
RepoGenix: Dual Context-Aided Repository-Level Code
Completion with Language Models

Ming Liang, Xiaoheng Xie, Gehao Zhang, Xunjin Zheng, Peng Di, Wei Jiang, Hongwei Chen,
Chengpeng Wang and Gang Fan

Ant Group
China

ABSTRACT

The success of language models in code assistance has spurred the
proposal of repository-level code completion as a means to enhance
prediction accuracy, utilizing the context from the entire codebase.
However, this comprehensive context comes at a cost: while it en-
hances model performance, it also increases inference latency. This
balance between improved accuracy and computational efficiency
poses a significant challenge in real-world applications. We present
RepoGenix, a solution that enhances repository-level code com-
pletion without increased latency. RepoGenix combines analogous
context and relevant context, using Context-Aware Selection technol-
ogy to efficiently compress these contexts into limited-size prompts.
Our experiments on CrossCodeEval demonstrate that RepoGenix
not only achieves a substantial 48.41% reduction in inference time,
but also yields improvement in performance compared to baseline
methods. We have successfully implemented and tested RepoGenix
within AntGroup’s development environments. This approach is
being extended to multiple programming languages and will be
open-sourced, aiming to enhance code completion efficiency for
the broader developer community.

CCS CONCEPTS

• Software and its engineering → Automatic programming.

KEYWORDS

Repository-Level Code Completion, Code Language Models, Re-
trieval Augmented Generation

ACM Reference Format:

Ming Liang, Xiaoheng Xie, Gehao Zhang, Xunjin Zheng, Peng Di, Wei
Jiang, Hongwei Chen, Chengpeng Wang and Gang Fan. 2024. RepoGenix:
Dual Context-Aided Repository-Level Code Completion with Language
Models. In 39th IEEE/ACM International Conference on Automated Software
Engineering (ASE ’24), October 27-November 1, 2024, Sacramento, CA, USA.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3691620.3695331

Correspondence to: Wei Jiang <jonny.jw@antgroup.com>, Gang Fan <fan-
gang@antgroup.com>.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1248-7/24/10
https://doi.org/10.1145/3691620.3695331

1 INTRODUCTION

Code language models (Code LMs) excel in programming tasks,
especially code completion, potentially boosting developer pro-
ductivity [1]. Trained via causal language modeling, these models
predict code tokens using in-file context. Repository-level code com-
pletion [2, 7] leverages cross-file context, encompassing high-level
abstractions across the codebase, to enhance code completion accu-
racy and relevance. This integration is particularly crucial in IDEs
where both accuracy and rapid response are critical [4]

Although some works [3, 5, 7] have leveraged the Retrieval-
Augmented-Generation (RAG) strategy to enhance code completion
prediction accuracy, they present a challenge of increased latency.
This refers to the trade-off between richer context improving predic-
tions and longer prompt lengths increasing inference times, which
can hinder performance in IDE scenarios.

To address the trade-off between context and latency, we pro-
pose a dual context-aided RAG methodology that efficiently cap-
tures comprehensive contextual information within a limited token
space. Inspired by human cognition, our approach synthesizes two
key types of cross-file context: the Analogous Context(AC), derived
from code similarity analysis to identify functionally similar code
segments, and the Relevant Context(RC), which provides semantic
understanding of class taxonomies and API interactions. These
complementary contexts collaborate to offer a comprehensive code-
base understanding. RepoGenix also utilizes Context-Aware Selec-
tion (CAS) to filter the most relevant context, condensing it into a
limited-size prompt, thereby reducing inference latency.

We evaluate RepoGenix using CrossCodeEval[2] benchmark. Re-
poGenix achieves a significant 48.41% reduction in inference time
while also providing improvement in performance compared to
baseline methods. This enhanced efficiency makes RepoGenix par-
ticularly well-suited for fast-response development environments,
such as IDE integration.

2 REPOGENIX IN A NUTSHELL

To illustrate the core functionality of RepoGenix, let’s delve into
fig. 1 as an example. RepoGenix functions seamlessly through the
following three critical stages:

Relevant Context Extraction. To construct the relevant con-
text Γ𝑟𝑐 effectively, we extend the traditional Code Property Graph
[6] by focusing specifically on extracting relevant context from
the source code for code completion tasks within repositories. For
instance, as illustrated in fig. 1, we identify three code entities with
import relationships pertinent to the code snippet shown in fig. 1(a)
and fig. 1(b). By understanding the intricate relationships and de-
pendencies among various code entities, the model can make more
informed and contextually appropriate predictions.

2466

2024 39th IEEE/ACM International Conference on Automated Software Engineering (ASE)

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3691620.3695331
https://doi.org/10.1145/3691620.3695331
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3691620.3695331&domain=pdf&date_stamp=2024-10-27

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Ming Liang et al.

validate_user(user.uid, user.token)

RegLoginValidate/ValidateService/testValidateService.py
from RegLoginValidate.User import UidTok
from RegLoginValidate import ValidateService
from RegLoginValidate.utils import save_validate

class TestValidateService:
def __init__(self):

self.service = ValidateService()

def test_validate_user(self, user: UidTok) -> bool:
res = self.service.

class UidTok(BaseModel):
uid: int
token: str

class ValidateService:
id: int
def __init__(self) -> None
def log_user(self, uid: int) -> None
def validate_user(self, uid: int, token: str) -> bool

def save_validate(results: List, path: str) -> None

???

(a) Current file (b) Relevant context

①class

②class
③method

@self.app.post("/validate")
def validate_user(user: UidTok) -> bool:

res = self.service.validate_user(user.uid, user.token)
return res

@self.app.get("/health")

def post_user(self, user: User) -> UidTok:
uid_tok = self.service.add_user(user)
return uid_tok

controller = RegisterController()
if __name__ == "__main__":

uvicorn.run(controller.app, port=8080, host="0.0.0.0")

(c) Analogous context

Similar Code

rc1

rc2

rc3

ac1 ac2

complete

Figure 1: Illustrative example of relevant context and analogous context in use.

Methods Prompt Length ES ID-F1 SpeedUp

Analogous Context 4096 78.65 74.19 0%
Relevant Context 4096 78.69 74.85 0%
RepoGenix w.o CAS 4096 80.82 77.31 0%
RepoGenix with CAS 2048 80.27 76.36 33.29%
RepoGenix with CAS 1024 79.73 75.29 48.41%
Table 1: Results on Python subset using StarCoder-7B.

Analogous Context Extraction. An analogous context Γ𝑎𝑐 is
a set of code chunks, where a code chunk 𝑐𝑘 ∈ Γ𝑎𝑐 is highly similar
to an unfinished code chunk 𝑐𝑘∗ in the currently edited file. To
compute the analogous context, we analyze the currently edited file
to identify unfinished code chunks (𝑐𝑘∗). We then discover several
similar code chunks in other source files, whose successors provide
informative guidance for completion. In fig. 1(c), the analogous
context is derived based on the content of the current file (fig. 1(a)).
Specifically, the code chunks 𝑎𝑐1 and 𝑎𝑐2 share similar tokens with
the current file, such as "user" and "service." These high similarities
indicate that the chunks in the analogous context should be prior-
itized during the prompting process, as they are likely to exhibit
similar or identical functionalities to the code in the current file.

Context-Aware Selection. To combine relevant context and
analogous context into a fixed-length prompt, we designed the
Context-Aware Selection(CAS) technique. Theoretically, reliance
on post-execution metrics such as the Edit Similarity (ES) value for
evaluating code completions often fails to provide actionable in-
sights in real-time scenarios, as these metrics only assess outcomes
after all computations are completed. Therefore, CAS introduces
the relevance score 𝑟∗

𝑐𝑘
as a proactive indicator that can approxi-

mate the value of the outputs before the actual code completion
occurs. In the example shown in fig. 1, our CAS strategy selects 𝑟𝑐1,
𝑟𝑐2, and 𝑎𝑐1 to create the optimized dual context, as other contexts
do not contribute to the current completion task. Through CAS, we
filter out irrelevant information while reducing the prompt length,
thereby enhancing inference efficiency.

3 EVALUATION

Weevaluate RepoGenix using the CrossCodeEval benchmark python
dataset [2], which is designed to evaluate code completion frame-
works at the repository level, the content to be completed includes
at least one in-file API reference within the repository. Table 1

illustrates our main results. The data clearly demonstrates that
RepoGenix (without CAS), which utilizes both relevant and analo-
gous context simultaneously, significantly outperforms using either
context type alone when prompt length is unrestricted. Specifically,
compared to using only Relevant Context, RepoGenix shows im-
provements of 2.13 and 2.46 in the ES metric and ID-F1 score. When
compared to using only Analogous Context, the improvements are
2.17 and 3.12, respectively. These results strongly suggest that the
two sources of context information are indeed complementary.

Moreover, when applying the CAS technique to limit prompt
length, RepoGenix still outperforms both the only relevant and only
analogous approaches in terms of ES and F1-Score, while achieving
substantial speed improvements of 33.29% and 48.41% with prompt
length of 2048 and 1024 respectively. The selection of prompt size
for RepoGenix presents a trade-off: smaller prompt sizes lead to
significant speedup at the cost of minor performance degradation,
which will be determined in real world.

REFERENCES

[1] Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2023. Grounded
Copilot: How Programmers Interact with Code-Generating Models. Proc. ACM
Program. Lang. 7, OOPSLA1 (2023), 85–111. https://doi.org/10.1145/3586030

[2] Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Hantian Ding, Ming Tan, Nihal
Jain, Murali Krishna Ramanathan, Ramesh Nallapati, Parminder Bhatia, Dan Roth,
and Bing Xiang. 2024. CROSSCODEEVAL: a diverse and multilingual benchmark
for cross-file code completion. In Proceedings of the 37th International Conference
on Neural Information Processing Systems (New Orleans, LA, USA) (NIPS ’23).
Curran Associates Inc., Red Hook, NY, USA, Article 2023, 23 pages.

[3] Disha Shrivastava, Hugo Larochelle, and Daniel Tarlow. 2023. Repository-Level
Prompt Generation for Large Language Models of Code. In Proceedings of the 40th
International Conference on Machine Learning (Honolulu, Hawaii, USA) (ICML’23).
JMLR.org, Article 1314, 23 pages.

[4] Chaozheng Wang, Junhao Hu, Cuiyun Gao, Yu Jin, Tao Xie, Hailiang Huang,
Zhenyu Lei, and Yuetang Deng. 2023. How Practitioners Expect Code Completion?.
In Proceedings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (, San Francisco, CA,
USA,) (ESEC/FSE 2023). Association for Computing Machinery, New York, NY,
USA, 1294–1306. https://doi.org/10.1145/3611643.3616280

[5] Chengpeng Wang, Yixiao Yang, Han Liu, and Le Kang. 2019. Statistical api
completion based on code relevance mining. In 2019 IEEE Workshop on Mining
and Analyzing Interaction Histories (MAINT). IEEE, 7–13.

[6] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling and
Discovering Vulnerabilities with Code Property Graphs. In 2014 IEEE Symposium
on Security and Privacy. 590–604. https://doi.org/10.1109/SP.2014.44

[7] Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao,
Jian-Guang Lou, and Weizhu Chen. 2023. RepoCoder: Repository-Level Code
Completion Through Iterative Retrieval and Generation. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, Houda Bouamor,
Juan Pino, and Kalika Bali (Eds.). Association for Computational Linguistics,
Singapore, 2471–2484. https://doi.org/10.18653/v1/2023.emnlp-main.151

2467

https://doi.org/10.1145/3586030
https://doi.org/10.1145/3611643.3616280
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.18653/v1/2023.emnlp-main.151

