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Modern software systems heavily rely on various libraries, necessitating understanding API semantics in

static analysis. However, summarizing API semantics remains challenging due to complex implementations or

the unavailability of library code. This paper presents DAInfer, a novel approach for inferring API aliasing

speci�cations from library documentation. Speci�cally, we employ Natural Language Processing (NLP) models

to interpret informal semantic information provided by the documentation, which enables us to reduce

the speci�cation inference to an optimization problem. Furthermore, we propose a new technique called

neurosymbolic optimization to e�ciently solve the optimization problem, yielding the desired API aliasing

speci�cations. We have implementedDAInfer as a tool and evaluated it upon Java classes from several popular

libraries. The results indicate that DAInfer infers the API aliasing speci�cations with a precision of 79.78%

and a recall of 82.29%, averagely consuming 5.35 seconds per class. These obtained aliasing speci�cations

further facilitate alias analysis, revealing 80.05% more alias facts for API return values in 15 Java projects.

Additionally, the tool supports taint analysis, identifying 85 more taint �ows in 23 Android apps. These results

demonstrate the practical value of DAInfer in library-aware static analysis.
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1 INTRODUCTION

In modern programming languages, programmers often develop their applications based on various
libraries, which provide fundamental building blocks for client-side implementation. Undoubtedly,
the behaviors of library APIs directly a�ect the functionality of the application code. As targeted by
existing studies [8, 22], several library APIs are essentially generalized store and load operations,
forming aliasing relations through store-load matches. For example, the APIs HashMap.put and
HashMap.get conduct the store and load operations, respectively. When they are invoked upon the
sameHashMap object with the same �rst parameters successively, the return value of HashMap.get

can be aliased with the second parameter of HashMap.put. To identify value �ows in the application
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Method Summary

ID Return Type Method and Description

1 void putStringArrayListExtra(String name, ArrayList<String> value)

Add extended data to the intent.

2 Intent setIdentifier(String identifier)

Set an identifier for this Intent.

3 String getIdentifier()

Retrieve the identifier for this Intent.

4 ArrayList<String> getStringArrayListExtra(String name)

Retrieve extended data from this Intent.

5 String normalizeMimeType(String type)

Normalize a MIME data type.

6 int fillIn(Intent other, int flags)

Copy the contents of other in to this object.

Method Summary

ID Return Type Method and Description

7 E push(E item)

Pushes an item onto the top of this stack.

8 E peek()

Looks at the object at the top without removing it from the stack.

9 E pop()

Removes the object at the top of this stack and returns that object as 

the value of this function.

10 boolean empty()

Tests if this stack is empty.

package: java.util

Class Stack<E>

•java.lang.Object

• java.util.AbstractCollection<E>

• java.util.AbstractList<E>

• java.util.Vector<E>

• java.util.Stack<E>

package: android.content

Class Intent

•java.lang.Object

• android.content.Intent

① Class Hierarchy Relation

③ Naming Information

② Type Signature

④ Semantic Description

(a) The documentation of android.content.Intent (b) The documentation of java.util.Stack

Fig. 1. Examples of library documentation. We use<8 to denote the API with the ID 8 in the paper.

code, a static analyzer should be aware of such API aliasing speci�cations, which play critical roles
for pointer analysis and other downstream clients. According to our investigation, many existing
static analysis techniques rely on manually speci�ed library API aliasing speci�cations [4, 6, 24].
However, the emergence of third-party libraries introduces a large number of APIs, making laborious
e�ort unacceptable in practice.

This work targets the API aliasing speci�cation inference problem to support library-aware alias
analysis. Existing approaches infer API aliasing speci�cations from three perspectives. The �rst
line analyzes the source code statically [5, 44]. Although it can derive the function summaries
as the API aliasing speci�cations, the solution su�ers the scalability problem due to deep call
chains [50]. More importantly, the implementation of several library APIs can depend on native
code, such as System.arraycopy in the implementation of java.util.Vector, which makes static
analysis intractable [8]. The second line of the techniques constructs unit tests via active learning to
trigger the execution of library APIs, so as to infer aliasing relations in the runtime [8]. Compared
to static analysis-based inference techniques, they are more applicable when the source code of
the library is unavailable. However, it can be infeasible to generate unit tests to trigger the target
library APIs due to the di�culties of constructing the parameters with complex data structures and
executing APIs in speci�c devices or environments. Third, several researchers learn the aliasing
speci�cations from applications using libraries [22], which does not require the source code of the
libraries or the execution of the programs. Unfortunately, their approach only discovers the API
speci�cations used in the applications, �nally causing the low recall in the inference.
This paper presents a new perspective on inferring API aliasing speci�cations. Unlike existing

studies, we utilize another important library artifact, namely library documentation, to analyze the
semantics of library APIs. As shown in Figure 1, library documentation contains formal semantic
properties, e.g., class hierarchy relation and type signatures, and informal semantic information, e.g.,
semantic descriptions and naming information. Although the library documentation demonstrates
the library API semantics in detail, it is far from trivial to derive API aliasing speci�cations from
it. First, e�ectively understanding the informal semantic information is quite di�cult. Even if we
apply the recent advance in the large language models (LLMs), e.g., feeding the documentation of
android.content.Intent toChatGPT, we can only obtain nine API aliasing speci�cations, all of which
are incorrect. Second, library documentation can be quite lengthy, which may introduce signi�cant
overhead. For example, feeding the lengthy documentation to ChatGPT not only demands much
time but also introduces a high �nancial cost due to enormous token consumption.
To e�ectively achieve the inference with high e�ciency, we propose our inference algorithm

named DAInfer, which originates from three key insights:

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 109. Publication date: July 2024.



DAInfer 109:3

• The class hierarchy determines the available APIs of a given class, while type signatures enable
us to over-approximate aliasing facts based on the types of API parameters and returns. If two
values can not be aliased, we do not need to analyze the naming information and semantic
descriptions, which decreases the overhead by avoiding applying NLP models.
• The named entities in the names of APIs and parameters indicate the high-level semantics and
narrow down aliasing relations between the parameters and return values. In Figure 1(a), the
named entities in getIdentifier and the parameter name of Intent.setIdentifier are the same,
indicating that the return value of Intent.getIdentifier can be aliased with the parameter of
Intent.setIdentifier.
• Semantic descriptions reveal the conducted memory operations with speci�c verbs, supporting
identifying store-load matches that may introduce aliasing facts. In Figure 1(b), “push” and “look”
show that Stack.push and Stack.peek conduct the insertion and read operations, respectively.

Based on our insights, we propose DAInfer, an algorithm to infer API aliasing speci�cations.
Technically, we introduce a graph representation to over-approximate the aliasing relations between
parameters and return values based on type information. To interpret informal semantic information,
we use a LLM and a tagging model to abstract memory operation kinds and high-level semantics of
API parameters/return values, respectively. Then, we reduce the speci�cation inference problem to
an optimization problem that enforces the aliasing pairs betweenAPI parameters asmany as possible
for precise semantic abstraction. Particularly, the optimization problem poses constraints over the
results of the two NLP models. To solve the problem e�ciently, we propose the neurosymbolic
optimization algorithm, which interacts with the two NLP models in a demand-driven manner,
achieving low resource cost in the inference.
We implement our approach DAInfer and evaluate it upon Java classes in several popular

libraries. Our evaluation shows that DAInfer achieves the speci�cation inference with a precision
of 79.78% and a recall of 82.29%, consuming 5.35 seconds per class on average. We also quantify the
impact of the inferred API aliasing speci�cations on the pointer analysis and taint analysis. It is
shown that DAInfer promotes the alias analysis by discovering 80.05% more aliasing facts for the
API return values and enables the taint analysis to discover 85 more taint �ows in the experimental
subjects. Our main contributions of this work include:

• We introduce a new paradigm of inferring API aliasing speci�cations and reduce the inference
problem to an optimization problem over a graph representation of the library documentation.
• We propose a novel technique, namely neurosymbolic optimization, to e�ciently solve the
optimization problem for the API aliasing speci�cation inference.
• We extensively evaluate our approach over real-world libraries to demonstrate its superiority
over existing techniques and quantify its impact on client analyses.

2 BACKGROUND AND OVERVIEW

In this section, we introduce the background of API aliasing speci�cation inference and outline our
key idea of inferring API aliasing speci�cations from documentation.

2.1 Library-Aware Alias Analysis

Modern software systems heavily depend on various libraries. A recent study found that a Java
project can include an average of 48 libraries transitively [52]. This prevalence of library usage
stimulates the demand for modeling API semantics in fundamental static analyses, such as alias
analysis. However, the deep call chains and unavailable source code (e.g., native functions) compli-
cate the scalability and applicability of static analysis. Many static analyzers use speci�cations to
abstract the library API semantics to achieve library-aware analysis. Speci�cally, the API aliasing
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speci�cation for an API pair (<1,<2) indicates: When <1 and <2 conduct the store and load
operations, respectively, the return value of<2 may be aliased with the parameter of<1 if<2 is
invoked after<1 upon the same object. Based on the speci�cation, a static analyzer can model the
library API semantics without explicitly analyzing the implementation of<1 and<2, ultimately
promoting the scalability and applicability of the overall analysis.

Example 1. Figure 1(a) indicates that when the �rst parameters of Intent.putStringArrayListExtra
and Intent.getStringArrayListExtra are aliased, the return value of the latter can be aliased with the
second parameter of the former if they are invoked successively upon the same Intent object.

2.2 Di�erent Perspectives of Inferring API Aliasing Specifications

With the increasing number of third-party libraries, manually specifying the API aliasing speci�ca-
tions demands incredibly laborious e�ort [4, 6, 24]. To mitigate this problem, previous studies infer
API aliasing speci�cations from di�erent artifacts, including library implementation [5], application
code using libraries [22], and unit tests constructed via active learning [8]. However, their solutions
can be bothered with three main drawbacks. First, analyzing the library implementation su�ers the
scalability issue due to complex program structures, such as deep call chains, and even becomes
inapplicable due to the unavailability of the implementation or the presence of native code. Second,
inferring the speci�cations from application code using libraries may fail to achieve high recall
when speci�c APIs are not utilized in the application code. Third, deriving the aliasing facts from
dynamic execution of unit tests su�ers the inapplicability issue when it is infeasible to construct
executable unit tests in speci�c devices or environments.
To �ll the research gap, our work proposes another perspective to infer the API aliasing spec-

i�cations. We realize that there is another essential library artifact, i.e., library documentation,
demonstrating the library API semantics in a semi-formal structure. As shown in Figure 1, the
formal semantic properties, including class hierarchy relation and type signatures, are explicitly
provided. Meanwhile, the naming information, e.g., the parameter names and API names, shows
the intent of API parameters and return values, while semantic descriptions demonstrate the
functionalities of the APIs informally. These ingredients permit us to understand how the library
APIs manipulate the memory and further form aliasing relations between their parameters and
return values. More importantly, the documentation is often available for analysis, as the developers
tend to refer to it during the development. Hence, inferring the API aliasing speci�cations from
documentation would exhibit better applicability than the existing techniques.

2.3 Overview of DAInfer

Although the documentation guides the developers in understanding the API semantics, there
exists a gap between the API knowledge and API aliasing speci�cations. Concretely, we need to
understand how the API parameters are stored and how the API return values are loaded. However,
achieving this is quite complicated in front of informal semantic information. Even if we leverage
the new advances in the LLMs, they cannot understand how the APIs manipulate memory and
eventually fail to identify the aliasing relations between API parameters and return values. In the
presence of lengthy documentation, a large number of interactions with LLMs can bring huge time
overhead due to the time cost of LLM inference and also consume many tokens.
To address the challenges, we propose a novel inference algorithm named DAInfer, which

e�ectively understands the API semantics and e�ciently infers the API aliasing speci�cation from
library documentation. Our key idea originates from three critical observations on the aliasing
relations between the parameters and return values of the library APIs as follows.
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Library
Documentation

Neurosymbolic

Optimizer
APIAliasing
Specification

API Value Graph Edge Set

SMT/OMT

Solver
LLM

Tagging Model

Fig. 2. Workflow of DAInfer

• The parameters and return values should be type-consistent if they are aliased. Speci�cally, their
types should be the same, or one of them is the sub-type/super-type of the other. Such facts can
be easily obtained from class hierarchy relation and type signatures in the documentation. In
Figure 1, for example, we can obtain the potential aliasing relation between the return value
of Intent.getIdentifier and the parameter of Intent.setIdentifier, while the second parameter of
Intent.putStringArrayListExtra can not be aliased with the return value of Intent.getIdentifier.
• If the return values and parameters of two APIs are aliased, the named entities in their names tend
to be the same, indicating the same high-level semantics. For example, the APIs Intent.setIdentifier
and Intent.getIdentifier in Figure 1(a) share the same named entity identifier, indicating that
they manipulate the same inner �eld. For general-purpose data structures, such as java.util.Stack
in Figure 1(b), the API names of Stack.peek and Stack.pop do not have any named entities,
indicating that their return values can be aliased with other parameters with consistent types.
• If a library API stores its parameters or loads the inner �eld as the return value, the verbs in its
semantic description can re�ect the memory operation kind intuitively. For example, the verbs
“set” and “insert” are commonly used for the APIs storing their parameters, while the verbs “get”
and “return” are prevalent in the semantic descriptions of the APIs loading inner �elds.

Based on the observations, we realize that we can leverage type information to over-approximate
aliasing relations and utilize named entities and verbs to understand the high-level semantic
meanings of the APIs. For any store-load API pair, we can �nalize an API aliasing speci�cation
as long as we discover the parameters and return values with the same semantic meanings and
consistent types. According to these insights, we design our inference algorithm DAInfer, of which
the work�ow is shown in Figure 2. Our key technical design consists of three components.

• We introduce a new graph representation, namely the API value graph, to approximate aliasing
relations. After converting a library documentation to a normalized documentation model, we
encode the potential aliasing relations in the API value graph.
• We reduce the inference problem to an optimization problem upon the API value graph, where
we aim to discover as many aliasing facts among parameters and return values as possible.
Particularly, we leverage two NLP models, namely a tagging model and a LLM, to extract the
named entities and interpret the semantic descriptions, respectively.
• We instantiate the optimization problem and propose an e�cient neurosymbolic optimization
algorithm to solve the problem, of which the solution induces the API aliasing speci�cations.
Our neurosymbolic optimization algorithm interacts with the tagging model and the LLM in a
demand-driven manner, signi�cantly improving the e�ciency of our algorithm.

Bene�ting from our insights, our inference algorithm DAInfer simultaneously achieves high
precision, recall, and e�ciency. The high availability of library documentation also promotes the
applicability of our approach in real-world scenarios. In the following sections, we will formulate
our problem (§ 3) and provide our technical design (§ 4 and § 5) in detail.

3 PROBLEM FORMULATION

This section �rst formulates the documentation model (§ 3.1) and then de�nes the API aliasing
speci�cation (§ 3.2). Lastly, we provide the formal statement of the API aliasing speci�cation
inference problem and highlight the technical challenges (§ 3.3).
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3.1 Documentation Model

De�nition 1. (Documentation Model) Given a library, its documentation model is L := (H, T,N,D):

• Class hierarchy model H maps a class 2 to a set of classes, which are the superclasses of 2 .
• Type signature model T maps (2,<, 8) to a type, where< is an API of the class 2 and 8 is the
index of the parameter. Without ambiguity, we regard the index of the return value as -1.
• Naming model N maps (2,<, 8) to a string indicating the parameter name or API name, where
< is an API of the class 2 and 8 is the index of the parameter. Without ambiguity, N(2,<,−1)

indicates the name of the API< of the class 2 .
• Description model D maps (2,<) to a string indicating the API semantic description.

Example 2. According to the documentation of the class Intent in Figure 1, we have

H(Intent) = {Object}, T(Intent,<1,−1) = void, T(Intent,<1, 1) = ArrayList<String>

N(Intent,<1, 0) = name, N(Intent,<1, 1) = value, N(Intent,<1,−1) = putStringArrayListExtra

D(Intent,<1) is “Add extracted data to the intent”. Here,<1 is theAPI Intent.putStringArrayListExtra.
Due to space limits, we do not discuss other APIs in detail.

Based on documentation, we can collect all the APIs o�ered by a speci�c class and its superclasses,
forming the universe of available APIs when using the class. The naming information and API
semantic descriptions are informal speci�cations, guiding the developers to use proper APIs in
their programming contexts. Based on the documentation model, not only do developers achieve
their program logic conveniently, but also analyzers can understand the behavior of each API.

3.2 API Aliasing Specification

To support the library-aware alias analysis, we concentrate on the API aliasing speci�cation
inference and follow an important form of aliasing speci�cations formulated in the prior study [22],
which is de�ned as follows.

De�nition 2. (API Aliasing Speci�cation) An API aliasing speci�cation is a tuple (<1,<2, %, C),

where<1 and<2 are two APIs, % := {(8
(1)
1

, 8
(2)
1
), · · · , (8

(1)
9 , 8

(2)
9 )} is a set of non-negative integer

pairs, and C is an non-negative integer. It indicates that the return value of<2 can be aliased with
the C-th parameter of<1 if

• <1 is called before<2 upon the same object

• The 8
(1)

:
and 8

(2)

:
-th parameters of<1 and<2 are aliased accordingly.

Here, 0 ≤ 8
(1)

:
≤ =1, 0 ≤ 8

(2)

:
≤ =2, and 0 ≤ : ≤ 9 . =1 and =2 are the parameter numbers of<1 and

<2, respectively. Without ambiguity, we call<1 and<2 form a store-load API pair.

De�nition 2 shows that the APIs<1 and<2 conduct the store and load operations upon the
memory, respectively. Unlike simple load and store operations of pointers, storing and loading
the values upon memory may depend on the values of other parameters, which are induced by
the set % , determining the memory location where the values are stored and loaded, respectively.
Essentially, the set % indicates the pre-condition of the aliasing relation between the return value of
<2 and the C-th parameter of the<1. If % is empty, the parameters of<1 and<2 are not necessarily
aliased to enforce the aliasing relation between the return value of<2 and the C-th parameter of<1.

Example 3. In Figure 1(a), we have two API aliasing speci�cations (<1,<4, {(0, 0)}, 1) and
(<2,<3, ∅, 0). Speci�cally, the API aliasing speci�cation (<1,<4, {(0, 0)}, 1) indicates that the return
value of Intent.getStringArrayListExtra and the second parameter of Intent.putStringArrayListExtra
are aliased when they are invoked upon the same object and their �rst parameters are aliased.
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The API aliasing speci�cation in De�nition 2 is more general than the one targeted by USpec [22].
Speci�cally, USpec only infers that calling<2 may return a value aliased with the C-th parameter
of a preceding call of<1 on the same object if all other parameters are aliased. However, there exist
many store-load API pairs in which not all the other parameters are aliased. For instance, the API
createBitmap of android.graphics.Bitmap sets the values of DisplayMetrics, Config, width, and
height simultaneously, while the API getConfig only fetches the value of Config. Our formulation
in De�nition 2 is expressive enough to depict such the store-load API pair.

3.3 Problem Statement

We aim to address the API aliasing speci�cation inference problem from another perspective. As
demonstrated in § 3.1, the library documentation provides various forms of semantic information of
the library APIs. Hence, we can hopefully derive the API aliasing speci�cations from documentation
without conducting deep semantic analysis upon the source code or program runtime information.

The API aliasing speci�cation for a given store-load API pair may not be unique. In Example 3,
for instance, (<1,<4, ∅, 1) is also a valid speci�cation, while it does not pose any restrictions upon
the parameters of the two APIs as the pre-condition. In our work, we want to ensure that the
inferred speci�cations exhibit as strong pre-conditions as possible, which implies the maximal size
of the set % . Finally, we state the problem of the API aliasing speci�cation inference as follows.

Given a documentation model L = (H,T,N,D), infer a set of API aliasing speci�cations (AS
such that |% | is maximized for each (<1,<2, %, C) ∈ (AS.

Technical Challenges. Although library documentation o�ers semantic information, solving the
above problem is quite challenging. First, the naming information and semantic descriptions can be
ambiguous. Without an e�ective interpretation, we can not understand how the APIs operate upon
the memory and identify aliasing relations between parameters and return values. Second, there
are often many available APIs o�ered by a single class and even its superclasses. It is non-trivial to
obtain high e�ciency in front of a large number of available APIs for each class.

Roadmap. In this work, we propose an inference algorithmDAInfer to address the two technical
challenges. Speci�cally, we introduce the documentation model abstraction to formulate semantic
information, which enables us to reduce the original problem to an optimization problem (§ 4).
Furthermore, we propose the neurosymbolic optimization to e�ciently solve the instantiated
optimization problem (§ 5). We present the details of our implementation (§ 6) and demonstrate the
evaluation quantifying the e�ectiveness and e�ciency of DAInfer (§ 7).

4 DOCUMENTATION MODEL ABSTRACTION

This section presents the abstraction of documentation model. Speci�cally, we propose the concept
of the API value graph (§ 4.1) and introduce two label abstractions over the graph (§ 4.2), which
enables us to reduce the API aliasing speci�cation problem to an optimization problem (§ 4.3).

4.1 API Value Graph

As shown in § 3.1, the formal semantic information, namely class hierarchy and the type signatures,
reveals potential aliasing relations between API parameters and return values, while the informal
semantic information, e.g., naming information and semantic descriptions, shows how parameters
and return values are utilized. To depict aliasing relations that can be introduced by API invocations,
we propose a graph representation, namely API value graph, as follows.
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(Intent, 𝑚! , -1)
(Intent,𝑚", -1)

(Intent, 𝑚", 1)

(Intent,𝑚#, 0)

(Intent, 𝑚# , -1)

(Intent,𝑚", 0)

(Intent,𝑚$, 0)
(Intent, 𝑚$ , -1)

(Intent, 𝑚% , -1)

(Intent,𝑚%, 0)

(Intent,𝑚&, 0)

(Intent, 𝑚& , -1)(Intent,𝑚&, 1)

getIdentifier s3

normalizeMimeType s5

identifier s2

name s4

name s1

type s5

value s1 getStringArrayListExtra s4

setIdentifier s2

flags s6 fillIn s6

(Stack, 𝑚' , 0) (Stack,𝑚', -1)

(Stack,𝑚(, -1) (Stack,𝑚), -1)

(Stack, 𝑚"* , -1)

other s6

putStringArrayListExtra s1 empty s10

push s7item s7

peek s8 pop s9

Fig. 3. The API value graph of the documentation model induced by the documentation in Figure 1

De�nition 3 (API Value Graph). Given a documentation model L = (H,T,N,D), its API value
graph is the labeled graph � := (+ , �, ℓ=, ℓ3 ), where

• The node set + contains API parameters and return values, which are referred to as API values.
(2,<, 8) ∈ + if and only if (2,<, 8) ∈ dom(N) or there is 2′ ∈ H(2) such that (2′,<, 8) ∈ dom(N).
• The edge set � ⊆ + ×+ indicates possible aliasing relations between API values. Speci�cally,
(E1, E2) ∈ � if and only if T(E1) = T(E2), T(E1) ∈ H(T(E2)), or T(E2) ∈ H(T(E1)).
• The name label ℓ= is a function that maps an API value to its name, i.e., ℓ= (E) = N(E).
• The description label ℓ3 is a function that maps an API value to the semantic description of the
API, i.e., ℓ3 (E) = D(2,<), where E = (2,<, 8).

The API value graph regards API values, namely API parameters and return values, as �rst-class
citizens, and depicts their high-level semantics with labels. Intuitively, an edge from (2,<1, 81)

to (2,<2, 82) indicates the fact that the two values may be aliased when<2 is invoked after<1

upon the same object. Meanwhile, the two labels attach the informal semantic information to
API values, showing their usage intention. From a high-level perspective, the API value graph
over-approximates aliasing relations according to class hierarchy relation and type signatures and
still preserves informal semantic information as labels to support further speci�cation inference.

Example 4. Figure 3 shows the API value graph for the documentation model induced by the
classes in Figure 1, where the name labels and description labels are shown in the left and right
boxes, respectively. B8 indicates the semantic description of<8 in Figure 1. Speci�cally, the edge
from (Intent,<2, 0) to (Intent,<5, 0) indicates that the �rst parameters of Intent.setIdentifier and
Intent.normalizeMimeType may be aliased when the two APIs are invoked successively.

4.2 Label Abstraction

Although the edges of the API value graph over-approximate aliasing relations over API values, not
all the aliasing relations can hold when using APIs. In Figure 1, for example, the return value of
getIdentifier and the �rst parameter of normalizeMimeType are unlikely to be aliased as the named
entities in their names are di�erent, revealing di�erent usage intention of the two API values. To
formulate this key idea, we �rst introduce the concept of the semantic unit abstraction as follows.

De�nition 4. (Semantic Unit Abstraction) A semantic unit abstraction Ug is a function mapping a
string B to a set of named entities contained in B . We call the elements in Ug (B) as semantic units.

Example 5. The named entities in the API name of getStringArrayListExtra include string, array,
list, and extra. Hence, we have Ug (getStringArrayListExtra) = {string, array, list, extra}.

Essentially, the semantic unit abstraction extracts the named entities from the names as semantic
units, which shows the high-level semantics of API values, enabling us to re�ne aliasing relations

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 109. Publication date: July 2024.



DAInfer 109:9

according to the following two intuitions: (1) If two API values E1 and E2 have the names with the
same semantic units, we can obtain the con�dence that they are very likely to indicate the same
object in the memory; (2) If the name of an API value does not have any semantic units, we can
conservatively regard that it can be aliased with any other API values with consistent types. Hence,
we formally de�ne the semantic unit consistency to formulate the two intuitions.

De�nition 5. (Semantic Unit Consistency) Given a semantic unit abstraction Ug upon an API
value graph � = (+ , �, ℓ=, ℓ3 ), two nodes E1 and E2 are semantic-unit consistent if and only if (1)
Ug (ℓ= (E1)) = Ug (ℓ= (E2)), or (2) Ug (ℓ= (E1)) = ∅ ∨ Ug (ℓ= (E2)) = ∅.

Example 6. Consider the API value graph in Figure 3. We have Ug (getIdentifier) = {identifier}, so
the return value of the API getIdentifier and the �rst parameter of setIdentifier are semantic-unit
consistent for the class Intent. Also, we have Ug (item) = {item} and Ug (peek) = ∅, so the return
value of peek and the �rst parameter of push are semantic-unit consistent for the class Stack.

Lastly, we notice that semantic descriptions show how the API values are manipulated upon
the memory. Speci�cally, we give a formal de�nition of the concept named memory operation

abstraction as follows.

De�nition 6. (Memory Operation Abstraction) A memory operation abstraction U> maps a
semantic description B to U> (B) ⊆ " , where " = {I,D,R,W}. The elements in " indicate the
insertion (I), deletion (D), read (R), and write (W) operation upon the memory.

Notably, we classify common memory operations into four categories due to two major reasons.
First, the write operation contains several sub-kinds, such as deletion and insertion. If we only
categorize memory operations into read and write, we can not distinguish the APIs conducting the
deletion and insertion, such as pop and add for java.util.Stack, which may yield wrong API aliasing
speci�cations. For example, the APIs pop and peek of java.util.Stack would be wrongly identi�ed
to form a store-load pair and thus induce an incorrect API aliasing speci�cation. Second, objects
can be organized in various structural manners. When adding an object to a container-typed �eld,
such as java.util.Stack and java.util.HashMap, the operation is an insertion. When storing an object
in a non-container-typed �eld, the API writes a speci�c value to the �eld. The above operations
are often described di�erently in the natural language, so we formulate the memory operation
abstraction in a �ne-grained manner.

Example 7. According to Figure 1, we have U> (B1) = {I, W}, U> (B2) = {W} and U> (B3) = U> (B4) =

{R} for Intent. For Stack, we have U> (B7) = {I,W}, U> (B8) = {R}, and U> (B9) = {R,D,W}.

To sum up, the above two label abstractions interpret the informal semantic descriptions with
the sets of semantic units and memory operations, based on which we can re�ne potential aliasing
relations indicated by the edges of the API value graph and identify store-load API pairs. In § 5.2,
we will demonstrate how to instantiate the two abstractions to support the speci�cation inference.

4.3 Problem Reduction

Based on the two label abstractions, we can interpret the high-level semantics of API values and the
memory operations conducted by the APIs. According to our problem statement in § 3.3, we need to
identify the store-load API pairs and �nd as many aliased parameters as possible, which determine
a strong pre-condition of the aliasing relation between loaded and stored values. Hence, we reduce
the speci�cation inference to an optimization problem over the API value graph as follows.

De�nition 7. (Optimization Problem) Given a semantic unit abstractionUg and amemory operation
abstraction U> upon an API value graph � = (+ , �, ℓ=, ℓ3 ), �nd an edge set �∗ ⊆ � with a maximal
size |�∗ | satisfying the following constraints:
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(Intent, 𝑚! , -1)

(Intent, 𝑚", 0) (Intent, 𝑚#, 0)

(Intent, 𝑚$, 0)

{identifier} {R}

{identifier} {W}

{name} {R}

(Stack, 𝑚% , 0) (Stack, 𝑚%, -1)

(Stack, 𝑚&, -1) (Stack, 𝑚', -1)

(Intent, 𝑚#, 1)

(Intent, 𝑚$ , -1)

{value} {W}

{string, array, list, extra} {R}

{name} {W} {item} {I, W}

{} {R}

{} {I, W}

{} {R, D, W}

Fig. 4. An optimal solution to the problem instance over the API value graph shown in Figure 3

• (Degree constraint) For each E ∈ + , the in-degree and out-degree of E are not greater than 1.
• (Validity constraint) If (E1, E2) ∈ �

∗, where E1 and E2 indicate parameters, there exist D1, D2 ∈ +
such that (D1, D2) ∈ �

∗. where D1 and D2 indicate a parameter and a return value, respectively.
• (Semantic unit constraint) For any (E1, E2) ∈ �∗, where E1 = (2,<1, 81) and E2 = (2,<2, 82), the
semantic unit abstraction of the names of E1 and E2 should satisfy
– (S1) If 82 ≠ −1, E1 and E2 are semantic-unit consistent.
– (S2) If 82 = −1, E1 or E

′
1
is semantic-unit consistent with E2, where E

′
1
= (2,<1,−1).

• (Memory operation constraint) For any (E1, E2) ∈ �
∗, the following two conditions are satis�ed:

– (M1) E1 satis�es I ∈ U> (ℓ3 (E1)) ∨ (W ∈ U> (ℓ3 (E1)) ∧ D ∉ U> (ℓ3 (E1))

– (M2) E2 satis�es that R ∈ U> (ℓ3 (E2))

De�nition 7 aims to maximize |�∗ | to discover all the aliased parameters of each store-load API
pair, which corresponds to maximizing |% | in original problem statement in § 3.3. The four kinds of
constraints are posed upon the selected edges. Speci�cally, the degree and validity constraints ensure
that the edges induce the API aliasing speci�cation de�ned De�nition 2. Besides, the parameters of
the APIs<1 and<2 should be semantic-unit consistent if they are connected by a selected edge
(S1). If a selected edge connects the parameter of<1 and the return value of<2, then the parameter
of <1 should be semantic-unit consistent with the return value of <2 (S2). Lastly, the memory
operation constraint ensures that the APIs<1 and<2 should form a store-load API pair (M1 and
M2). Finally, we can obtain the speci�cations based on the optimal solution as follows.

Given the optimal solution �∗ of the optimization problem de�ned in De�nition 7, we can
obtain the API aliasing speci�cation (<1,<2, %, C) ∈ (AS, where

• % = {(81, 82) | ((2,<1, 81), (2,<2, 82)) ∈ �
∗, 82 ≠ −1}

• C satis�es ((2,<1, C), (2,<2,−1)) ∈ �
∗

Example 8. Figure 4 shows the optimal solution to the optimization problem over the API value
graph in Figure 3, where the sets shown in the two boxes demonstrate the extracted semantic
units and the identi�ed memory operations under the label abstractions in Examples 6 and 7. We
discover six possible aliasing relations. Notably, although the semantic units of (Intent,<4,−1) are
di�erent from (Intent,<1, 1), they are exactly the same as the ones of (Intent,<1,−1), indicating
that the second parameter of<1 can have the same semantics as the return value of<4. The optimal
solution �nally induces the API aliasing speci�cations in Example 3.

By reducing the original problem to the optimization problem in De�nition 7, we only need
to tackle two sub-problems for the speci�cation inference. First, we have to instantiate two label
abstractions so that we can precisely interpret the semantic meanings of names and the memory
operation kinds. Second, we need to design an e�cient optimization algorithm to solve the opti-
mization problem. In § 5, we will provide the technical details of addressing the two sub-problems.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 109. Publication date: July 2024.



DAInfer 109:11

5 SPECIFICATION INFERENCE VIA NEUROSYMBOLIC OPTIMIZATION

This section presents the technical details of our algorithm DAInfer. Speci�cally, we demonstrate
the overall algorithm in § 5.1 and detail the label abstraction instantiation in § 5.2. Besides, we
present the neurosymbolic optimization in § 5.3 to instantiate and solve the optimization problem
given in De�nition 7. Lastly, we summarize our approach and highlight its advantages in § 5.4.

5.1 Overall Algorithm

Algorithm 1: Inference Algorithm

Input: L: Documentation model;
Output: (AS: API aliasing speci�cations;

1 � ← constructAVG(L);

2 Ug ← getSemanticUnitAbs();

3 U> ← getMemoryOperationAbs();

4 P ← (L,�, Ug , U> );

5 �∗ ← neuroSymOpt(P);

6 (AS ← convert(�∗);

7 return (AS;

As demonstrated in § 4.3, we can reduce the
API aliasing speci�cation inference problem to
an instance of the optimization problem given
in De�nition 7. Technically, we propose and
formulate our speci�cation algorithm in Algo-
rithm 1, which takes as input a documentation
model L and generates a set of API aliasing spec-
i�cations (AS as output. First, we derive the API
value graph � from the documentation model
L based on De�nition 3 (Line 1). Second, we in-
stantiate two label abstractions, i.e., Ug and U> ,
and further construct an instance of the optimization problem P de�ned in De�nition 7 (Lines 2–3).
Third, we propose the neurosymbolic optimization to solve the instance of the optimization problem
P (Lines 4–5), and �nally convert the optimal solution �∗ to a set of API aliasing speci�cations (AS
(Line 6). Particularly, De�nition 3 has demonstrated how to construct the API value graph, and
converting the optimal solution to the speci�cation is also explicitly formulated at the end of § 4.3. In
the rest of this section, we will provide more details on the label abstraction instantiation (§ 5.2) and
the neurosymbolic optimization algorithm (§ 5.3), which �nalize the functions getSemanticUnitAbs,
getMemoryOperationAbs, and neuroSymOpt in Algorithm 1, respectively.

5.2 Label Abstraction Instantiation

According to De�nitions 4 and 6, the semantic unit abstraction requires attaching the grammatical
tags, while thememory operation abstraction demands identifying how anAPImanipulates memory.
In what follows, we will detail how to instantiate them with two di�erent NLP models, respectively.

5.2.1 Instantiating Semantic Unit Abstraction. According to common programming practices, the
developers of libraries tend to follow typical naming conventions [13], such as camel case, pas-
cal case, and snake case. For example, userAccount is a parameter name using camel case, and
get_account_balance is an API name using snake case. Notably, the sub-words are often separated
with an underscore or begin with an uppercase letter. Hence, we can easily decompose each name
B into the concatenation of several sub-words and further determine the tag of each sub-word.

However, the names of APIs or their parameters can hardly be valid phrases or sentences. Simply
applying the part-of-speech (POS) tagging would tag almost all the words as the nouns. Also,
the POS tagging targets tagging sentences, while the names of parameters and APIs are only the
concatenation of words in phrases. To obtain more precise tagging results, we leverage an existing
probability model trained in Brown Corpus [26], which can return all the possible grammatical
tags of each word along with the occurrences. This enables us to determine whether a word is
more likely to be a noun according to the existing probability model, which does not depend on
the usage context of the word. Formally, we instantiate the semantic unit abstraction as follows.
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As an experienced programmer, you are good at

choosing API names and writing documentation.

You are developing four APIs m1, m2, m3, and m4 to 

implement the following four memory operations:

Here are the verbs for each API.

Please choose proper verbs for each API. The verbs can be used in 

API names and semantic description of the documentation.

Separate the verbs by commas and sort them based on preference.

- m1: reads the value of a class field and returns it

- m2: stores its parameter to a class field 

- m3: inserts its parameter to a class field 

- m4: removes a value from a class field

- m1: get, retrieve, fetch, obtain, acquire, read, access

- m2: set, assign, store, save, initialize, update, record

- m3: insert, add, put, store, set, update, record

- m4: remove, delete, erase, clear, eliminate, exclude

As an experienced programmer, you are good at understanding 

API semantics according to its semantic description.

Here are four memory operations, namely read, write, insertion, and 

deletion. Given a semantic description of an API, determine whether the API 

conducts the read, write, insertion, and deletion based on the following rules:

- If the description contains [xxx] or its synonyms, it conducts the read.

Please provide the API semantic description.

- If the description contains [xxx] or its synonyms, it conducts the write.

- If the description contains [xxx] or its synonyms, it conducts the insertion.

- If the description contains [xxx] or its synonyms, it conducts the deletion.

The semantic description of getParcelableArrayListExtra in the class Intent

is “Retrieve extended data from this Intent”. Please determine its memory 

operations and answer Yes/No. Here is an example output: No, No, No, No

Yes, No, No, No

Select 

Top 1

(a) Retrieve typical verbs via prompting (b) Instantiate the memory operation abstraction via prompting

Fig. 5. The prompt templates of two-staged prompting

De�nition 8. (Instantiation of Semantic Unit Abstraction) Assume that 6g maps a word F to a
set of tag-occurrence pairs {(g 9 , : 9 )}. Given a sub-wordF in a parameter/API name B ,F ∈ Ug (B) if
and only if (NOUN, :∗) ∈ 6g (F) and :

∗ is the largest occurrence in 6g (F).

Example 9. Consider the API setIdentifier in Figure 1. After splitting the API name into two
sub-words, namely “set” and “identi�er”, we discover that “set” is more likely to be a verb than a
noun, while “identi�er” is very likely to be a noun. Hence, our instantiated semantic unit abstraction
Ug maps setIdentifier to {identifier}, identifying identifier as the semantic unit of the API.

5.2.2 Instantiating Memory Operation Abstraction. To instantiate an e�ective memory operation
abstraction, we leverage an important programming practice: The developers often summarize the
API functionality in a full sentence or a verb-object phrase as its semantic description. Particularly,
the verbs in the semantic description intuitively depict the memory operations conducted by the
API. Therefore, it is possible to instantiate an e�ective memory operation abstraction based on the
verbs in the semantic description. However, the verbs used in the semantic descriptions can vary a
lot, even if the APIs conduct the same kind of memory operation. For example, when describing an
API conducting the memory insertion, developers can choose di�erent verbs, e.g., “put”, “insert”,
and “push”. The diverse choices of the verbs describing a speci�c memory operation would make
the inference su�er low recall if we just adopted a grep-like approach based on string matching.
Inspired by recent progress in the NLP community, we realize that the latest advances in the

LLMs may provide new opportunities for resolving this issue [12, 37, 39]. Speci�cally, the LLMs
have excellent abilities in text understanding, especially under the guidance of few-shot examples
or descriptions of rules. Hence, we instantiate the memory operation abstraction via two-stage
prompting, of which the prompt template is shown in Figure 5.

• First, we design the prompt in Figure 5 (a) to retrieve the verbs describing each memory operation
and enforce the LLMs sort them based on the preference. Although the verb lists may overlap,
the top-1 verbs are representative enough to distinguish di�erent memory operations.
• Second, we select the top-1 verbs recommended in the �rst stage and then construct the prompt
describing the rules for the memory operation abstraction, which is shown in Figure 5(b). Finally,
we obtain an LLM response containing four “Yes”/“No” separated by commas.

It is worth noting that we identify memory operation kinds via a two-stage prompting instead of
a one-stage prompting. If we manually specify the typical verbs describing memory operations, the
second prompt may rely on our manual setting, which demands expert knowledge. If we do not
o�er typical words as hints, the result is not as interpretable as the current one. Our design actually
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utilizes the ability of LLMs to predict method names for coding tasks, self-promoting the memory
operation identi�cation with generated typical verbs. Note that the �rst stage is only conducted
once. The typical verbs are shared when analyzing library APIs. Hence, the extra cost introduced by
the �rst stage is negligible. Based on the above prompting process, we can obtain an instantiation
of the memory operation abstraction, which is formally formulated as follows.

De�nition 9. (Instantiation of Memory Operation Abstraction) 6> is the function induced by the
LLM via two-staged prompting in Figure 5. Then the memory operation abstraction U> satis�es
that op ∈ U0 (B) if and only if the corresponding answer of op in 6> (B) is “Yes”, where op ∈ " .

Example 10. In Figure 5(b), the output of the LLM is “Yes, No, No, No”, indicating that In-
tent.getStringArrayListExtra only conducts the memory read. Hence, we have U> (B4) = {R}, where
B4 is the semantic description of the API Intent.getStringArrayListExtra. Similarly, for the API
Intent.normalizeMineType, the verb “normalize” in its semantic description B5 is not the synonym
of four typical verbs, so U> (B5) = ∅, indicating that it does not contribute to any load-store match.

Notably, our intuition of the label abstraction upon the API value graph is applicable for general
libraries in real-world production. Typically, the developers of libraries are often in well-organized
communities and cooperations, following good naming conventions and using proper verbs in
semantic descriptions. That is, they are unlikely to use di�erent nouns to indicate the objects with
the same usage intention or describe memory operations conducted by the APIs with wrong verbs.
Their good development habits permit us to correctly interpret the informal semantic properties
of library APIs with the tagging model and the LLM, which can yield satisfactory precision and
recall in the wild. Our evaluation also demonstrates the e�ectiveness of the label abstraction upon
benchmarks used in existing studies [6, 8, 22]. Furthermore, such well-structured natural language
descriptions, including documentation and comments, have been utilized in various software
engineering tasks, such as API misuse detection [43, 61] and unit test generation [11]. These
approaches, which share similar assumptions about natural language descriptions as ours, have
demonstrated their practical impacts in understanding code semantics and bene�ting downstream
clients. We will provide a detailed discussion of these approaches in § 8.

5.3 Neurosymbolic Optimization

Algorithm 2: Neurosymbolic optimization

Input: P: An optimization problem;
Output: �∗: The optimal solution;

1 foreach (2,<1), (2,<2) do

2 q3 ← deriveDegreeConstraints(P);

3 qE ← deriveValidityConstraints(P);

4 if SMTSolve (q3 ∧ qE)=UNSAT then

5 continue;

6 qB ← deriveSUConstraints(P);

7 if SMTSolve (q3 ∧ qE ∧ qB )=UNSAT then

8 continue;

9 q> ← deriveMOConstraints(P);

10 �′ ← Solve(obj(P), q3 ∧ qE ∧ qB ∧ q0);

11 �∗ ← �∗ ∪ �′;

12 return �∗;

As shown in § 5.2, our two label abstractions are
achieved with di�erent overheads. Speci�cally,
the semantic unit abstraction only relies on the
tagging model that can be applied e�ciently,
while the memory operation abstraction has to
relies on the LLM inference, which is considered
to be much more costly than tagging. To achieve
high e�ciency, we propose a solving technique,
named neurosymbolic optimization, for the opti-
mization problem de�ned in De�nition 7. For
each API pair, we �rst check the satis�ability of
degree constraint q3 and the validity constraint
qE (Lines 2–5). If both of them are satis�ed, we
apply the tagging model to derive the seman-
tic unit constraint qB (Line 6) and examine the
satis�ability of the conjunction of the three con-
straints (Line 7). If it is satis�able, we apply the LLM to achieve the memory operation abstraction,
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and derive the memory operation constraint (Line 9). Based on OMT solving [10], we select the
maximal number of edges connecting the API values (Line 10) and append them to the set �∗ (Line
11), which is returned as the solution to the optimization problem.

Notably, the degree constraint and validity constraint do not depend on any NLP models and
are instantiated symbolically, while the semantic unit constraint and memory operation constraint
rely on the outputs of the tagging model and the LLM, respectively, being instantiated in a neural
manner. By decoupling the symbolic constraints from neural ones, DAInfer applies NLP models
with a lazy strategy. Noting that the LLM inference consumes much more time than SMT solving,
our design can signi�cantly reduce the time overhead and token cost.

Example 11. Consider the APIs of Intent in Figure 1(a). When processing the APIs Intent.fillIn
and Intent.getIdentifier, the validity constraint is not satis�ed as there are no type-consistent
parameters or return values. Hence, we do not apply the tagging model or the LLM. For the APIs
Intent.setIdentifier and Intent.normalizeMimeType, we �nd that their parameters and return values
are not semantic-unit consistent, so we do not invoke the LLM with their semantic descriptions.

When we designed the label abstraction instantiation, we also considered directly prompting
LLMs to validate semantic unit consistency. However, pairwise examining the names of an API and
its parameters introduces a large number of LLM inferences, which increases time and token costs.
We add more discussions on the possibility of utilizing LLMs to improve DAInfer in § 7.5.

5.4 Summary

DAInfer is the �rst trial of inferring API aliasing speci�cations from documentation. It demonstrates
the promising potential of utilizing new advances in the community of natural language processing,
especially the LLMs, to solve traditional static analysis problems. Similar to traditional pointer
analyses upon source code, such as Andersen-style pointer analysis [3], DAInfer establishes a
constraint system over library documentation to pose restrictions upon pointer facts. In order to
precisely understand the natural language, it utilizes the NLP models as documentation interpreters
to abstract informal semantic information, which supports instantiating an optimization problem for
the speci�cation inference. Our insight into utilizing NLP models for documentation interpretation
can be generalized in other tasks, such as program synthesis [58] and test case generation [35].

6 IMPLEMENTATION

We implement the approach DAInfer as a prototype and release the source code online [20].
Speci�cally, we implement the documentation parser by using soup Python package. For each
documentation page describing the API semantics, we can extract the four kinds of information,
including class hierarchy relation, API type information, naming information, and API semantic
descriptions, Since library documentation pages almost have a uniform format, we do not have
to make major changes to the implementation of the parser to adapt to di�erent libraries. To
instantiate the semantic unit abstraction, we utilize the conditional frequency distributions tool
with Brown Corpus provided by Natural Language Toolkit [36] to determine whether or not a
word is the most likely to be a noun. To instantiate the memory operation abstraction, we adopt
gpt-3.5-turbo model with chat completions API to interpret the API semantic descriptions [38].
Speci�cally, we invoke the interface ChatCompletion.create to feed the constructed prompts to the
LLM and fetch its response. In our implementation, we set the temperatures of the two stages of
prompting to 0.7 by default.

We implement the neurosymbolic optimization based on Z3 solver [10, 21]. For any pair of APIs,
we introduce (=1 + 1) · (=2 + 1) boolean variables to indicate whether the two API values are aliased,
where =1 and =2 are the numbers of the API parameters. We directly encode the degree constraint
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and validity constraint symbolically, while the semantic unit constraint and memory operation
constraint are constructed and solved on demand, relying on the outputs of the tagging model
and the LLM. We count the number of boolean variables that are assigned with True and set it as
the objective function. For better preformance, we parallelize the invocations of the LLM in eight
threads, and introduce the memorization technique to store the tagging result and the response
of the LLM upon each semantic description. If a word or an API semantic description has been
processed before, we directly reuse the previous result.

7 EVALUATION

We evaluate DAInfer by investigating the following research questions:

• RQ1: How e�ectively and e�ciently does DAInfer infer API aliasing speci�cations?
• RQ2: How does DAInfer bene�t library-aware static analysis clients?
• RQ3: How does DAInfer compare against other approaches?

7.1 Experimental Setup

All the experiments are performed on a 64-bit machine with 40 Intel(R) Xeon(R) CPU E5-2698 v4 @
2.20 GHz and 512 GB of physical memory. We invoke the Z3 SMT solver with its default options.

Subjects. To show the superiority of DAInfer, we evaluate Atlas [8], USpec [22], and DAInfer

upon the same set of Java classes. Speci�cally, the Java classes are collected from: (1) The classes of
which the speci�cations are manually speci�ed in FlowDroid [6]; (2) The classes appearing in the
inference results of USpec [22]. Since the dataset of Atlas [8] is not publicly available, we cannot
conduct experiments on it. In total, our benchmark contains 167 Java classes o�ering 8,342 APIs,
which range from general-purpose libraries, including Android framework and Java Collections
Framework, to speci�c-usage libraries, such as Gson. Without ambiguity, we call the �rst and the
second kinds of the classes from FlowDroid benchmark and USpec benchmark, respectively.

7.2 E�ectiveness and E�iciency

E�ectiveness. Although USpec o�ers the raw data and the source code of Atlas is available,
the ground truth used in the two previous studies is not published. Also, the speci�cations o�ered
by FlowDroid are manually speci�ed by the developers, and thus, may contain several �aws and
miss several correct ones. Hence, we have to label the speci�cations of the benchmarks manually.
Meanwhile, investigating all the classes demands tremendous manual e�ort. Following the recent
study [22], we randomly select 60 classes that o�er 2,771 APIs in total. For each API, we examine
whether it forms store-load API pairs with other APIs o�ered by the same class, of which the
number can reach 50 on average. To make the manual examination more reliable, we invite �ve
experienced engineers from the industry as volunteers to specify the speci�cations independently.
Speci�cally, they refer to the speci�cations speci�ed by the developers of FlowDroid and inferred
by existing works (i.e., USpec and Atlas), and meanwhile, investigate the library documentation
and implementation simultaneously. In the end, we merge the speci�cations speci�ed by the �ve
volunteers and resolve the inconsistent parts following the principle of max voting, eventually
obtaining 988 API aliasing speci�cations as the ground truth.
According to our investigation, we �nd that DAInfer achieves high precision and recall upon

the experimental subjects. In total, it successfully infers 2,680 API aliasing speci�cations. For the
randomly selected 60 classes, DAInfer infers 1,019 API aliasing speci�cations, 813 of which are
correct, achieving a precision of 79.78%. After examining all the APIs of the selected classes, we
discover thatDAInfermisses 175 speci�cations, achieving a recall of 82.29%. Interestingly, we collect
the speci�cations where the API names contain “get” or “set”, and discover that such speci�cations
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Table 1. E�iciency of DAInfer and its ablations

Tool # Tagging # LLM Token Cost Time Cost (sec)

DAInfer 32,325 2,950 726,425 892.93
DAInfer-Type 32,325 5,164 1,276,254 1,734.63

DAInfer-Exhausive 58,846 8,090 1,994,017 2,844.26

only take up 33.49% of all the inferred ones. It shows thatDAInfer can understand howAPIs operate
upon the memory even if diverse verbs are used. We also compare our results with the speci�cations
in the FlowDroid and USpec benchmarks. It is shown that DAInfer infers 170 out of the total
210 speci�cations in FlowDroid benchmark and 65 out of the total 82 speci�cations inferred by
USpec, achieving 81.0% and 79.3% recall upon the two benchmarks, respectively. The above results
show that DAInfer can e�ectively infer the API aliasing speci�cations from documentation.

E�ciency. We quantify the e�ciency of DAInfer with four metrics, including the number
of applying the tagging model, the number of applying the LLM, the token cost, and the time
cost. As shown in Table 1. DAInfer applies the tagging model 32,325 times and interacts with
the LLM 2,950 times using 726,425 tokens, and the overall time cost is 892.93 seconds (around
15 minutes). According to the billing strategy of OpenAI, we only need to pay 1.09 USD in total.
We also conduct the ablation study to demonstrate the bene�t of the neurosymbolic optimization
algorithm. Speci�cally, the ablation DAInfer-Exhausive applies the two NLP models to all the
APIs while the ablation DAInfer-Type applies the NLP models to the APIs satisfying the degree
constraint and the validity constraint. As shown in Table 1, DAInfer-Type invokes the LLM 5,164
times with 1,276,254 tokens in total and �nishes analyzing all the subjects in 1,734.63 seconds.
Besides, DAInfer-Exhausive has to apply the tagging models 58,846 times and invoke the LLM
8,090 times using 1,994,017 tokens, of which the whole process �nishes in 2,844.26 seconds. The
key reason for the di�erences between the ablations is that the solving steps at Lines 4 and 7
in Algorithm 2 can e�ectively reduce the numbers of applying the tagging model and the LLM,
respectively, when the conjunctions of the constraints are unsatis�able. Compared to DAInfer-
Type and DAInfer-Exhausive, DAInfer achieves the inference with 1.94× and 3.19× speed-ups.
Hence, our neurosymbolic optimization can e�ciently support the speci�cation inference.

7.3 E�ects on Client Analysis

Following existing studies [8, 22], we choose alias analysis and taint analysis as two fundamental
clients of DAInfer to quantify its e�ects.

Distribution of Ratio of Alias Set Size
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Fig. 6. The results of pointer analysis

E�ect on Alias Analysis.We conduct the �eld
and context-sensitive alias analysis by running a
static analyzer Pinpoint [46, 55] upon 15 Java
projects in two settings. In the setting Alias-Empty,
we provide empty speci�cations of library APIs, i.e.,
discarding all the possible alias facts introduced by
library API calls. In the setting Alias-Infer, we apply
the inferred correct API aliasing speci�cations to the
pointer analysis. For each given pointer, Pinpoint
computes its alias facts in a sound manner. We quan-
tify the alias set sizes of the return values of library

APIs and compute B8I4infer
B8I4empty

for each library API invocation, where sizeinfer and sizeempty are the alias

set sizes of the return value under the settings Alias-Infer and Alias-Empty, respectively. Figure 6
is the histogram showing the distribution of the ratios of alias set sizes. According to the ratios
of alias set sizes, we can discover that the average increase ratio reaches 80.05% with the bene�t

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 109. Publication date: July 2024.



DAInfer 109:17

of our inferred speci�cations. Except for the intervals (1, 1.2] and (1.2, 1.4], the size increase ratio
is larger than 40% as the ratio is larger than 1.4. The proportion of such library API invocations
reaches 96.25%. Because our pointer analysis is sound and we investigate the same set of return
values of library API calls, the increases in the alias set sizes demonstrate that DAInfer promotes
the alias analysis in discovering more alias facts in the applications using libraries.
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Fig. 7. The results of taint analysis

E�ect on Taint Analysis.We choose three dif-
ferent settings of speci�cations for FlowDroid to
conduct the taint analysis, namely Taint-Empty,
Taint-Manual, and Taint-Infer. Here, Taint-Empty

and Taint-Infer are similar to the two settings in the
pointer analysis, and the sources and sinks are spec-
i�ed based on the default taint speci�cation o�ered
by FlowDroid. Under the setting Taint-Manual,
we apply the manual speci�cations provided by
FlowDroid directly. We select 23 popular Android
applications in F-Droid [23], which cover di�erent
program domains, including navigation, security, and messaging applications. Figure 7 shows the
numbers of the taint �ows discovered under the three settings. Speci�cally, FlowDroid discovers
225 taint �ows under Taint-Empty, while it �nds 304 taint �ows under Taint-Manual. Notably, 79
out of 304 taint �ows are induced by the aliasing relations among API parameters and returns.
When we run FlowDroid under Taint-Infer, it discovers 310 taint �ows, 85 of which are discovered
based on the correct API aliasing speci�cations inferred by DAInfer. There are six taint �ows in
three apps not discovered by FlowDroid under the setting Taint-Infer due to false negatives of our
inference algorithm. However, 12 taint �ows discovered under Taint-Infer are not discovered under
Taint-Manual. The results demonstrate that DAInfer promotes the taint analysis in discovering
more taint �ows. We do not seek the con�rmations of taint �ows, which may depend on the devel-
opers’ subjective intentions and the choices of taint speci�cations. However, the ability to discover
more taint �ows has shown the practical impact of DAInfer in detecting potential taint-style
vulnerabilities. This evaluation principle is also applied in many existing studies [8, 22, 48].

7.4 Comparison with Existing Techniques

We compare DAInfer with two most recent studies on API aliasing speci�cation inference, i.e.,
Atlas [8] and USpec [22]. Besides, we construct another baseline, LLM-Alias, which feeds the
documentation to ChatGPT and generates API aliasing speci�cations via in-context learning.

Comparison with Atlas. We run Atlas [7] upon the total 167 classes and �nish the inference
in 74.48 minutes. Note that the output of Atlas is the library implementation derived from the
execution of unit tests. Automatically converting it into the speci�cations de�ned in De�nition 2
requires static analysis techniques. Hence, we analyze the library implementation generated by
Atlas with a �eld-sensitive pointer analysis, which matches the store-load operations upon the
same �elds, and eventually convert the output of Atlas to the API aliasing speci�cations de�ned
in De�nition 2. For the classes labeled with ground truth in § 7.2, Atlas infers 546 speci�cations
and 454 correct ones, achieving 83.15% precision and 45.95% recall. After investigating the results,
we �nd that Atlas fails to generate the speci�cations for 111 classes in the experimental subjects,
such as android.os.Intent and android.os.Configuration. The root cause is that Atlas fails to infer
the speci�cations when the creation of library function parameters is non-trivial, or the unit test
execution demands a speci�c environment, such as an Android emulator. In contrast, DAInfer can
derive the API aliasing speci�cations for such classes. Also, the aliasing speci�cations generated
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by DAInfer only depict the potential aliasing relations between parameters and return values,
while they all miss the pre-conditions under which such aliasing relations hold. For example, Atlas
only obtains that the return value of HashMap.get can be aliased with the second parameter of
HashMap.put, missing the pre-condition over their �rst parameters. The restrictive templates used
in the inference introduce the imprecision, which is also reported in the prior study [22].

Comparison with USpec. USpec is not open-sourced due to its commercial use [22]. To make
the comparison, we asked the authors for the raw data of their evaluation. According to their
results, USpecs successfully obtains 124 API aliasing speci�cations upon 62 classes. Unfortunately,
the precision of USpec only reaches 66.1% (82/124). For instance, USpec generates the incorrect
aliasing speci�cation (HashMap.put,HashMap.get, {(0, 1)}, 0) for the class java.util.HashMap. The
root cause is that USpec infers possible aliasing relations according to the usage events, while the
keys and values of HashMap objects may have the same types, making the inference algorithm
unable to distinguish them with usage events only. However, DAInfer successfully infers the
speci�cation via neurosymbolic optimization. We also quantify the recall of USpec based on our
labeled speci�cations in § 7.2. It is shown that USpec misses 370 API aliasing speci�cations. The
recall of inferring API aliasing speci�cations is only 18.14%. The root cause of its low recall is that
USpec can only generate the aliasing speci�cations for the APIs that are used in the applications.

Comparison with LLM-Alias. We compare DAInfer with LLM-Alias, which directly queries
ChatGPT with the documentation. The response of ChatGPT is a natural language sentence
indicating an API aliasing speci�cation. Due to laborious e�ort, we only examine the inference
results for 60 classes that we randomly selected in § 7.2. The results show that LLM-Alias generates
801 API aliasing speci�cations for examined classes, only 113 of which are correct, yielding a
precision of 14.11% and a recall of 11.44%. Among 688 incorrect speci�cations, 60 speci�cations
indicate the correct aliasing relations between parameters and return values, while they do not
pose any restrictions over API parameters as the pre-conditions. The results show that vanilla
LLMs without special designs have poor performance in understanding the concept of aliasing
relation. In contrast, DAInfer achieves quite satisfactory precision and recall, which bene�ts from
our insightful problem reduction and e�cient neurosymbolic optimization.
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Fig. 8. The results of taint analysis assisted with Atlas,

USpec, and LLM-Alias

Comparison upon Client Analyses.We
also compare the e�ects of baselines on client
analyses with the same settings as the ones
in § 7.3. Speci�cally, Atlas introduces 43.26%
increase of the alias set sizes on average,
which is lower than the one introduced by
DAInfer. USpec and LLM-Alias introduce
14.52% and 12.17% of increase in the alias
set sizes on averagely, respectively. Although
LLM-Alias infers slightly more API aliasing
speci�cations than USpec, the speci�cations
inferred by USpec contribute more to the
aliasing facts, which might be caused by more frequent usage of the involved library APIs in
the application code. DAInfer can introduce the highest average increase ratio of the alias sets
among di�erent approaches. Similarly, we �nd that Atlas, USpec, and LLM-Alias discover fewer
taint �ows than DAInfer, which is shown by Figure 8. Speci�cally, DAInfer newly discovers 85
taint �ows, while Atlas, USpec, and LLM-Alias detect 60, 29, and 35 taint �ows in total, respec-
tively. Therefore, DAInfer has overwhelming superiority over existing techniques in assisting
client analyses, including alias analysis and taint analysis.
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7.5 Limitations and Future Work

Our approach has several drawbacks that demand further improvements. First, DAInfer can not
determine whether an API creates a new object. When the developers create any new objects,
our inferred speci�cations can only depict data �ow facts instead of aliasing relations. For ex-
ample, DAInfer infers an API aliasing speci�cation for java.util.Map that the return value of
Map.computeIfPresent can be aliased with the second parameter of Map.put when their �rst
parameters are aliased. This is a wrong speci�cation as computeIfPresent returns null value or
a newly computed value instead of any existing values stored in the �elds. Second, the semantic
unit consistency requires two strings to be equal. In our evaluation, however, we notice that sev-
eral semantic units are not the same strings while they indicate the same concept in several rare
cases. For example, the �rst parameters of SparseArray.set and SparseArray.valueAt in the class
android.util.SparseArray are key and index, respectively. The two di�erent strings are actually the
indicators of the same semantic concept. Hence, DAInfer can not infer the correct speci�cation for
the two APIs. Although there are several traditional ways to extract synonyms for natural languages,
such as WordNet [34] and word embedding [59], they may fail to identify similar semantic units in
the programming languages, for example, the similarity between key and index is measured to be
even smaller than 0.1 by WordNet. Even if we utilize several code models, such as code2vec [1]
and CodeBERT [25], they can still lead a false negtive/positive when the similarity of the names in
a correct/wrong speci�cation is below/above the preset threshold.
To further improve DAInfer, we can explore several directions in the future. First, we can

leverage domain-speci�c LLMs for code, which allow local deployment, to validate the semantic
unit consistency. If the inference of general-purpose LLMs, such as GPT-4, becomes much more
e�cient and cheaper in the future, we can also prompt them directly without introducing signi�cant
overhead. The abovemodels can hopefully support us in identifying the semantic units indicating the
same concept even if they are not the same string. Second, it is promising to obtain a domain-speci�c
LLM via �ne-tuning. Speci�cally, we can leverage existing static analyzers to scan the source code
of open-source libraries, obtain their memory operation kinds, and, particularly, determine whether
the APIs create objects, which can improve the accuracy of the memory operation abstraction.
Third, our current implementation of DAInfer requires the documentation parsing with a manually
speci�ed parser. If the LLMs exhibits an enhanced ability of understanding documentation with
lower cost, we can derive the documentation model with LLMs via prompting, which further
automates the whole process of API aliasing speci�cation inference.

8 RELATED WORK

Library Speci�cation Inference. The inference of library function speci�cations has always
been a central topic in program analysis. Typically, IFDS/IDE-based approaches summarize the
data-�ow facts of libraries as their semantic abstractions [5, 44], which can be reused across various
clients of data-�ow analysis. Established upon a symbolic memory model, shape analysis computes
the memory state for each statement of a library function as invariants, and derives the pre/post
conditions of each library function as its speci�cation [14, 30, 45]. While the inferred speci�ca-
tion accurately depicts the semantics of the library function, the analysis su�ers from scalability
problems, especially in the presence of complex program structures [15]. Mining-based approaches
leverage the program facts derived from applications to infer speci�c forms of speci�cations, e.g.,
points-to [8], aliasing [22], taint [17], and commutativity speci�cations [27], which support speci�c
static analysis clients, e.g., taint analysis [6] and Andersen-style pointer analysis [24]. Another
mining-based approach AutoISES automatically infers security speci�cations from high-quality
application code and then guides the detection of security policy violations [49]. Our work concen-
trates on the aliasing speci�cation inference, which shares the same motivation with the existing
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studies [8, 22]. Unlike the previous studies, DAInfer provides a new paradigm of inferring aliasing
speci�cations, which leverages documentation to promote its potential value in di�erent scenarios.

Natural Language Speci�cation Understanding. Natural language speci�cations, such as
comments and documentation, are widely utilized in various software engineering tasks, including
test case generation [11, 35, 60], bug detection [43, 60, 61], and code search [40]. Typically, C2S [60]
employs semantic parsing to derive formal speci�cations from comments, which aids in test case
generation and taint bug detection. Similarly, Jdoctor [11] and Swami [35] translate natural
language speci�cations to formal ones to facilitate the generation of test cases covering exceptional
behavior and boundary conditions, while they only focus on speci�c patterns, such as exceptions
and numeric relations. Similar to DAInfer, Doc2Spec utilizes keywords, such as nouns and verbs
indicating resource names and actions, respectively, to infer the resource speci�cations, which
promote the resource misuse detection [61]. Targeting a di�erent problem, DAInfer utilizes NLP
models to interpret documentation, which abstracts informal semantic information into semantic
units and memory operations, reducing API aliasing speci�cation inference to an optimization
problem. Although DAInfer shares similarities with existing works [40, 61] in terms of technical
choices, such as named-entity recognition [18], our e�ort explores a new paradigm of deriving
pointer facts from documentation, which can be generalized for other static analysis problems.

Large LanguageModels. The Large Language Models (LLMs) [37, 39], based on the decoder-only
transformer architecture [51], are typically pre-trained on massive text corpora containing trillions
of tokens. They exhibit exceptional zero/few-shot performance in a wide range of highly speci�c
downstream tasks, including complex text generation [16], interactive decisionmaking/planning [56,
62], and tool utilization [57]. Among various downstream tasks, reasoning task has traditionally
been regarded as a typical challenge for LLMs [19], which has attracted signi�cant research interests.
Speci�cally, there has been a line of literature exploring the use of LLMs in automated theorem
proving within formal logic. Pioneering studies [31, 32, 54] have focused on employing LLMs to
generate proofs for theorems expressed in formal logic. Several recent e�orts aimed to integrate
advanced LLMs that have demonstrated impressive zero/few-shot performance in code completion
tasks into formal logic reasoning tasks [33, 53]. Inspired by these studies, our work leverages the
LLMs to interpret the memory operation kinds, which is one of the sub-problems in our approach.

9 CONCLUSION

We proposed a new approach DAInfer to infer API aliasing speci�cations from the documentation.
DAInfer adopts the tagging model and the LLM to interpret informal semantic information in
the documentation and reduces the inference problem to an optimization problem, which can be
e�ciently solved by our neurosymbolic optimization algorithm. The inferred speci�cations are
further fed to static analysis clients for analyzing the applications using libraries. Our evaluation
demonstrated the high precision and recall of DAInfer in the inference and also showed its
signi�cant impact in promoting the library-aware pointer analysis and taint analysis.
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