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Abstract—Data constraints are widely used in FinTech systems
for monitoring data consistency and diagnosing anomalous data
manipulations. However, many equivalent data constraints are
created redundantly during the development cycle, slowing down
the FinTech systems and causing unnecessary alerts. We present
EQDAC, an efficient decision procedure to determine the data
constraint equivalence. We first propose the symbolic representa-
tion for semantic encoding and then introduce two light-weighted
analyses to refute and prove the equivalence, respectively, which
are proved to achieve in polynomial time. We evaluate EQDAC
upon 30,801 data constraints in a FinTech system. It is shown
that EQDAC detects 11,538 equivalent data constraints in three
hours. It also supports efficient equivalence searching with an
average time cost of 1.22 seconds, enabling the system to check
new data constraints upon submission.

Index Terms—Equivalence Verification, Data Constraints, Fin-
Tech Systems

I. INTRODUCTION

With the rapid development of E-commerce, FinTech sys-
tems have become increasingly essential to industrial produc-
tion. They consist of a cluster of database-backed applications
manipulating large amounts of sensitive data [1]. Any incorrect
data value can yield system misbehaviors and cause immea-
surable financial losses. To ensure reliability, it is a common
practice to specify target properties as data constraints [2],
[3] for runtime checking. If a data constraint is violated,
developers can receive an alert for further diagnosis.

Unfortunately, the continuous submissions from develop-
ers make data constraints accumulate rapidly and can even
introduce redundancy. In a global FinTech company A, 103
developers submitted 2,306 data constraints in the first quarter
of 2022. Unaware of previous submissions, they create equiv-
alent data constraints, which gradually become the technical
debt [4], wasting computing resources and increasing the
burden of system maintenance. To resolve the redundancy,
the developers expect to search the existing equivalent data
constraints before submitting new ones, thereby avoiding
redundant submissions. Besides, quality assurance teams are
eager to examine data constraint repositories regularly, seeking
more opportunities for optimization based on the equivalence
relation. Thus, it is relevant to verify the data constraint
equivalence for better maintenance in a FinTech system.

Goal and Challenges. We aim to design a decision proce-
dure determining whether two data constraints are equivalent.
However, it is stunningly challenging to find a solution fitting
industrial requirements. First, the decision procedure should
be highly efficient, as FinTech systems often contain tens of
thousands of data constraints, which amplify the efficiency
bottleneck greatly. Any inefficiency in the decision procedure
can result in significant burdens of adoption. Second, it is
crucial to guarantee soundness and prove the equivalence as
completely as possible. Otherwise, it would remove necessary
data constraints or miss equivalent ones, resulting in financial
losses or hiding opportunities for further optimization, respec-
tively. In reality, data constraints contain various operations
upon different data types, increasing the difficulty of achieving
these objectives simultaneously.

Existing Efforts. There have been two lines of research on
equivalence verification. One line of the techniques leverages
the specified rewrite rules and checks whether a program
can be transformed to the other via term rewriting [5], [6].
Although the rewrite rules theoretically ensure soundness, they
can only identify restrictive forms of equivalent patterns [7],
and the vast search space of applying rewrite rules also
brings great overhead [8]. The other line encodes the program
semantics with logical formulas and performs the symbolic
reasoning by invoking an SMT solver [9]–[11]. It provides
a general approach to verify the equivalence, while an SMT
solver is not efficient enough to reason a large number of data
constraints. The solver has to be invoked thousands of times
in the equivalence clustering and searching, accumulating the
overhead and finally degrading the overall efficiency [12].

Insight and Solution. Our key idea originates from two crit-
ical observations. First, non-equivalent data constraints often
contain different variables, literals, or operators. For example,
the data constraint in Fig. 1a examines the attributes oid and
in in the table t, while the data constraint in Fig. 1c examines
the attributes iid and new instead. The lexical differences guide
the generation of concrete values to make two data constraints
evaluate differently. Second, equivalent data constraints often
converge towards similar syntactic structures. For instance,
the data constraints in Fig. 1b and Fig. 1d only differ in the
orders of assertions, branches, and commutative operands after



s = ’IN’;
if(contains(t.ty,s))
assert(t.in > 0);

else
assert(t.out > 0);

assert(t.amt > 0);
assert(t.oid != 0);

(a)

if(contains(t.ty,’IN’)){
assert(t.old == t.new - t.in);

} else {
assert(t.old == t.new + t.out);

}
assert(t.oid != 0);
assert(t.iid != 0);

(b)

s = ’IN’;
if(not contains(t.ty,s))
assert(t.out > 0);

else
assert(t.new > 0);

assert(t.amt > 0);
assert(t.iid != 0);

(c)

assert(t.iid != 0);
assert(t.oid != 0);
if(not contains(t.ty,’IN’))

cash = t.out + t.new;
else

cash = t.new - t.in;
assert(cash == t.old);

(d)

Fig. 1: Examples of data constraints

eliminating user-defined variables. The isomorphic syntactic
structures are the witness of their equivalence. Thus, we can
leverage the lexical differences and syntactic isomorphism
to efficiently refute and prove the equivalence, respectively,
avoiding unnecessary SMT solving for better performance.

Based on the insight, we present EQDAC, an efficient
decision procedure for the equivalence verification. We estab-
lish a first-order logic (FOL) formula as the symbolic repre-
sentation to depict the semantics. To refute the equivalence,
we perform the divergence analysis to explore the symbolic
representations and generate the concrete values of variables,
which simultaneously make one data constraint hold and the
other violated. To prove the equivalence, we conduct the
isomorphism analysis with a tree isomorphism algorithm [13]
to examine whether the two symbolic representations can be
transformed into each other by reordering the clauses and
commutative terms. We combine the two analyses with the
SMT solving, which determines the logical equivalence of
the symbolic representations, finally obtaining a three-staged
decision procedure.

We implement EQDAC and evaluate it upon a FinTech
system in Company A, which maintains 30,801 data con-
straints in total. Leveraging EQDAC, we discover that 11,538
data constraints have at least one equivalent variant in the
system, indicating that 7,842 data constraints are redundant.
EQDAC finishes the equivalence clustering in three hours and
achieves the equivalence searching in 1.22 seconds per data
constraint. Except for the SMT solving, the stages of EQDAC
can be proven to work in polynomial time. We also prove the
soundness and completeness of EQDAC theoretically for a
given syntax of data constraints. Our efforts have crossed the
line from developing an academic-only decision procedure to
one that is practical enough to be deployed.

In summary, we make the following major contributions:
• We formulate the data constraint equivalence problem,

which is critical for the FinTech system maintenance.
• We propose a sound and complete decision procedure

EQDAC to determine the data constraint equivalence, effi-
ciently supporting the equivalence clustering and searching.
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Fig. 2: The workflow of equivalence searching and clustering

• We implement EQDAC and evaluate it upon the data
constraints in a global FinTech company with 1 billion active
users, showing that it efficiently detects a significant number
of equivalent data constraints.

II. BACKGROUND AND MOTIVATION

This section presents the background and highlights the
motivation of our work.

A. Equivalent Data Constraints in FinTech Systems

A FinTech system usually consists of a cluster of database-
backed applications manipulating large amounts of data, mak-
ing the data records exhibit specific properties. To improve
the reliability, the developers often specify data constraints to
describe target properties and set up a data reconciliation (DR)
platform [14] to examine them in the runtime. Once a data
constraint is violated, developers can receive detailed runtime
information to guide further system diagnosis.

In reality, many development teams continuously submit
data constraints to a central DR platform. For example, around
100 teams in Company A actively submit data constraints
daily to the platform. Unaware of existing submissions, de-
velopers often submit data constraints equivalent to existing
ones. Besides, the developers tend to be conservative about
removing constraints, as they do not want to risk missing data
errors. Finally, the accumulation of equivalent data constraints
becomes the technical debt [4] of a FinTech system:
• The DR platform examines equivalent data constraints re-

dundantly, which causes unnecessary resource consumption,
e.g., CPU time, disk IO, and network traffic.

• Multiple alerts are fired to developers if equivalent data
constraints are violated, which requires more time budget
for diagnosis, lengthening the system’s development cycle.

• All the equivalent data constraints should be updated if the
table schema or the target properties are changed, involving
extra labor in interacting with the DR platform.

Thus, it is crucial to tackle equivalent data constraints in the
maintenance, which promotes resource-saving and eases the
debugging and refactoring of a FinTech system.

B. Resolving Equivalent Data Constraints

To resolve the technical debt, the developers of Company
A propose two demands, namely equivalence clustering and
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equivalence searching, to tackle equivalent data constraints.
Specifically, they expect to integrate two bots into the CI/CD
workflow [15] of a FinTech system as follows.
• Equivalence searching: A developer commits a new data

constraint to the bot for searching existing equivalent vari-
ants. The list of equivalent variants assists the developer in
deciding whether to merge it with any existing one. The
workflow is shown in the upper part of Fig. 2.

• Equivalence clustering: A quality assurance (QA) manager
exports all the data constraints to the bot, which divides
the data constraints into equivalence clusters. Then, the QA
manager summarizes merge suggestions and sends them to
developers for further confirmation. The lower part of Fig. 2
shows the workflow of equivalence clustering.
Generally, the two bots resolve the redundancy from two

perspectives, respectively. First, the equivalence searching con-
ducts the instant checking of newly-submitted data constraints,
enabling the developers to avoid redundancy if possible. Sec-
ond, the equivalence clustering supports the nightly scan of
the whole repository of data constraints. The QA managers
can inspect the clustering information to find opportunities
for merging equivalent ones. During the development cycle,
the two bots can serve as two lines of defense for redundancy
issues in the CI/CD workflow.

To automate the overall workflow, we need an efficient
decision procedure to verify whether two data constraints are
equivalent or not. Specifically, the two bots would invoke
the decision procedure to determine the equivalence in the
clustering and searching, respectively. In this work, we aim
to design an effective solution for verifying data constraint
equivalence, and promoting data constraint maintenance with
our decision procedure.

III. EQDAC IN A NUTSHELL

This section presents a motivating example to show our
insight (§ III-A) and outlines our decision procedure (§ III-B).

A. Motivating Examples

Verifying the data constraint equivalence is non-trivial in
industrial scenarios. First, the cost of the decision procedure
can accumulate significantly due to the vast number of data
constraints [16]. Second, the decision procedure can prune
necessary data constraints or miss equivalent ones if it is
not sound or complete, increasing the risk of data security
and hiding the opportunity for optimization. Thus, we need
to simultaneously ensure the soundness, completeness, and
efficiency of the decision procedure.

Fig. 1 shows four data constraints as examples. Specifically,
the data constraints in Fig. 1a and Fig. 1c depict the properties
where three attributes of the table t have positive values in
two cases, and the values of oid and iid are not 0, respectively.
Besides, the data constraints in Fig. 1b and Fig. 1d describe the
property where the changes to the account balances are equal
to the transferred cash amount, and the ids of the two accounts,
i.e., iid and oid, are not 0. According to the examples, we can
obtain the following two important observations:
• Non-equivalent data constraints tend to have different lexical

tokens, such as database attributes, literals, and operators.
For example, the data constraints in Fig. 1a and Fig. 1c
examine different attributes. It is likely to generate the values
of table attributes, making them evaluate differently.

• Equivalent data constraints often only differ in the orders
of commutative operands and independent statements after
eliminating user-defined variables. For instance, the data
constraints in Fig. 1b and Fig. 1d share the isomorphic
syntactic structure, which implies their equivalence.

Based on the observations, we realize that the lexical differ-
ences and syntactic isomorphism enable us to efficiently refute
and prove the equivalence, respectively. If we generate “good”
concrete values making two data constraints evaluate differ-
ently or find the isomorphism between the syntactic structures,
we can avoid SMT solving and achieve high efficiency.

B. Outline of Decision Procedure

According to our insight, we design an efficient, sound,
and complete decision procedure for verifying data constraint
equivalence. To depict the data constraint semantics, we
propose the semantic encoding to construct a FOL formula
in a restrictive form as its symbolic representation, which
eliminates user-defined variables (e.g., the variable cash in
Fig. 1d). Based on the symbolic representations, our decision
procedure works in three stages, as shown in Fig. 3.
• The divergence analysis explores the symbolic representa-

tions with the guidance of lexical differences, aiming to
generate concrete values that make data constraints evaluate
differently. For example, it explores the clause induced by
the last assertion in Fig. 1a and assigns 0 to the attribute oid
to violate the assertion. Also, it concretizes the variables in
Fig. 1c to make the data constraint satisfied.

• The isomorphism analysis constructs the parse trees of the
symbolic representations and examines whether the parse
trees are isomorphic. The analysis abstracts away the order
of commutative constructs, such as independent statements
and commutative operands. For example, it discovers the



V := vd | x
L := {li | i ≥ 1}
A := l | vd | a1 ⊕ a2
C := a1 ⊙ a2 | x1 ⊙ x2 | a⊙ x | x⊙ a | p(v, l) | p(v1, v2)
B := c | b1 and b2 | b1 or b2 | not b | iteb(c0, b1, b2)
S := x = a | assert(b) | s1; s2 | ites(c0, s1, s2)
R := s+
⊕ := + | − | × | ÷
⊙ := > | < | ≥ | ≤ | == | ≠
P := {prefixOf, suffixOf, contains, equals}

Fig. 4: The syntax of data constraints

isomorphic structures in Fig. 1b and Fig. 1d, blurring the
orders of assertions and the operands of + and ==.

• If the first two analyses can not refute or prove the equiva-
lence, we invoke an SMT solver to check the logical equiva-
lence of the symbolic representations. To ensure soundness
and completeness, we perform the SMT encoding with a
decidable fragment in the combined theory of bit-vector,
floating-point arithmetic, and string.
Apart from soundness and completeness, EQDAC also

features a theoretical guarantee of complexity. The symbolic
representation construction, the divergence analysis, and the
isomorphism analysis can work in polynomial time to the size
of the abstract syntax tree of a data constraint. Our evaluation
also provides strong evidence of the EQDAC’s high efficiency
in the equivalence clustering and searching.

IV. PROBLEM FORMULATION

This section presents the syntax (§ IV-A) and formulates
the data constraint equivalence problem (§ IV-B).

A. Data Constraint Syntax

Fig. 4 summarizes the syntax. A variable is a data variable
vd ∈ Vd indicating the value of a table attribute, or an user-
defined variable x ∈ Vu storing the value temporally. Its value
can be a finite-length integer, a floating point number, or a
string. A literal is a constant value. An arithmetic expression
can be a literal, a data variable, or a compound arithmetic
expression. A comparison expression compares arithmetic
expressions and user-defined variables, or examines the strings
with predicates p ∈ P . A Boolean expression is a comparison
expression or a compound expression with logical connectives.
A statement is an assignment, an assertion, a sequencing, or an
ites statement. Particularly, the conditions in iteb expressions
and ites statements only relate to data variables. Finally, a data
constraint consists of finite statements. All its assertions are
expected to hold for given database tables.

The syntax is expressive enough to specify target properties
in real-world scenarios. It covers all the patterns in [3], such
as value comparison, conditional comparison, etc. Also, user-
defined variables support writing data constraints flexibly.
Arithmetic operations and string predicates support expressing
complex properties, e.g., comparing the sums of cash amounts
and matching between string variables.

B. Data Constraint Equivalence Problem

Before stating the problem, we first introduce the notions
of interpretation and semantic equivalence as follows.

Definition 1. An interpretation I maps each data variable vd
to a value in its domain. I is a model of a data constraint r,
denoted by I |= r, if all the assertions hold under I .

Example 1. The following interpretation I is a model of the
data constraint in Fig. 1a.
I = [t.ty 7→ ‘IN’, t.in 7→ 1, t.out 7→ 0, t.oid 7→ 1, t.amt 7→ 1]

An interpretation indicates the values of table attributes.
A data constraint induces a set of interpretations making its
assertions hold. Formally, we define the semantic equivalence.

Definition 2. The data constraints r1 and r2 are semantically
equivalent, denoted by r1 ≃ r2, if and only if

∀I : I |= r1 ⇔ I |= r2

Example 2. Based on Example 1, we can construct
I ′ = I[t.new 7→ 0, t.iid 7→ 1]

I ′ is not a model of the data constraint in Fig. 1c, while it is
a model of the data constraint in Fig. 1a, indicating that they
are not semantically equivalent.

In this work, we aim to propose a decision procedure to
verify whether r1 is semantically equivalent to r2 for a given
data constraint pair (r1, r2). However, finding a sound, com-
plete, and efficient solution is challenging. Theoretically, any
instance of SAT problem [17] can be reduced to an instance
of our problem by constructing two proper data constraints in
polynomial time. Formally, we state the complexity barrier of
our problem as follows.

Theorem 1. Data constraint equivalence problem is NP-hard.

Roadmap. To verify the equivalence, we propose a sym-
bolic representation to encode the semantics (§ V) and design
an efficient decision procedure (§ VI). Particularly, we intro-
duce light-weighted reasoning to refute and prove the equiva-
lence efficiently, which is our main technical contribution. By
fusing our light-weighted reasoning with SMT-based analysis,
our decision procedure features soundness and completeness,
and achieves high efficiency in supporting the equivalence
clustering and searching.

V. SEMANTIC ENCODING

This section introduces the symbolic representation to de-
pict the semantics (§ V-A), presents the symbolic evaluation
(§ V-B), and summarizes the benefit at the end (§ V-C).

A. Symbolic Representation

A data constraint is essentially a program with data variables
as inputs. The values of data variables determine the values
of all the variables and expressions. Based on the intuition,
we propose the concepts of symbolic terms and conditions to
depict the values of variables and expressions.



Definition 3. A symbolic term τ represents the value of a
variable or a literal in either of the forms:
• τ := vd or τ := l is a data variable or a literal, respectively.
• τ := τ1⊕τ2 is a compound term with an arithmetic operator.

Definition 4. A symbolic condition ϕ is a FOL formula in
one of the following forms:
• An atomic condition is an arithmetic comparison of two

symbolic terms or a string comparison, i.e., ϕ := τ1⊙ τ2 or
ϕ := p(τ1, τ2), where p ∈ P is a string predicate.

• A compound condition is a FOL formula with logical
connectives, i.e., ϕ := ϕ1 ∧ ϕ2, ϕ := ϕ1 ∨ ϕ2, or ϕ := ¬ϕ0.

Example 3. In Fig. 1d, the values of cash can be represented
by the terms t.out + t.new and t.new − t.in. The condition
of the ites statement is encoded by ¬contains(t.ty, ‘IN’).

The symbolic terms represent the values of variables, liter-
als, and arithmetic expressions, while the symbolic conditions
encode the values of Boolean expressions, providing the
ingredient for defining the symbolic representations.

Definition 5. For a data constraint r, its symbolic representa-
tion is a symbolic condition φ satisfying
• For any interpretation I , I |= r if and only if I |= φ.
• The negations only occur before string atomic constraints.

Intuitively, the symbolic representation encodes the seman-
tics faithfully with a FOL formula, which only relates to data
variables and exclude redundant negations. It abstracts away
user-defined variables and blurs syntactic differences in terms
of negations effectively, enabling us to design light-weighed
reasoning for equivalence verification. In what follows, we
show how to construct the symbolic representation in detail.

B. Symbolic Evaluation

Now we propose the symbolic evaluation to construct the
symbolic representation. Basically, the symbolic evaluation
consists of two stages, which collects the values of Boolean
expressions in each assertion, and eliminates unnecessary
negations, respectively. Before delving into details, we first
introduce the notion of the symbolic state.

Definition 6. Given a data constraint r, the symbolic state S
at program location ℓ is (E,Φ), where
• An environment E maps a variable v or an arithmetic

expression e to a term-condition pair set {(τ, ϕ)}, indicating
that v or e evaluates to the same value of τ when ϕ holds.

• A property Φ is a symbolic condition that summarizes the
assertions in r before the program location ℓ.

Example 4. After the first assertion in Fig. 1d, we have
E = [t.iid 7→ {(t.iid, T )}, 0 7→ {(0, T )}] Φ = (t.iid ̸= 0)

Now we present the technical details of the symbolic
evaluation. In the first stage, we evaluate the variables and
expressions to obtain a FOL formula depicting the semantics,
which only relates to the data variables. Specifically, we define
the evaluation rules in Fig. 5 and Fig. 6.

ASSIGN
E ⊢e a⇝ V E′ = E[v 7→ V ]

E,Φ ⊢ v = a⇝ E′,Φ

ASSERT
E ⊢b b⇝ ψ Φ′ = Φ ∧ ψ
E,Φ ⊢ assert(b)⇝ E,Φ′

SEQ
S ⊢ s1 ⇝ S1 S1 ⊢ s2 ⇝ S′

S ⊢ s1; s2 ⇝ S′

ITE-S

E ⊢b c0 ⇝ γ1 γ2 = ¬γ1 E,Φ ⊢ si ⇝ Ei,Φi

E′ = [u 7→
⋃2

i=1{(τi, ϕi ∧ γi)|(τi, ϕi) ∈ Ei(u)}]
E,Φ ⊢ ites(c0, s1, s2)⇝ E′, ite(γ1,Φ1,Φ2)

Fig. 5: Evaluation rules of statements

VAR
u ∈ L ∪ Vd U = {(u, T )}

E ⊢e u⇝ U

AE

ai ∈ A E ⊢e ai ⇝ Ui

A = {(t1 ⊕ t2, ϕ1 ∧ ϕ2) | (ti, ϕi) ∈ Ui}
E ⊢e a1 ⊕ a2 ⇝ A

ACmp

ui ∈ A ∪ Vu E ⊢e ui ⇝ Ui

B = {(t1 ⊙ t2) ∧ ϕ1 ∧ ϕ2 | (ti, ϕi) ∈ Ui}
E ⊢b u1 ⊙ u2 ⇝

∨
ϕ∈B ϕ

ITE-E
E ⊢b c0 ⇝ γ0 E ⊢b bi ⇝ γi

E ⊢b iteb(c0, b1, b2)⇝ (γ1 ∧ γ0) ∨ (γ2 ∧ ¬γ0)

Fig. 6: Helper rules evaluating expressions

• The rule ASSIGN evaluates the RHS with the rules VAR and
AE in Fig. 6, and applies the strong update to E, enforcing
the user-defined variable v and the expression a have the
same value. It successfully evaluates user-defined variables,
making the symbolic terms only relate to the data variables.

• The rule ASSERT evaluates the Boolean expression b to a
symbolic condition ψ. It then connects ψ and the original
property Φ with a logical conjunction. This, in turn, forms
a property that accumulates the conditions of the assertions.

• The rules SEQ and ITE-S are defined straightforwardly.
SEQ applies the evaluation rules of two components sequen-
tially. ITE-S evaluates the two cases separately and joins
two symbolic states according to the branch condition.

We omit the rules of evaluating string comparisons and
other compound Boolean expressions due to limited space,
which are similar to the rules ACmp and ITE-E. Based on
the rules, we evaluate a data constraint stepwise. Initially, the
symbolic state is a pair of empty mapping and a true value. By
applying the rule of each statement along control flow paths,
we obtain the symbolic state at each program location and
finally summarize all the assertions with the property Φe at
the exit, which depicts the semantics of the data constraint.

Example 5. Consider the data constraint in Fig. 1d. We obtain
Φ = ϕ1 ∧ ((ϕ2 ∧ ϕ4) ∨ (ϕ3 ∧ ¬ϕ4)) at its exit, where
ϕ1 = (t.iid ̸= 0) ∧ (t.oid ̸= 0) ϕ2 = (t.out+ t.new = t.old)

ϕ3 = (t.new − t.in = t.old) ϕ4 = ¬contains(t.ty, ‘IN’)



In the second stage, we eliminate the negations in Φe that
do not apply to atomic string constraints. Technically, we
first transform Φe into the negation normal form (NNF), in
which the negation applies only to atomic formulas. Then,
we eliminate the negation before each atomic arithmetic con-
straint by changing the comparison operator, e.g., transforming
¬(t.a ≥ t.b) to t.a < t.b. Notably, the above transformations
can be achieved by the breadth-first search upon the parse tree
of Φe, where the symbolic representation is constructed on the
fly. The overall time complexity is linear to the size of Φe.

Example 6. In Example 5, we eliminate the negations and get
the symbolic representation φ = ϕ1 ∧ ((ϕ2 ∧ ϕ4)∨ ϕ′), where
ϕ′ = (t.new − t.in = t.old) ∧ contains(t.ty, ‘IN’).

C. Summary

The symbolic representation is essentially a Boolean func-
tion of data variables, featuring the following three benefits:
• The symbolic representations preserve the lexical differ-

ences in terms of data variables, literals, and operators,
which can indicate the possible non-equivalence.

• The symbolic evaluation evaluates the user-defined vari-
ables, abstracting away the difference in terms of their
names, which do not affect the semantics.

• The elimination of unnecessary negations normalizes the
FOL formulas and yields isomorphic symbolic representa-
tions for more equivalent data constraints.

Thus, the semantic encoding exposes lexical differences and
syntactic isomorphism for light-weight reasoning, which effi-
ciently refutes and proves the equivalence (§ VI-A § VI-B).

VI. DECISION PROCEDURE

In this section, we first introduce the divergence analysis
(§ VI-A) and isomorphism analysis (§ VI-B) for efficiently
refuting and proving the equivalence, respectively. We then
combine the two analyses with SMT solving to establish the
decision procedure (§ VI-C). In what follows, we denote the
data constraints by r1 and r2 and their symbolic representa-
tions by φ1 and φ2 for demonstration.

A. Divergence Analysis

Based on Definition 5, φ1 and φ2 depict the semantics of
two data constraints faithfully. We can safely refute the equiv-
alence if there exists an interpretation I making them evaluate
to different truth values. However, it is non-trivial to obtain
such a desired interpretation efficiently. The random sampling
may hit a desired interpretation successfully after failing many
attempts, which can degrade the efficiency significantly. To
resolve the problem, we attempt to explore specific Boolean
structures of φ1 and φ2 and concretize the data variables
within the structures. Formally, we introduce the degrees of
freedom to guide the exploration.

Definition 7. For two symbolic representations φ1 and φ2,
the degrees of freedom of a clause ϕ occurring in φ1 is

DF(ϕ | φ1, φ2) =
1

h(ϕ)
·

∑
M∈{Vd,L,O}

|M(ϕ) \M(φ2)|

Algorithm 1: Divergence analysis

Input: φ1, φ2: Two symbolic representations;
Output: Whether ∃I : ¬(I |= φ1 ↔ I |= φ2)

1 foreach (ϕ1, ϕ2) ∈ {(φ1, φ2), (φ2, φ1)} do
2 I ← ⊥;
3 status← T ;
4 explore(ϕ1, ϕ1, ϕ2, F);
5 explore(ϕ2, ϕ2, ϕ1, T);
6 if status is T then
7 return true;

8 return unknown;
9 Procedure explore(ϕ, φ, φ′, tv)

10 if status then
11 if ϕ is atomic then
12 if FreeVar(ϕ, I) ̸= ∅ then
13 I ← concretize(ϕ, tv);
14 else
15 status← check(I |= ϕ = tv);

16 else if (LC(ϕ), tv) ∈ {(∧, T ), (∨, F )} then
17 foreach ϕi ∈ C(ϕ) do
18 explore(ϕi, φ, φ′, tv);

19 else
20 ϕ′ ← argmaxϕi∈C(ϕ) DF(ϕi | φ,φ′);
21 explore(ϕ′, φ, φ′, tv);

h(ψ) is the height of the parse tree of ψ. Vd(ψ) contains the
data variables in ψ but excludes arithmetic operands. L(ψ)
and O(ψ) contain the literals and operators in ψ, respectively.

Intuitively, a larger degrees of freedom indicates a higher
possibility of making ϕ evaluate to a target truth value:
• First, a smaller value of h(ϕ) indicates the opportunity of

finding the desired interpretation with fewer explorations.
• Second, a larger value of |M(ϕ) \M(φ2)| indicates that ϕ

has more unique lexical tokens absent in φ2. The concretiza-
tions of data variables in ϕ and φ2 are less intertwined.

• Third, Vd(ϕ) excludes arithmetic operands, as arithmetic
operations can increase the difficulty of concretization.

Example 7. Consider the data constraints in Fig. 1a and
Fig. 1c. According to § V, their symbolic representations are
φ1 = ((t.in > 0 ∧ ϕc) ∨ (t.out > 0 ∧ ¬ϕc)) ∧ ϕa ∧ ϕo
φ2 = ((t.out > 0 ∧ ¬ϕc) ∨ (t.new > 0 ∧ ϕc)) ∧ ϕa ∧ ϕi

where ϕa = (t.amt > 0), ϕo = (t.oid ̸= 0), ϕi = (t.iid ̸= 0),
and ϕc = contains(t.ty, ‘IN’). Let ϕ denote the first clause
of φ1. We have Vd(ϕ) \Vd(φ2) = {t.in}, L(ϕ) ⊆ L(φ2), and
O(ϕ) ⊆ O(φ2) Thus, we have DF(ϕ | φ1, φ2) =

1
3 . Similarly,

we have DF(ϕa | φ1, φ2) = 0 and DF(ϕo | φ1, φ2) = 1.

Based on the degrees of freedom, we propose the divergence
analysis to generate a desired interpretation. Alg. 1 shows
its technical details. It receives two symbolic representations
φ1 and φ2 and attempts to generate a desired interpretation
enforcing them evaluate differently (lines 1–7). The function



explore traverses the clauses level by level (lines 9–21),
handling three kinds of clauses ϕ with specific strategies:
• If ϕ is atomic, we concretize the free variables to make ϕ

evaluate to tv (lines 12–13). If there is no free variable, we
check whether ϕ evaluates to tv under I (line 15).

• If ϕ is a connected with ∧ and tv is true, or ϕ is connected
with ∨ and tv is false, we explore all the clauses in ϕ and
enforce them evaluates to tv (lines 16–18).

• Otherwise, we select the clause ϕ′ with the maximal degrees
of freedom and enforce it evaluate to tv (lines 20–21).

If each clause evaluates to the target value, Alg. 1 finds the
desired interpretation, thereby refuting the equivalence.

Example 8. In Example 7, φ1 is connected with the logical
conjunction. We only need to select and explore one of its
clauses if we want to make φ1 evaluate to false. The third
clause ϕo has a larger degrees of freedom than the other two,
so we select it and assign 0 to t.oid. Similarly, we can enforce
φ2 evaluate to true, which finally refutes the equivalence.

Lastly, it is worth mentioning that the data constraints with
different lexical tokens are often non-equivalent, while it is
unsound to refute the equivalence directly based on lexical
differences. In contrast, our divergence analysis essentially uti-
lizes lexical differences to guide the interpretation generation,
which supports refuting the equivalence soundly.

B. Isomorphism Analysis

As the FOL formulas, the symbolic representations φ1 and
φ2 are logically equivalent if we can transform φ1 to φ2 by
reordering commutative sub-formulas and terms in φ1. For
example, the evaluation of a FOL formula does not depend on
the order of the clauses connected with the logical disjunction
and conjunction. Also, any permutation of the operands of
commutative arithmetic operators, such as addition and multi-
plication, always yields the logically equivalent formula. In
other words, we can prove the data constraint equivalence
safely by identifying the isomorphism between φ1 and φ2.

Based on the above key idea, we propose the isomorphism
analysis to determine whether the parse trees of φ1 and φ2 are
isomorphic, which is formulated in Alg. 2. Using the AHU
algorithm [13] for tree isomorphism checking, Alg. 2 proves
the data constraint equivalence if the parse trees are isomorphic
(lines 1–2). Particularly, the functions SCT and STT process
the clauses and terms of a symbolic representation in a top-
down manner, respectively, creating tree nodes and leaf nodes
in the parse tree.
• When processing a non-atomic formula φ, SCT creates a

tree node to store the logical connective, and appends all
the parse trees of its clauses (lines 5–6).

• For an atomic condition, SCT creates a tree node if the
comparison operator is in {=, ̸=} or the string predicate
is equals (lines 8–9). Otherwise, it adds a leaf node to
make sub-trees nonexchangeable (lines 10–14). Notably, it
normalizes inequalities to enforce them using > and ≥ only,
which supports discovering more equivalent inequalities.

Algorithm 2: Isomorphism analysis

Input: φ1, φ2: Two symbolic representations;
Output: Whether ∀I : I |= φ1 ↔ I |= φ2

1 if AHUcheck(SCT(φ1), SCT(φ2)) then
2 return true;
3 return unknown;
4 Procedure SCT(ϕ)
5 if ϕ : ϕ1 ⊛ · · ·⊛ ϕk and ⊛ ∈ {∧,∨,¬} then
6 return Tree(⊛, {SCT(ϕi) | 1 ≤ i ≤ k});
7 else if ϕ : τ1 ⊛ τ2 or ϕ : ⊛(τ1, τ2) then
8 if ⊛ ∈ {=, ̸=, equals} then
9 return Tree(⊛, {STT(τ1),STT(τ2)});

10 else if ⊛ ∈ {<,≤} then
11 ⊛′ ← flip(⊛);
12 return Leaf(⊛′,STT(τ1),STT(τ2));
13 else
14 return Leaf(⊛,STT(τ1),STT(τ2));

15 Procedure STT(τ)
16 if Op(τ) = {⊛} and ⊛ ∈ {+, ∗} then
17 return Tree(⊛,Operand(τ));
18 else if τ : τ1 ⊕ τ2 then
19 return Leaf(⊕,STT(τ1),STT(τ2));
20 else
21 return Leaf(τ);

• STT constructs a tree node if a term τ only uses addition or
multiplication (lines 16–17). For other cases, STT creates a
leaf node (lines 18–21).

Example 9. Fig. 7a and Fig. 7b show the parse trees of the
symbolic representations for the data constraints in Fig. 1b and
Fig. 1d, respectively. φ∗ represents contains(t.ty, ‘IN’).
Their isomorphism proves the data constraint equivalence.

∨

∧

≠≠

t.iid0t.oid 0∧∧

+t.old

= ¬

t.outt.new

𝜑∗=

t.new-t.in
t.old 𝜑∗

(a)

∨

∧

≠≠

t.iid 0 t.oid 0
∧ ∧

+ t.old

= ¬

t.out t.new

=

t.new-t.in

t.old

𝜑∗

𝜑∗

(b)

Fig. 7: Two isomorphic parse trees

It is worth noting that the AHU algorithm in Alg. 2 is
slightly different from the standard one [13]. Originally, the
AHU algorithm sorts the sub-trees by level, as the orders of
the sub-trees do not matter. In our case, however, only the
sub-trees of tree nodes can be arbitrarily permuted. Thus, we
modify the AHU algorithm to adapt it to the isomorphism
analysis, not sorting the sub-trees of each leaf node.



Algorithm 3: Decision procedure

Input: r1, r2: Two data constraints;
Output: Whether r1 ≃ r2 or not

1 φ1, φ2 ← getSymReps(r1, r2);
2 if Divergent(φ1, φ2) is true then
3 return false;

4 if Isomorphic(φ1, φ2) is true then
5 return true;

6 return (SMT-Solve(¬(φ1 ↔ φ2)) is UNSAT);

C. Equivalence Verification with EQDAC

Combining the above analyses with the SMT solving, we
obtain the decision procedure EQDAC in Alg. 3. We first con-
struct the symbolic representations φ1 and φ2 via the semantic
encoding. If we can not refute or prove the equivalence with
the first two analyses (lines 2–5), an SMT solver examines
whether φ1 and φ2 are logically equivalent (line 6) for general
cases. Notably, the function Divergent invokes Alg. 1 at the
line 2, and explores the Boolean structures of φ1 and φ2 at
most two times, ensuring the efficiency of the first stage.

The divergence analysis and isomorphism analysis over
and under-approximate the equivalence, respectively. Although
the analyses do not always determine the equivalence, they
can handle a large proportion of data constraints in practice,
evidenced by our evaluation. Formally, we state two theorems
to formulate the theoretical guarantee, of which the proofs are
provided in the appendices.

Theorem 2. The steps in Alg. 3 before line 6 run in polyno-
mial time to N , where N is the upper bound of the numbers
of AST nodes for the two data constraints.

Theorem 3. For the syntax in Fig. 4, the data constraints are
semantically equivalent if Alg. 3 returns true and vice versa.

VII. IMPLEMENTATION

We have implemented EQDAC in Python and deployed it
in the FinTech company A. EQDAC first generates the AST of
a data constraint and then translates it to the symbolic repre-
sentation. We leverage the Z3 SMT solver [18] to support the
SMT solving in the third stage. Particularly, we utilize the bit-
vector, floating-point arithmetic, and string theory to encode
variables and literals in the finite-length integer, floating point,
and string types, respectively.

Based on EQDAC, we have further implemented two bots,
which are shown in Fig. 2, to conduct the equivalence cluster-
ing and searching, respectively. In the equivalence clustering,
we verify the equivalence of data constraints by invoking EQ-
DAC pairwise. Particularly, we cache the symbolic representa-
tion of each data constraint to avoid redundant construction in
different invocations. Similarly, we examine the equivalence
of a new data constraint and each existing one sequentially
in the equivalence searching, and also generate the symbolic
representation for a data constraint only once.
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Fig. 8: The counts and sizes of clusters

VIII. EVALUATION

To quantify the effectiveness and efficiency, we evaluate
EQDAC upon the data constraints in a FinTech system by
investigating the following research questions:
• (RQ1) How many equivalent data constraints are identified?
• (RQ2) How efficient is EQDAC in the equivalence cluster-

ing and searching?
• (RQ3) How important is each of the three stages?

Subjects. We collect 30,801 data constraints from a FinTech
system in Company A, which are in the syntax shown in Fig. 4.
Averagely, a data constraint contains 9.4 data constraints and
17.6 lines of code. Despite the moderate average size, we still
need to handle the large set of data constraints efficiently,
which is non-trivial yet crucial in industrial scenarios. Lastly,
there are 1,497 data constraints not obeying our syntax, which
are not selected as the subjects. They mainly contain advanced
string operations, e.g., substring and replaceAll, and system
calls, e.g., getTimeZone. In this work, EQDAC focuses on the
data constraints in our given syntax, covering most of the data
constraints (95.4%) in the FinTech system of Company A.

Environment. We conduct all the experiments on a 64-bit
machine with 40 Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20
GHz and 512 GB of physical memory. We invoke the Z3 SMT
solver with its default options. We run the experiments with a
time limit of 12 hours and a memory limit of 16 GB.

Availability. We release the code and sample constraints
in GitHub repository [19]. The whole set of data constraints
cannot be shared because of confidentiality agreements.

A. Equivalent Data Constraint Identification

To answer the first question, we evaluate EQDAC upon
30,801 data constraints by verifying the data constraint equiv-
alence pairwise. Specifically, each pair of data constraints is
fed to EQDAC to determine whether they are equivalent.

Result. We find that 11,538 data constraints (37.5%) have
one or more equivalent variants, forming 26,789 equivalent
pairs and 3,696 equivalence clusters. Particularly, we can leave
one data constraint in each equivalence cluster and eliminate
7,842 data constraints without compromising the validity of
the data reconciliation. Due to our limited permission, we
sample a subset of the data constraints and measure the CPU
time reduction when avoiding checking redundant ones. The
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Fig. 9: Time and memory cost of equivalence clustering

result shows that the CPU time reduction ratio reaches 15.48%.
According to the feedback of the experts, any reduction can
bring a drastic benefit to the overall system in the long run, as
data constraints are frequently checked online during a long
development cycle.

We also count the data constraints in each cluster, in which
data constraints are equivalent to each other. Fig. 8 shows that
the size of a cluster ranges from 2 to 48. Specifically, the
number of clusters with a size of 2 is 2,233. For the largest
cluster with the size of 48, a violation of any data constraint
will generate 48 alerts. Therefore, identifying equivalent data
constraints can provide practical guidance in reusing the
checking results and support the redundant alert elimination.

B. Performance Evaluation

We investigate the time consumption and memory usage
of EQDAC in the equivalence clustering and searching. The
experimental configurations are set up as follows.

• Equivalence clustering: To quantify the cost of clustering
different sizes of data constraint sets, we construct eight sets
of the data constraints, of which the sizes range from 100
to 30,801, and measure the time and memory usage of the
clustering. All the data constraints are selected randomly.

• Equivalence searching: We select 1,000 data constraints
from 30,801 data constraints as the recently-submitted ones
and regard the remaining as the existing ones. Specifically,
half of the selected ones are equivalent to at least one data
constraint in the remaining set to quantify the cost of the
equivalence searching in the worst case.

Result. As shown by Fig. 9, EQDAC finishes analyzing
30,801 data constraints in 2.89 hours within 5.01 GB of peak
memory. We perform the regression analysis to quantify the
scalability, choosing the quadratic and linear functions as the
templates of the regression analyses for the time and memory
cost, respectively, as we construct a symbolic representation
for each data constraint only once and invoke the decision
procedure in a pairwise manner. The R-squared values for
memory and time are 0.987 and 0.999, respectively. Also, the
coefficients in the quadratic and linear terms are quite small,
indicating that the overhead increases gently. In summary,
EQDAC supports the scalable equivalence clustering.

TABLE I: The statistics of the equivalence clustering

Variant Time(h) Mem(GB) #Eq Pair #Redundant

EQDAC-ND OOT 7.27 141 53
EQDAC-NI 4.48 6.80 26,789 7,842
EQDAC-NS 2.13 3.94 25,952 7,296
EQDAC 2.89 5.01 26,789 7,842

Fig. 10a shows the cost of the equivalence searching. All
the analyses finish in 2.5 seconds within 528 MB of peak
memory. Specifically, there is little difference in memory cost,
ranging from 525.85 MB to 527.87 MB, while the time cost
has a relatively large variance. The analyses of several data
constraints demand SMT solving, which introduces more time
costs. Typically, most of the cases can be analyzed in 1.5
seconds, and the average time cost is only 1.22 seconds.
Thus, EQDAC supports searching equivalent data constraints
efficiently, which is essential for maintenance.

C. Ablation Study

We set three ablations, namely EQDAC-ND, EQDAC-NI,
and EQDAC-NS, which skip the divergence analysis, the
isomorphism analysis, and SMT solving, respectively. The first
two ablations are sound and complete, while EQDAC-NS can
return unknown due to its incompleteness.

Result. Table I shows the results of the ablation study
in the equivalence clustering. As we can see, EQDAC-ND
does not finish analyzing 30,801 data constraints in 12 hours,
and its peak memory reaches nearly 7.27 GB. Specifically,
EQDAC-ND only finishes comparing seven data constraints
with the remaining data constraints pairwise, discovering 141
equivalent pairs and 53 redundant data constraints. EQDAC-
NI discovers the same equivalent pairs as EQDAC. However,
it has to perform the SMT solving for all the data constraint
pairs of which the equivalence is not refuted by the divergence
analysis, increasing the time cost to 4.48 hours. EQDAC-NS
skips the SMT solving and consumes less time and memory
than EQDAC, spending 1.78 and 0.35 hours on the diver-
gence analysis and the isomorphism analysis, respectively.
It does not discover 837 equivalent pairs, and thus, misses
546 redundant constraints. Particularly, our divergence analysis
identifies 38,964 non-equivalent pairs even if their symbolic
representations have the same sets of data variables, literals,
and operators. Thus, the divergence analysis not only refutes
the equivalence soundly but also provides the possibility of
refuting more non-equivalent pairs.

Fig. 10 shows the cost of the equivalence searching.
EQDAC-NI costs more in each equivalence searching task,
as the SMT solver consumes more resources to prove the
equivalence. Specifically, its average time cost is 2.53 seconds,
and its peak memory reaches 566.98 MB. In the worst case,
it takes 6.56 seconds to finish the equivalence searching
of a data constraint, degrading its usability in real-world
production. EQDAC-NS consumes less time because it does
not invoke SMT solvers in all the cases. However, it can not
identify the equivalent variants for 37 data constraints due to
incompleteness. EQDAC-ND does not finish the equivalence
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Fig. 10: Time and memory cost of EQDAC, EQDAC-NI, and EQDAC-NS

/* Data contraint 1 */
assert(t.id != t.pid);
assert(ut.oid != ut.iid);
if(t.id == ut.oid){
assert(t.pid == ut.iid);

} else {
assert(t.id == ut.iid);
assert(t.pid == ut.oid);}

/* Data contraint 2 */
if(t.id == ut.iid){
assert(ut.oid == t.pid);

} else {
assert(t.id == ut.oid);
assert(t.pid == ut.iid);}

assert(ut.iid != ut.oid);
assert(t.pid != t.id);

Fig. 11: An example of case study

searching of 1,000 data constraints in the given time budget.
It has to invoke the SMT solver to prove the non-equivalence,
making the overall time cost unacceptable.

Case Study. Fig. 11 shows an equivalent pair discovered
via the SMT solving. The data constraints both examine
whether the IDs of the income and expense accounts match
with the ones in the transaction. Unfortunately, we can not
deduce the equivalence from the parse trees of their symbolic
representations. Instead, we have to reason multiple assertions
in a relational manner. The two assertions in the sequencing
are the premise of the equivalence of two ites statements, while
it is beyond the ability of the isomorphism analysis.

D. Discussion

In what follows, we demonstrate the discussions on the
feedback from the users, threats to validity, limitations, and
future work.

Feedback from the Users. EQDAC has been integrated
into the production line of Company A, serving as the core
building block of two bots in the CI/CD workflow. To obtain
the feedback of users, we assigned the questionnaires to the
developers and the quality assurance managers in the forum
of the company, which received rave reviews from users. For
example, a developer comments the search bot in the forum
as follows, showing his appreciation for the instant response
and useful results.

“The search is so smooth! I had been expecting such an
assistant for data constraint maintenance. The results
are mostly fetched in just one or two seconds, assisting
in merging data constraints.”

Threats to Validity. A threat to validity is whether the way
of producing data constraints affects our results. Ineffective
communication between developers could increase the number
of equivalent data constraints, as they are unaware of the data
constraints submitted by others. For a small FinTech system
with only a few data constraints, the benefit of resolving
redundancy could be less significant. EQDAC mainly targets
systems with thousands of data constraints and shows excellent
potential to improve their maintainability.

Limitations and Future Work. First, our syntax excludes
several string operations. Theoretically, solving general string
constraints is undecidable [20]–[22], while the first two stages
of EQDAC can still work in the presence of advanced string
operations. It would be interesting to reason more string
operations even though, according to our experience, they do
not widely exist. Second, EQDAC focuses on equivalence
relations in this work. It is meaningful to examine whether
a data constraint subsumes others for consolidation [23].
Third, EQDAC currently analyzes data constraints in FinTech
systems. It would be promising to extend EQDAC to support
light-weighted equivalence checking in other domains, such as
SQL queries [9] and database-backed programs [24].

IX. RELATED WORK

A. Program Equivalence Checking

There is an extensive body of research on program equiv-
alence checking, which is a crucial building block in many
clients, such as translation validation [7], [25] and program
synthesis [26]–[28]. One line of studies reduces equivalence
checking to proving specific verification conditions, such as
relational verification [29]–[34]. Similar approaches include
using symbolic execution for loop-free programs [27], [35]–
[38]. Different from the existing efforts that target sophis-
ticated program constructs, EQDAC focuses on a domain-
specific language in FinTech systems, pursuing efficiency over
the capability of handling a flexible program syntax.

Another line of studies proves program equivalence via
term rewriting [6], [7], [39], [40]. The effectiveness relies
heavily on the quality of rewrite rules. First, they may sacrifice
soundness or completeness if the rule set contains an incorrect
rule or misses a right one [41]. Second, they may suffer from
the phase ordering problem [8] in the presence of a large
number of rewrite rules. To obtain better complexity, [42]
restricts the form of rewrite rules, and adopts tree isomorphism
algorithms to check syntactic isomorphism. EQDAC bears
similarities to [42] in terms of proving the equivalence, while
we consider more program constructs in the isomorphism
analysis, such as arithmetic operators and string predicates,
which promotes its capability in practice.



B. SQL Query Equivalence Checking

Verifying SQL query equivalence is an essential topic in
both academia and industrial communities. The state-of-the-art
approaches focus on specific forms of SQL queries [43] and
apply either algebraic reasoning techniques [6], [40], [44] or
symbolic reasoning [9], [10], [45] for equivalence verification.
Typically, UDP [40] utilizes U-semiring to encode the bag
semantics of SQL effectively and checks the isomorphism
between two algebraic structures. However, it fails to handle
advanced features, e.g., three-valued logic, and suffers from
the inefficient chase procedure in the isomorphism check-
ing [46]. In contrast, EQUITAS [9] encodes the semantics
with a FOL formula and leverages a solver to determine the
equivalence, handling more SQL features [47] than UDP.

In our work, EQDAC targets the equivalence of data con-
straints rather than SQL queries, while it bears similarities
with existing efforts in terms of technical designs. Specifically,
it abstracts away the orders of commutative constructs, and
leverages a solver to determine the equivalence of two FOL
formulas. Thus, it avoids the inefficient chase procedure and
unleashes the power of SMT solving.

C. SMT Solving Optimization

There is a vast amount of literature on guiding SMT solving
with program features. One typical line of studies performs
semantically equivalent transformations to reduce the overhead
of SMT solving [12], [48]–[51], For example, [50] uses
contextual information to simplify array constraints, which
transforms array operations with symbolic indexes to the ones
only involving constant indexes. Another line of the litera-
ture utilizes semantic information to optimize SMT solving
algorithms [52]–[55]. For instance, [51], [52] leverage control-
flow information to guide the branching strategy in CDCL(T )-
style SMT solving. Similarly, our symbolic representations
preserve program syntactic features, which supports proving
the equivalence efficiently by the isomorphism analysis.

Apart from accelerating the solving process, caching the
intermediate results, e.g., unsatisfiable core [56] and syntactic
features [57], can also avoid calling the solver. GREEN exam-
ines the syntactic equivalence of constraints, and reuses the
previous solving result of the equivalent ones [57]. It shares a
similar idea with the isomorphism analysis of EQDAC, while
EQDAC also conducts the divergence analysis to discover
non-equivalent pairs efficiently, promoting the efficiency of
data constraint maintenance applications in the real world.

X. CONCLUSION

We have presented EQDAC, an efficient, sound, and com-
plete decision procedure for verifying the data constraint
equivalence in FinTech systems. It supports two typical clients,
namely equivalence clustering and searching, in the production
line of a global FinTech company. EQDAC scales to a large
number of data constraints with high efficiency, liberating pro-
ductivity in the data constraint maintenance. We believe that
the insight behind EQDAC can further promote equivalence
checking in other domains.
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APPENDICES

In this supplementary material, we provide the proofs of the
theorems in our paper.

A. Complexity Barrier

In what follows, we present the proof of Theorem 1.

Proof. We only need to prove that we can reduce any instance
of the SAT problem to an instance of the data constraint
equivalence problem in polynomial time.

Consider an arbitrary propositional logic formula ψ, which
contains n variables denoted by ai (1 ≤ i ≤ n). We first
construct a database table with n attributes, namely vi, where
1 ≤ i ≤ n. Meanwhile, we introduce a constant set containing
n unique constants, denoted by L = {ℓ1, ℓ2, · · · , ℓn}. We then
construct the assertion statement assert(f(v1, v2, · · · , vn)).
Here the boolean expression f(v1, v2, · · · , vn) is constructed
by replacing ai with the equality constraint vi == ℓi in ψ.
Such the assertion statement is exactly the data constraint r
we want. Obviously, ψ is unsatisfiable if and only if r is
semantically equivalent to

assert(f(v1, v2, · · · , vn) and ¬f(v1, v2, · · · , vn))

The reduction can be achieved in linear time to the size of the
formula ψ. Therefore, the data constraint equivalence problem
is NP-hard.

B. Complexity

Before proving Theorem 2, we first propose and prove two
lemmas as follows.

Lemma 1. We define the size of a symbolic condition ϕ as
follows:

δ(ϕ) =

 1 ϕ is atomic
1 + δ(ϕ0) ϕ = ¬ϕ0

δ(ϕ1) + δ(ϕ2) ϕ = ϕ1 ∨ ϕ2 or ϕ = ϕ1 ∧ ϕ2
Given any data constraint r, denote the node number of its ab-
stract syntax tree by N . The size of its symbolic representation
δ(φ) is polynomial to N .

Proof. For clarity, we introduce two functions α and β:
• α(E, e) is the number of terms that e may be equal to.
• β(E, e) is the maximal size of the symbolic condition

under which e is equal to a specific term. i.e., β(E, e) =
max(τ,ϕ)∈E(e) δ(ϕ).
According to the rules in Fig. 5 and Fig. 6, E is only updated

by the rules ASSIGN, SEQ, and ITE-S.
• Let’s consider α(E′, v) and β(E′, v) after applying the

rule ASSIGN. If the rule ASSIGN applies the rule VAR,
we have

α(E′, v) = 1, β(E′, v) = 1

If the rule ASSIGN applies the rule AE, we have

α(E′, v) = 1, β(E′, v) = β(E, a1) + β(E, a2)

• After applying the rule ITE-S, for any e ∈ dom(E′),
we have

α(E′, e) = O(α(E1, e) + α(E2, e))

β(E′, e) = max
i∈{1,2}

β(Ei, e) = O(β(E1, e) + β(E2, e))

• After applying the rule SEQ, the effects of the involved
rules accumulate.



Based on the above equations, we can find that α(E, e) and
β(E, e) are both linear to the times of applying the rules. Thus,
for any program location, we have

max
e in r

α(E, e) = O(N), max
e in r

β(E, e) = O(N)

Now, we can estimate the upper bound of δ(φ). According
to the rules in Fig. 5 and Fig. 6, Φ is only updated by the
rules ASSERT, ITE-S, and SEQ.

• Let’s consider δ(Φ′) after applying the rule ASSERT. If
the rule ASSERT applies the rule ACmp, we have

δ(Φ′)−δ(Φ) =
∑

(ti,ϕi)∈Ei(ui)

(1+δ(ϕ1)+δ(ϕ2)) = O(N2)

If the rule ASSERT applies the rule ITE-E, we have

δ(Φ′)− δ(Φ) = δ(γ1) + δ(γ2) + 3

Observe that γ1 and γ2 are obtained by applying the
rules ACmp and ITE-E. We can sum up the above two
equations and obtain that

δ(Φ′)− δ(Φ) = O(N3)

• After applying the rule ITE-S, we have the following
relation:

δ(Φ′) = 3 + δ(Φ1) + δ(Φ2)

• The rule SEQ accumulates the effects upon δ(Φ).
By summating all the above equations, we have

δ(Φe) = O(N4)

Notice that the negation elimination can reduce the size of the
FOL formula. Therefore, we have

δ(φ) ≤ δ(Φe) = O(N4)

Notably, the estimated upper bounds of maxe in r α(E, e),
maxe in r β(E, e), and δ(Φe) are not tight. For clarify, we only
attempt to bound them with the polynomial function of N . The
upper bounds can be further strengthened by the polynomial
functions of the numbers of specific AST nodes.

Lemma 2. Given a data constraint r, its symbolic represen-
tation φ can be constructed in polynomial time to N , where
N is the node number of the abstract syntax tree of r.

Proof. We examine the time complexity of the rules in Fig. 5
and Fig. 6. The rules ACmp and AE can be applied in O(N2)
time, as they have to iterate two sets pairwise. The other rules
are all applied in O(1) time, as they only need to construct
a constant number of FOL formulas. Each of the above
rules is applied at most O(N) times. Therefore, the symbolic
representation can finally be constructed in O(N3).

Now, we present the proof of Theorem 2 as follows.

Proof. We prove the theorem by proving three parts.
• First, we can obtain that φ1 and φ2 can be constructed in

polynomial time to N based on Lemma 2.

• Second, the divergence analysis actually traverses the parse
trees of φ1 and φ2, of which the sizes are both polynomial
to N , as Lemma 1 indicates that δ(φ1) and δ(φ2) are
polynomial to N . Thus, the divergence analysis also works
in polynomial time.

• Third, the function SCTree constructs the parse trees in
O(δ(φ1) + δ(φ2)) time, which is polynomial to N . The
AHU algorithm also works in O(M) time, where M is the
node number of the tree. According to Lemma 1, M is
polynomial to N . Thus, the isomorphism analysis works in
polynomial time.

Therefore, the steps in Alg. 3 before line 6 run in polynomial
time to N .

At the end of the section, we want to emphasize the follow-
ing two points. First, we omit the discussion of several rules
that are not shown in Fig. 5 and Fig. 6 when proving the two
lemmas, e.g., the rules of evaluating the boolean expressions
with logical connectives. However, the arguments are similar
to the rules that are discussed in the proofs. Actually, the two
lemmas hold for any data constraints in the syntax shown in
Fig. 4. Second, we do not provide the tight estimation of the
complexity. As shown in the proof of Lemma 1, the upper
bound of δ(Φe) would be quite sophisticated, involving with
the numbers of program constructs in different kinds, if we
want to give a tight bound. In this work, we only tend to
show that the steps before the SMT solving can be achieved
in polynomial time, while the SMT solving may consume
exponential time cost theoretically.

C. Soundness and Completeness

In this section, we prove the soundness and completeness.

Proof. If two data constraints r1 and r2 are semantically
equivalent, the divergence analysis does not return true, as
it can not find an interpretation making their symbolic rep-
resentations φ1 and φ2 evaluate to different truth values.
Meanwhile, φ1 and φ2 are essentially the FOL formulas in
the fragment of bit-vector theory, floating-point arithmetic
theory, and word equations, which is theoretically decidable.
Therefore, the SMT solving must terminate and return UNSAT,
making Alg. 3 returns true.

If Alg. 3 returns true, the isomorphism analysis returns
true or the SMT solving returns UNSAT. In the first case,
the parse trees of two symbolic representations φ1 and φ2

are isomorphic, indicating that they must evaluate to the same
truth values under a given interpretation, so the data constraints
are semantically equivalent. In the second case, we have φ1

and φ2 are logically equivalent, implying the data constraint
equivalence. Therefore, EQDAC is sound and complete.
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