD 100/100 100/100 100/100 100/100 -/0
BGP-4 100/100 95/95 94/94 98/63 100/50
IPv4 100/100 100/100 100/100 100/33 100/100
ICMPv4 100/100 100/100 100/93 100/96 100/33
ICMPv6 100/100 94/100 90/97 100/100 -/-
IPv6 100/100 100/100 100/100 100/100 -/-
DHCP 100/100 100/100 94/94 83/75 0/0
TCP 100/100 100/78 83/65 67/33 0/0

Total 100/100 99/95 94/91 98/82 73/44

truth formats. We then compare ParCleanse ’s extracted formats with ground truth, measuring
precision (the proportion of correct extracted elements) and recall (the proportion of ground truth
elements accurately captured) for each element type. For example, for Message Types, the precision
and recall are calculated as follows:

Precision =
Correct Message Types in Extracted Format
Total Message Types in Extracted Format

, Recall =
Ground Truth Message Types Covered by Extracted Format

Total Message Types in Ground Truth Format
.

Since the extracted element count or ground truth element count can be zero for each element
type, making precision or recall undefined, we use “-” to indicate these cases. Comparing the ground
truth with the formats extracted by ParCleanse takes an estimated fifteen minutes per protocol.

5.2.2 Results. The results are shown in Table 2. ParCleanse achieves 100% precision and recall
in extracting message types across all protocols. Field names and field types are also accurately
identified, achieving overall precision and recall of 99%/95% for field names and 94%/91% for field
types. Independent constraints are well-detected across the nine protocols, with a precision of
98%. In terms of recall, the tool identified 155 out of 189 ground truth independent constraints,
resulting in an average recall of 82%. Dependent constraints are particularly challenging, as they
require understanding how different fields influence one another, often through implicit rules or
cross-references within the protocol specification. These complexities make accurate extraction
difficult for LLMs. Overall, ParCleanse achieves a high precision of 73%. For the ICMPv6 and
IPv6 protocols, since there is no dependent constraint in either the ground truth (Table 1) or the
LLM-extracted format, the precision and recall are both denoted with “-”. For BFD, since the LLM-
extracted format contains no dependent constraints, its precision is denoted with “-”. Among these
protocols, TCP shows a drop in performance due to the handling of the DataOffset field, which
involves header alignment and bit-level offsets. These implicit constraints are not straightforward
to extract from natural language descriptions, leading to reduced accuracy when interpreting the
precise field layout in the TCP header. Further discussion can be found in Section 7.
Conclusion. ParCleanse excels in extracting protocol formats from RFC documents, achieving
over 90% precision and recall for most elements, with high precision on challenging element types.

5.3 RQ2: Effectiveness of Inconsistency Identification and Bug Detection
5.3.1 Setup and Metrics. We evaluate ParCleanse on both inconsistency identification and bug
detection. We create one positive test case per format path, which already achieves great perfor-
mance. Generating multiple cases per path could enhance bug detection, but would significantly
increase the manual effort required to verify inconsistencies. Thus, we use a single representative
case per path, with negative test cases determined by property counts along the path. Also, for
Array Type with variable length, we generate test cases containing zero and one element.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA078. Publication date: July 2025.

ISSTA078:16 Mingwei Zheng, Danning Xie, Qingkai Shi, Chengpeng Wang, and Xiangyu Zhang

Table 3. ParCleanse Results on Inconsistency (Incons.) Identification and Bug Detection

Protocol
Detected Incons. Identified Incons. Correctly Identified Incons. Identification Acc (%) # Bugs

Impl. Error Format Error Impl. Error Format Error Impl. Error Format Error OverallLogical Crash Logical Crash Logical Crash Logical Total Unique New Confirmed

BABEL 27 0 23 0 4 23 0 4 100 100 100 100 23 23 23
BFD 12 0 10 0 2 10 0 2 100 100 100 100 10 10 10
BGP-4 3 0 0 0 3 0 0 3 100 100 100 100 0 0 0
IPv4 2 0 2 0 0 2 0 0 100 100 100 100 2 2 0
ICMPv4 16 0 16 0 0 16 0 0 100 100 100 100 16 16 0
ICMPv6 10 0 8 0 2 8 0 2 100 100 100 100 8 8 0
IPv6 1 2 1 2 0 1 2 0 100 100 100 100 2 1 1
DHCP 4 2 4 2 0 3 2 0 75 100 100 83 5 5 2
TCP 11 0 11 0 0 9 0 0 82 100 100 82 3 3 0

Total 86 4 75 4 11 72 4 11 97 100 100 97 69 68 36

Inconsistency Identification. We first record the number of inconsistencies detected by Par-
Cleanse in Phase 2 (Section 4.2), including logical inconsistencies (e.g., the extracted constraint
mismatches with the implementation) and crashes. In Phase 3 (Section 4.3), ParCleanse classifies
each inconsistency as either an Implementation Error or a Format Extraction Error (a mistake in
the extracted format), with crashes always classified as Implementation Errors. We manually check
each classification to assess the inconsistency identification accuracy of ParCleanse. It takes an
estimated five minutes to check each inconsistency.
Bug Detection. For each inconsistency classified as an Implementation Error, we record whether it
is a logical or crash issue. We report the number of unique and new (i.e., previously unknown) bugs
detected, as well as the confirmed bugs.
5.3.2 Results. The results of inconsistency identification and bug detection are in Table 3.
Inconsistency Identification. As shown in column “Detected Incons.”, ParCleanse detects a total
of 90 (86 logical and 4 crash) inconsistencies across all protocols. In column “Identified Incons.”, 79
(75 logical and 4 crash) of the 90 inconsistencies are identified as Implementation Errors, and 11 as
Format Extraction Errors. Our manual evaluation confirms that ParCleanse correctly identifies
87 inconsistencies: 76 (72 logical and 4 crash) of 79 Implementation Errors and all 11 Format
Extraction Errors, achieving an overall 97% accuracy and 100% accuracy for seven protocols. Since
crashes are always Implementation Errors, the identification accuracy for crashes is 100%. Among 86
detected logical inconsistencies, 83 (72 logical Implementation Errors, 11 Format Extraction Errors)
are accurately classified, achieving 97% accuracy, highlighting ParCleanse ’s effectiveness in
distinguishing between implementation and format extraction errors.
Bug Detection. As shown in column “Correctly Identified Incons.”, 72 logical and 4 crash issues
detected by ParCleanse are true bugs, including 69 unique bugs. This demonstrates ParCleanse’s
ability to detect diverse bugs through fine-grained test generation, which thoroughly covers
the input space and behaviors. Notably, 68 of these bugs are new, underscoring ParCleanse’s
effectiveness. We reported them to the developers, with 36 confirmed so far and others pending
review. ParCleanse generated a PoC (Proof of Concept) for each bug. Of the 36 confirmed bugs, 17
are fixed and merged, 18 have approved pull requests pending merge, and 1 remains unresolved.
Conclusion. ParCleanse demonstrates strong effectiveness in inconsistency identification and
bug detection, achieving 97% identification accuracy. It successfully detects 68 new bugs, with 36
confirmed, across nine protocols. Each bug is generated with a PoC.

5.4 RQ3: Comparative ParCleanse with Baseline Methods
5.4.1 Setup and Metrics. We compare ParCleanse with two baseline methods to further evaluate
ParCleanse’s format extraction performance and bug detection effectiveness.
ChatAFL [31]. We compare ParCleanse’s input format extraction capability with a state-of-the-
art LLM-based testing tool, ChatAFL, which also uses LLMs to retrieve protocol formats. To ensure
a fair comparison, all experiments involving LLMs use GPT-4o as our approach.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA078. Publication date: July 2025.

Validating Network Protocol Parsers with Traceable RFC Document Interpretation ISSTA078:17

Table 4. ParCleanse vs. Baseline on Protocol Format Ex-
traction: Precision/Recall (%).

Approach Msg Type Field Name Field Type Indep. Constr. Dep. Constr.

ParCleanse 100/100 99/95 94/91 98/82 73/44
ChatAFL [31] 89/55 78/35 -/- 81/10 -/0

Table 5. ParCleanse vs. Baseline on Bug
Detection for BABEL, BFD, and BGP-4.

Approach Unique New Confirmed

ParCleanse 33 33 33
ParDiff [58] 4 1 1

Table 6. The precision (%) and recall (%) of ablations

Approach Msg Type Field Name Field Type Indep. Constr. Dep. Constr.

ParCleanse 100/100 99/95 94/91 98/82 73/44
ParCleanse - refine 100/100 99/94 93/89 88/68 85/44
ParCleanse - refine - divide and conquer 97/71 91/54 65/37 79/26 0/0

ParDiff [58]. We compare ParCleanse to ParDiff, a state-of-the-art differential testing tool to
detect network protocol parsing bugs. ParDiff, built on LLVM, requires access to source code and
only supports parsers written in C. In contrast, ParCleanse does not require source code and can
work directly with parser executables. Although this makes the comparison unfair, we still compare
bug detection results by running ParDiff on the BABEL, BFD, and BGP-4 protocols, as it does not
support the Python and Go implementations used in six other protocols. We do not compare bug
detection with ChatAFL, as ChatAFL only detects crashes.

5.4.2 Results. Table 4 presents the protocol format extraction comparison between ParCleanse
and ChatAFL. ChatAFL struggles to capture accurate protocol formats, partly because it lacks
support for specifying individual field types (column “Field Type”), a crucial feature in binary
protocol formats. Additionally, ChatAFL struggles with complex constraints (e.g., dependencies)
and is limited to expressing basic constraints, such as concrete values. These limitations greatly
reduce its effectiveness in accurately extracting network protocol formats.
Table 5 shows the comparison bug detection results of ParCleanse and ParDiff. ParCleanse

detects 33 unique bugs in the FRR project, all of which are new. In contrast, ParDiff detects only 4
unique bugs in the FRR project, including only 1 new bug. This is due to two main factors: first,
many bugs are shared across both tested implementations, which ParDiff cannot detect through
differential analysis. Second, ParDiff halts bisimulation on each FSM path after the first state
mismatch, missing bugs in further state transitions along that path.
Conclusion. ParCleanse achieves high performance on protocol format extraction and bug
detection, outperforming state-of-the-art methods.

5.5 RQ4: Ablation Studies
To evaluate the effectiveness of each ParCleanse design in mitigating LLM hallucinations, we
conduct ablation studies to assess the impact of traceability-assisted format refinement (Section 5.5.1)
and divide-and-conquer strategy (Section 5.5.2) on protocol format extraction, as well as the
impact of traceability on inconsistency identification (Section 5.5.3) and fine-grained testing on
inconsistency and bug detection (Section 5.5.4).

5.5.1 Format Extraction without Traceability-Assisted Format Refinement. We evaluate the impact of
traceability-assisted format refinement (Section 4.3) on the extracted protocol format, with results
presented in Table 6. Specifically, we compare the protocol format after refinement (Phase 3) in
row “ParCleanse” to the format without refinement (after Phase 1) in row “ParCleanse - refine”.

Overall, refinement improves the quality of extracted protocol formats, increasing the precision
and recall of independent constraints (column “Indep. Constr.”) by 11% (88% to 98%) and 21% (68%
to 82%). This demonstrates that traceability-assisted format refinement effectively mitigates LLM

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA078. Publication date: July 2025.

ISSTA078:18 Mingwei Zheng, Danning Xie, Qingkai Shi, Chengpeng Wang, and Xiangyu Zhang

Table 7. Impact of and Fine-Grained Testing and Traceability-Assisted Inconsistency Identification

Approach Incons. Identification Accuracy # Incons. # Bugs

Logical Format Error Total Logical Crash Unique New Confirmed

ParCleanse 97% 100% 97% 75 4 69 68 36
ParCleanse- traceability 84% 0% 84% 75 4 - - -
ParCleanse- fine grained testing - traceability 4% 0% 90% 22 211 4 4 0

hallucinations by correcting inaccurately generated constraints. However, ParCleanse ’s precision
of dependent constraints slightly decreases after refinement. This is because, without refinement,
fewer dependent constraints are generated with high precision (85%). After refinement, the model
identifies two additional missing constraints but produces inaccurate formulas due to the complexity
of dependencies, leading to a minor precision drop. Despite this, the refinement effectively enhances
the overall accuracy and completeness of the extracted protocol formats.

5.5.2 Format Extraction without Divide-and-Conquer. To evaluate the effectiveness of the divide-
and-conquer approach (Section 4.1), we compare the format extraction performance in Phase
1 (Table 6 row “ParCleanse- refine”) with the performance by directly feeding the entire RFC
document into the LLM (with unnecessary lines removed to fit within the model’s input window)
in row “ParCleanse- refine - divide and conquer”. The results reveal a consistent and significant
performance drop across all five element types when using the full document without divide-and-
conquer. For example, field name recall decreases from 94% to 54%, and field type recall drops from
89% to 37%. Extraction of constraints suffers even more, with independent constraint recall falling
by 55% (from 68% to 26%) and all dependent constraints being missed. These findings highlight that
the divide-and-conquer strategy effectively improves the accuracy of protocol format extraction.

5.5.3 Inconsistency Identification without Traceability-Assisted Inconsistency Identification. We
conduct an ablation study to evaluate the impact of traceability-assisted inconsistency identification
(Section 4.3). Instead of using the corresponding RFC section, the LLM is provided with the entire
RFC document for each inconsistency detected in Phase 2. The results are shown in Table 7 row
“ParCleanse- traceability”. Without traceability, the LLM fails to identify any Format Extraction
Errors, causing accuracy in this category to drop from 100% to 0%. Additionally, the overall accuracy
decreases from 97% to 84%, underscoring the importance of traceability-assisted inconsistency
identification in effectively distinguishing implementation errors from format extraction errors.

5.5.4 Inconsistency and Bug Detection without Fine-Grained Testing. We conduct an ablation study
to assess the impact of fine-grained testing. In this setup, the full format produced in Phase 1
(Section 4.1) is encoded as a single Z3 formula, used for generating 50 positive and 100 negative test
cases (both more than the amount that ParCleanse generates for each protocol). These cases are
then executed against the target parser to obtain parsing results. Since inputs are generated based
on the entire format, individual fields and document sections are unknown during the diagnosis
step (Section 4.3). Therefore, in this setting, during diagnosis, the LLM is provided with binary
input and the complete RFC document (instead of only the relevant RFC section supported by
traceability) to help locate the source of any inconsistencies. We then compare the performance of
inconsistency identification accuracy and bug detection of this approach against ParCleanse.

The comparison results are shown in Table 7 row “ParCleanse- fine grained testing - traceability”.
Without traceability-assisted inconsistency identification, accuracy in identifying real implementa-
tion errors drops sharply from 97% to 4%, highlighting that, without traceability, LLMs struggle to
accurately detect logical inconsistencies due to hallucinations. By linking inconsistencies to specific

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA078. Publication date: July 2025.

Validating Network Protocol Parsers with Traceable RFC Document Interpretation ISSTA078:19

RFC sections, traceability provides essential context to mitigate hallucinations and enhance incon-
sistency identification accuracy. Column “#Incons.” lists the number of inconsistencies detected by
each tool, while “#Bugs” shows the number of detected bugs. Without fine-grained property-level
mutation, most detected issues are crashes (211 out of 233), with only 4 unique bugs identified. This
indicates that inputs generated based on the entire format fail to comprehensively test the input
space. In contrast, ParCleanse, using fine-grained testing, detected 75 logical inconsistencies and 4
crashes, with 69 unique bugs detected. This demonstrates that fine-grained test generation enables
thorough input space exploration, triggering more logical inconsistencies and unique bugs.

6 Threats to Validity.
An internal threat to validity is the manually established ground truth (Section 5.2). Human
error or bias in defining input formats may impact evaluation accuracy. To address this, two
experts independently draft the formats, compare results, and resolve discrepancies to reach a
consensus [54, 59].
An external threat is the potential for bugs in the RFC documents. Our method assumes the

document is of high quality and treats it as the ground truth. In fact, protocol documents are gener-
ally regarded as reliable oracles [5, 30]. Additionally, in our experiments, we did not observe any
document bugs. Another threat is potential data leakage. Since LLMs are pretrained on vast datasets,
the model may have seen the documents we tested, which could undermine the effectiveness of
the divide-and-conquer approach for protocol format extraction (Section 4.1). To mitigate this, we
compare with a baseline where the entire document is fed directly to GPT-4o (Section 5.5.2). These
experiments validate the effectiveness of our divide-and-conquer design.

7 Limitations and Future Work
LLMs in Extracting Complex Protocol Formats. ParCleanse uses LLMs (e.g., GPT-4o) to inter-
pret RFC documents. While LLMs generally perform well when extracting clearly stated protocol
formats, they struggle with implicit details like padding in the TCP header. For instance, RFC 793 [1]
specifies that "the TCP header padding is used to ensure that the TCP header ends and data begins
on a 32-bit boundary", but it does not explicitly describe how padding is applied or calculated.
Correctly constructing the padding field requires reasoning about alignment constraints between
header size, data offset, and structure layout, which are only implicitly conveyed in the document.
As a result, LLMs struggle to accurately infer these relationships, leading to hallucinations. Future
work could enhance format extraction by fine-tuning LLMs on domain-specific datasets, developing
rule-based post-processing for implicit formats, and incorporating self-verifying mechanisms.
ParCleanse in Handling Non-standardized Documentation. ParCleanse extracts protocol
formats from structured RFCs, as most protocols have Standards Track RFCs as official standards.
For protocols without RFC documentation, relying on non-standardized or incomplete sources is
often unreliable. Future work could integrate alternative sources (e.g., technical manuals, legacy
parsers) and human-in-the-loop feedback to improve adaptability.

8 Related Work
Conventional Fuzzing. Conventional network protocol fuzzing (e.g., BooFuzz [36] and SAGE [19])
identifies bugs by exposing crashes. Netlifter [42] combines conventional fuzzingwith static analysis.
It leverages static symbolic analysis to collect path constraints and generate varied test cases for
fuzzing. However, they still rely on crashes as oracles to detect bugs.
Differential Analysis. Differential analysis [26, 40, 58] has been widely used for bug detection.
Existing differential analysis finds bugs by comparing multiple implementations. Static differential

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA078. Publication date: July 2025.

ISSTA078:20 Mingwei Zheng, Danning Xie, Qingkai Shi, Chengpeng Wang, and Xiangyu Zhang

analysis tools locate semantic differences by comparing models derived from these implementations.
For example, ParDiff [58] compares protocol formats derived from different parser implementations
to find inconsistencies. Dynamic differential testing techniques like DPIFuzz [38] feed different
implementations with the same input and compare their execution behaviors. While these static
and dynamic approaches can detect semantic bugs (i.e., silent violations of protocol rules), they
cannot identify bugs present in both implementations, a limitation inherent to differential analysis.
To address this, ParCleanse compares each implementation directly with its official specification,
enabling the detection of such overlooked bugs.
Traditional Static Analyzers and Model Checking. Static analyzers (e.g., Pistachio [46]) detect
protocol-specific bugs by checking implementations against data-dependent rules, while model
checking [10, 15, 34] verifies behavior using formal models. Both methods require extensive manual
effort to define rules or models, as protocols are typically described in natural language. ParCleanse
overcomes this by using LLMs to automatically extract protocol formats from RFC documents.
LLM-based Approaches. LLMs have shown effectiveness across various domains in software
engineering, including code generation [16, 25, 27, 60], software testing [14, 22, 41, 55], program
analysis [20, 23, 24, 48, 49], comment/specification generation [18, 47, 51, 54], and automated
repair [21, 44, 52, 57]. For network protocol testing, LLM-based methods construct protocol models
automatically to assist fuzzing. ChatAFL [31] leverages LLMs’ prior knowledge to generate protocol
formats, but only works well on simple and well-known protocols, as it does not directly learn the
format details from the document content. mGPTFuzz [29] extracts finite-state machines (FSMs)
from RFCs but lacks detailed protocol formats and symbolic constraints. To bridge these gaps,
ParCleanse uses a divide-and-conquer approach to extract comprehensive protocol formats from
RFCs, covering message types, field names, field types, independent field constraints, and dependent
constraints, enabling more accurate protocol modeling and testing. LLMIF [50] also leverages LLMs
to extract formats from documents for test case generation. But unlike ParCleanse, which queries
LLMs only when an inconsistency is detected between the protocol parser’s output and the expected
format, LLMIF queries LLMs for every test case. Additionally, LLMIF is tailored to Zigbee protocols
and relies heavily on Zigbee-specific structures like clusters, commands, and ZCL frames. This
makes it challenging to adapt to general protocols (lack of these structures) without significant
modification. In contrast, ParCleanse is designed for general protocol testing.
9 Conclusion
This work proposes ParCleanse to automatically validate network protocol implementations
(in various programming languages) using protocol format specifications extracted from RFC
documents. ParCleanse accurately extracts formats through a divide-and-conquer approach and
thoroughly tests protocol parsers with fine-grained testing. ParCleanse also supports traceable
inconsistency identification, allowing each inconsistency to be traced back to the original document
section for accurate diagnosis. Our experiments show that ParCleanse extracts protocol formats
precisely, outperforming ChatAFL. ParCleanse detects 69 bugs in total, demonstrating the potential
for automated software validation from natural language specifications.

Acknowledgment
We thank all the anonymous reviewers for the insightful feedback. We are grateful to the Center
for AI Safety for providing computational resources. This work was funded in part by the National
Science Foundation (NSF) Awards SHF-1901242, SHF-1910300, Proto-OKN 2333736, IIS-2416835,
DARPA VSPELLS - HR001120S0058, and ONR N00014-23-1-2081. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the sponsors. Chengpeng Wang is the corresponding author.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA078. Publication date: July 2025.

Validating Network Protocol Parsers with Traceable RFC Document Interpretation ISSTA078:21

References
[1] 1981. RFC 793 - Transmission Control Protocol. https://www.rfc-editor.org/rfc/rfc793.html.
[2] 2024. Go Networking. https://github.com/golang/net.
[3] 2024. IETF DataTracker. https://datatracker.ietf.org.
[4] 2024. Impacket. https://github.com/fortra/impacket.
[5] 2024. Internet Standard. https://en.wikipedia.org/wiki/Internet_Standard.
[6] Fernando Arnaboldi. 2023. XDiFF. https://github.com/IOActive/XDiFF.
[7] Cristian Augusto, Jesús Morán, Antonia Bertolino, Claudio de la Riva, and Javier Tuya. 2024. Software System

Testing Assisted by Large Language Models: An Exploratory Study. In Testing Software and Systems (ICTSS ’2024).
Springer-Verlag, 239–255. doi:10.1007/978-3-031-80889-0_17

[8] babeld. 2024. babeld. https://github.com/jech/babeld.
[9] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE: Unassisted and automatic generation of high-

coverage tests for complex systems programs. In Proceedings of the 8th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’08). USENIX, 209–224. https://www.usenix.org/conference/osdi-08/klee-unassisted-
and-automatic-generation-high-coverage-tests-complex-systems

[10] Sagar Chaki, Edmund M. Clarke, Alex Groce, Somesh Jha, and Helmut Veith. 2003. Modular Verification of Software
Components in C. In Proceedings of the 25th International Conference on Software Engineering (ICSE ’03). IEEE, 385–395.
doi:10.1109/ICSE.2003.1201217

[11] Sze Yiu Chau, Omar Chowdhury, Md. Endadul Hoque, Huangyi Ge, Aniket Kate, Cristina Nita-Rotaru, and Ninghui
Li. 2017. SymCerts: Practical Symbolic Execution for Exposing Noncompliance in X.509 Certificate Validation
Implementations. In IEEE Symposium on Security and Privacy (S&P ’17). IEEE, 503–520. doi:10.1109/SP.2017.40

[12] FRR community. 2024. The FRRouting protocol suite. https://github.com/FRRouting/frr.
[13] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In International Conference on Tools and

Algorithms for the Construction and Analysis of Systems (TACAS ’08, Vol. 4963). Springer, 337–340. doi:10.1007/978-3-
540-78800-3_24

[14] Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming Zhang. 2023. Large language models are
zero-shot fuzzers: Fuzzing deep-learning libraries via large language models. In Proceedings of the 32nd ACM SIGSOFT
international symposium on software testing and analysis (ISSTA ’23). ACM, 423–435. doi:10.1145/3597926.3598067

[15] Gregorio Díaz, Fernando Cuartero, Valentín Valero Ruiz, and Fernando L. Pelayo. 2004. Automatic verification of the
TLS handshake protocol. In Proceedings of the 2004 ACM Symposium on Applied Computing (SAC ’04). ACM, 789–794.
doi:10.1145/967900.968063

[16] Yangruibo Ding, Marcus J Min, Gail Kaiser, and Baishakhi Ray. 2024. Cycle: Learning to self-refine the code generation.
Proceedings of the ACM on Programming Languages 8, OOPSLA1 (2024), 392–418. doi:10.1145/3649825

[17] Fatemeh Erfan, Mohammad Yahyatabar, Martine Bellaiche, and Talal Halabi. 2024. Advanced Smart Contract Vulnera-
bility Detection Using Large Language Models. In 2024 8th Cyber Security in Networking Conference (CSNet ’24). IEEE,
289–296. doi:10.1109/CSNet64211.2024.10851734

[18] Mingyang Geng, Shangwen Wang, Dezun Dong, Haotian Wang, Ge Li, Zhi Jin, Xiaoguang Mao, and Xiangke Liao.
2023. An Empirical Study on Using Large Language Models for Multi-Intent Comment Generation. arXiv preprint
arXiv:2304.11384 (2023). doi:10.48550/ARXIV.2304.11384

[19] Patrice Godefroid, Michael Y Levin, and David Molnar. 2012. SAGE: whitebox fuzzing for security testing. Commun.
ACM 55, 3 (2012), 40–44. doi:10.1145/2093548.2093564

[20] Jinyao Guo, Chengpeng Wang, Xiangzhe Xu, Zian Su, and Xiangyu Zhang. 2025. RepoAudit: An Autonomous LLM-
Agent for Repository-Level Code Auditing. arXiv preprint arXiv:2501.18160 (2025). doi:10.48550/ARXIV.2501.18160

[21] Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. 2023. Impact of code language models on automated program
repair. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE ’23). IEEE, 1430–1442. doi:10.
1109/ICSE48619.2023.00125

[22] Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023. Large language models are few-shot testers: Exploring llm-based
general bug reproduction. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE ’23). IEEE,
2312–2323. doi:10.1109/ICSE48619.2023.00194

[23] Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian. 2024. Enhancing Static Analysis for Practical Bug Detection: An
LLM-Integrated Approach. Proc. ACM Program. Lang. 8, OOPSLA1, Article 111 (2024), 26 pages. doi:10.1145/3649828

[24] Haonan Li, Hang Zhang, Kexin Pei, and Zhiyun Qian. 2025. The Hitchhiker’s Guide to Program Analysis, Part II: Deep
Thoughts by LLMs. arXiv preprint arXiv:2504.11711 (2025). doi:10.48550/ARXIV.2308.00245

[25] Ming Liang, Xiaoheng Xie, Gehao Zhang, Xunjin Zheng, Peng Di, Wei Jiang, Hongwei Chen, Chengpeng Wang,
and Gang Fan. 2024. RepoGenix: Dual Context-Aided Repository-Level Code Completion with Language Models. In
Proceedings of the 39th IEEE/ACM International Conference on Automated Software Engineering (ASE ’24), Vladimir
Filkov, Baishakhi Ray, and Minghui Zhou (Eds.). ACM, 2466–2467. doi:10.1145/3691620.3695331

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA078. Publication date: July 2025.

https://www.rfc-editor.org/rfc/rfc793.html
https://github.com/golang/net
https://datatracker.ietf.org
https://github.com/fortra/impacket
https://en.wikipedia.org/wiki/Internet_Standard
https://github.com/IOActive/XDiFF
https://doi.org/10.1007/978-3-031-80889-0_17
https://github.com/jech/babeld
https://www.usenix.org/conference/osdi-08/klee-unassisted-and-automatic-generation-high-coverage-tests-complex-systems
https://www.usenix.org/conference/osdi-08/klee-unassisted-and-automatic-generation-high-coverage-tests-complex-systems
https://doi.org/10.1109/ICSE.2003.1201217
https://doi.org/10.1109/SP.2017.40
https://github.com/FRRouting/frr
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/3597926.3598067
https://doi.org/10.1145/967900.968063
https://doi.org/10.1145/3649825
https://doi.org/10.1109/CSNet64211.2024.10851734
https://doi.org/10.48550/ARXIV.2304.11384
https://doi.org/10.1145/2093548.2093564
https://doi.org/10.48550/ARXIV.2501.18160
https://doi.org/10.1109/ICSE48619.2023.00125
https://doi.org/10.1109/ICSE48619.2023.00125
https://doi.org/10.1109/ICSE48619.2023.00194
https://doi.org/10.1145/3649828
https://doi.org/10.48550/ARXIV.2308.00245
https://doi.org/10.1145/3691620.3695331

ISSTA078:22 Mingwei Zheng, Danning Xie, Qingkai Shi, Chengpeng Wang, and Xiangyu Zhang

[26] Congyu Liu, Sishuai Gong, and Pedro Fonseca. 2023. KIT: Testing OS-Level Virtualization for Functional Interference
Bugs. In Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (ASPLOS ’23). ACM, 427–441. doi:10.1145/3575693.3575731

[27] Jiawei Liu, Songrun Xie, Junhao Wang, Yuxiang Wei, Yifeng Ding, and Lingming Zhang. 2024. Evaluating Language
Models for Efficient Code Generation. In First Conference on Language Modeling (COLM ’24). https://openreview.net/
forum?id=IBCBMeAhmC

[28] My M. Mosthaf and Andrzej Wasowski. 2024. From a Natural to a Formal Language with DSL Assistant. In Proceedings
of the ACM/IEEE 27th International Conference on Model Driven Engineering Languages and Systems (MODELS ’24).
ACM, 541–549. doi:10.1145/3652620.3687811

[29] Xiaoyue Ma, Lannan Luo, and Qiang Zeng. 2024. From One Thousand Pages of Specification to Unveiling Hidden
Bugs: Large Language Model Assisted Fuzzing of Matter IoT Devices. In Proceedings of the 33rd USENIX Conference on
Security Symposium (USENIX Security ’24). USENIX, 4783–4800. https://www.usenix.org/conference/usenixsecurity24/
presentation/ma-xiaoyue

[30] Stephen McQuistin, Mladen Karan, Prashant Khare, Colin Perkins, Gareth Tyson, Matthew Purver, Patrick Healey,
Waleed Iqbal, Junaid Qadir, and Ignacio Castro. 2021. Characterising the IETF through the lens of RFC deployment. In
Proceedings of the 21st ACM Internet Measurement Conference (IMC ’21). ACM, 137–149. doi:10.1145/3487552.3487821

[31] Ruijie Meng, Martin Mirchev, Marcel Böhme, and Abhik Roychoudhury. 2024. Large language model guided protocol
fuzzing. In Proceedings of the 31st Annual Network and Distributed System Security Symposium (NDSS ’24). The Internet
Society. doi:10.14722/ndss.2024.24556

[32] MITRE. 2022. CWE Top 25 Most Dangerous Software Weaknesses. https://cwe.mitre.org/top25/archive/2022/2022_
cwe_top25.html.

[33] MITRE. 2024. CWE-20: Improper Input Validation. https://cwe.mitre.org/data/definitions/20.html.
[34] Madanlal Musuvathi and Dawson R. Engler. 2004. Model Checking Large Network Protocol Implementations. In

Proceedings of the 1st Conference on Symposium on Networked Systems Design and Implementation (NSDI ’24). USENIX,
155–168. http://www.usenix.org/events/nsdi04/tech/musuvathi.html

[35] OpenAI. 2024. GPT-4o. https://platform.openai.com/docs/models/gpt-4o.
[36] Joshua Pereyda. 2023. BooFuzz. https://github.com/jtpereyda/boofuzz.
[37] Tahina Ramananandro, Antoine Delignat-Lavaud, Cédric Fournet, Nikhil Swamy, Tej Chajed, Nadim Kobeissi, and

Jonathan Protzenko. 2019. EverParse: Verified Secure Zero-Copy Parsers for Authenticated Message Formats. In
Proceedings of the 28th USENIX Conference on Security Symposium (USENIX Security ’19), Nadia Heninger and Patrick
Traynor (Eds.). USENIX, 1465–1482. https://www.usenix.org/conference/usenixsecurity19/presentation/delignat-
lavaud

[38] Gaganjeet Singh Reen and Christian Rossow. 2020. DPIFuzz: a differential fuzzing framework to detect DPI elusion
strategies for QUIC. In Proceedings of the 36th Annual Computer Security Applications Conference (ACSAC ’20). ACM,
332–344. doi:10.1145/3427228.3427662

[39] Microsoft Research. 2020. everparse. https://project-everest.github.io/everparse/3d-lang.html.
[40] Richard Rutledge and Alessandro Orso. 2022. Automating Differential Testing with Overapproximate Symbolic

Execution. In 2022 15th IEEE Conference on Software Testing, Verification and Validation (ICST ’22). IEEE, 256–266.
doi:10.1109/ICST53961.2022.00035

[41] Gabriel Ryan, Siddhartha Jain, Mingyue Shang, Shiqi Wang, Xiaofei Ma, Murali Krishna Ramanathan, and Baishakhi
Ray. 2024. Code-Aware Prompting: A Study of Coverage-Guided Test Generation in Regression Setting using LLM.
Proc. ACM Softw. Eng. 1, FSE, Article 43 (2024), 21 pages. doi:10.1145/3643769

[42] Qingkai Shi, Junyang Shao, Yapeng Ye, Mingwei Zheng, and Xiangyu Zhang. 2023. Lifting Network Protocol Implemen-
tation to Precise Format Specification with Security Applications. In Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’23). ACM, 1287–1301. doi:10.1145/3576915.3616614

[43] Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and Charles Zhang. 2018. Pinpoint: Fast and precise
sparse value flow analysis for million lines of code. In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’18). ACM, 693–706. doi:10.1145/3192366.3192418

[44] Benjamin Steenhoek, Md Mahbubur Rahman, Richard Jiles, and Wei Le. 2023. An Empirical Study of Deep Learning
Models for Vulnerability Detection. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE ’23).
IEEE, 2237–2248. doi:10.1109/ICSE48619.2023.00188

[45] Nikhil Swamy, Tahina Ramananandro, Aseem Rastogi, Irina Spiridonova, Haobin Ni, Dmitry Malloy, Juan Vazquez,
Michael Tang, Omar Cardona, and Arti Gupta. 2022. Hardening attack surfaces with formally proven binary format
parsers. In 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation (PLDI
’22), Ranjit Jhala and Isil Dillig (Eds.). ACM, 31–45. doi:10.1145/3519939.3523708

[46] Octavian Udrea and Cristian Lumezanu. 2006. Rule-Based Static Analysis of Network Protocol Implementations. In
Proceedings of the 15th Conference on USENIX Security Symposium (USENIX Security ’06). USENIX. https://www.usenix.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA078. Publication date: July 2025.

https://doi.org/10.1145/3575693.3575731
https://openreview.net/forum?id=IBCBMeAhmC
https://openreview.net/forum?id=IBCBMeAhmC
https://doi.org/10.1145/3652620.3687811
https://www.usenix.org/conference/usenixsecurity24/presentation/ma-xiaoyue
https://www.usenix.org/conference/usenixsecurity24/presentation/ma-xiaoyue
https://doi.org/10.1145/3487552.3487821
https://doi.org/10.14722/ndss.2024.24556
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://cwe.mitre.org/data/definitions/20.html
http://www.usenix.org/events/nsdi04/tech/musuvathi.html
https://platform.openai.com/docs/models/gpt-4o
https://github.com/jtpereyda/boofuzz
https://www.usenix.org/conference/usenixsecurity19/presentation/delignat-lavaud
https://www.usenix.org/conference/usenixsecurity19/presentation/delignat-lavaud
https://doi.org/10.1145/3427228.3427662
https://project-everest.github.io/everparse/3d-lang.html
https://doi.org/10.1109/ICST53961.2022.00035
https://doi.org/10.1145/3643769
https://doi.org/10.1145/3576915.3616614
https://doi.org/10.1145/3192366.3192418
https://doi.org/10.1109/ICSE48619.2023.00188
https://doi.org/10.1145/3519939.3523708
https://www.usenix.org/conference/15th-usenix-security-symposium/rule-based-static-analysis-network-protocol
https://www.usenix.org/conference/15th-usenix-security-symposium/rule-based-static-analysis-network-protocol

Validating Network Protocol Parsers with Traceable RFC Document Interpretation ISSTA078:23

org/conference/15th-usenix-security-symposium/rule-based-static-analysis-network-protocol
[47] ChengpengWang, Jipeng Zhang, Rongxin Wu, and Charles Zhang. 2024. DAInfer: Inferring API Aliasing Specifications

from Library Documentation via Neurosymbolic Optimization. Proc. ACM Softw. Eng. 1, FSE (2024), 2469–2492.
doi:10.1145/3660816

[48] Chengpeng Wang, Wuqi Zhang, Zian Su, Xiangzhe Xu, Xiaoheng Xie, and Xiangyu Zhang. 2024. LLMDFA: Analyzing
Dataflow in Code with Large Language Models. In Advances in Neural Information Processing Systems 38: Annual
Conference on Neural Information Processing Systems (NeurIPS ’24), Amir Globersons, Lester Mackey, Danielle Belgrave,
Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (Eds.). http://papers.nips.cc/paper_files/paper/2024/
hash/ed9dcde1eb9c597f68c1d375bbecf3fc-Abstract-Conference.html

[49] Chengpeng Wang, Wuqi Zhang, Zian Su, Xiangzhe Xu, and Xiangyu Zhang. 2024. Sanitizing Large Language Models
in Bug Detection with Data-Flow. In Findings of the Association for Computational Linguistics (EMNLP ’24). Association
for Computational Linguistics, 3790–3805. doi:10.18653/v1/2024.findings-emnlp.217

[50] Jincheng Wang, Le Yu, and Xiapu Luo. 2024. LLMIF: Augmented Large Language Model for Fuzzing IoT Devices. In
2024 IEEE Symposium on Security and Privacy (S&P ’24). IEEE, 881–896. doi:10.1109/SP54263.2024.00211

[51] Cheng Wen, Jialun Cao, Jie Su, Zhiwu Xu, Shengchao Qin, Mengda He, Haokun Li, Shing-Chi Cheung, and Cong
Tian. 2024. Enchanting program specification synthesis by large language models using static analysis and program
verification. In International Conference on Computer Aided Verification (CAV ’24). Springer, 302–328. doi:10.1007/978-3-
031-65630-9_16

[52] Yi Wu, Nan Jiang, Hung Viet Pham, Thibaud Lutellier, Jordan Davis, Lin Tan, Petr Babkin, and Sameena Shah. 2023.
How Effective Are Neural Networks for Fixing Security Vulnerabilities. In Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA ’23). ACM, 1282–1294. doi:10.1145/3597926.3598135

[53] Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Lingming Zhang. 2024. Fuzz4All: Universal
Fuzzing with Large Language Models. In Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering (ICSE ’24). ACM, Article 126, 13 pages. doi:10.1145/3597503.3639121

[54] Danning Xie, Byungwoo Yoo, Nan Jiang, Mijung Kim, Lin Tan, Xiangyu Zhang, and Judy S Lee. 2023. Impact of Large
Language Models on Generating Software Specifications. arXiv preprint arXiv:2306.03324 (2023). doi:10.48550/ARXIV.
2306.03324

[55] Chenyuan Yang, Yinlin Deng, Runyu Lu, Jiayi Yao, Jiawei Liu, Reyhaneh Jabbarvand, and Lingming Zhang. 2024.
WhiteFox: White-Box Compiler Fuzzing Empowered by Large Language Models. 8, OOPSLA2 (2024). doi:10.1145/
3689736

[56] Zhe Yang, Hao Peng, Yanling Jiang, Xingwei Li, Haohua Du, Shuhai Wang, and Jianwei Liu. 2025. ChatHTTPFuzz:
large language model-assisted IoT HTTP fuzzing. International Journal of Machine Learning and Cybernetics (2025),
1–22. doi:10.1007/s13042-024-02527-3

[57] Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. 2024. Autocoderover: Autonomous program
improvement. In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA ’24). ACM, 1592–1604. doi:10.1145/3650212.3680384

[58] Mingwei Zheng, Qingkai Shi, Xuwei Liu, Xiangzhe Xu, Le Yu, Congyu Liu, Guannan Wei, and Xiangyu Zhang. 2024.
ParDiff: Practical Static Differential Analysis of Network Protocol Parsers. In Proc. ACM Program. Lang. (OOPSLA ’24).
ACM, 1208–1234. doi:10.1145/3649854

[59] Mingwei Zheng, Jun Yang, Ming Wen, Hengcheng Zhu, Yepang Liu, and Hai Jin. 2021. Why Do Developers Remove
Lambda Expressions in Java?. In 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE
’21). IEEE, 67–78. doi:10.1109/ASE51524.2021.9678600

[60] Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo Gao, Shirong Ma,
et al. 2024. DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence. arXiv preprint
arXiv:2406.11931 (2024). doi:10.48550/ARXIV.2406.11931

Received 2024-10-31; accepted 2025-03-31

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA078. Publication date: July 2025.

https://www.usenix.org/conference/15th-usenix-security-symposium/rule-based-static-analysis-network-protocol
https://www.usenix.org/conference/15th-usenix-security-symposium/rule-based-static-analysis-network-protocol
https://www.usenix.org/conference/15th-usenix-security-symposium/rule-based-static-analysis-network-protocol
https://doi.org/10.1145/3660816
http://papers.nips.cc/paper_files/paper/2024/hash/ed9dcde1eb9c597f68c1d375bbecf3fc-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/ed9dcde1eb9c597f68c1d375bbecf3fc-Abstract-Conference.html
https://doi.org/10.18653/v1/2024.findings-emnlp.217
https://doi.org/10.1109/SP54263.2024.00211
https://doi.org/10.1007/978-3-031-65630-9_16
https://doi.org/10.1007/978-3-031-65630-9_16
https://doi.org/10.1145/3597926.3598135
https://doi.org/10.1145/3597503.3639121
https://doi.org/10.48550/ARXIV.2306.03324
https://doi.org/10.48550/ARXIV.2306.03324
https://doi.org/10.1145/3689736
https://doi.org/10.1145/3689736
https://doi.org/10.1007/s13042-024-02527-3
https://doi.org/10.1145/3650212.3680384
https://doi.org/10.1145/3649854
https://doi.org/10.1109/ASE51524.2021.9678600
https://doi.org/10.48550/ARXIV.2406.11931

	Abstract
	1 Introduction
	2 Motivation
	2.1 A Real-World Example
	2.2 Limitations of Existing Work
	2.3 Our Approach in a Nutshell

	3 Problem Formulation
	3.1 Protocol Packet and Its Format Syntax
	3.2 Problem Statement

	4 Design
	4.1 Phase 1: Protocol Format Extraction
	4.2 Phase 2: Fine-Grained Testing by Property-Level Mutation
	4.3 Phase 3: Traceability-Assisted Inconsistency Identification

	5 Evaluation
	5.1 Dataset
	5.2 RQ1: Effectiveness of ParCleanse on Message Format Extraction
	5.3 RQ2: Effectiveness of Inconsistency Identification and Bug Detection
	5.4 RQ3: Comparative ParCleanse with Baseline Methods
	5.5 RQ4: Ablation Studies

	6 Threats to Validity.
	7 Limitations and Future Work
	8 Related Work
	9 Conclusion
	References

