
Summary of Pinpoint and IFDS/IDE  
The document summarizes the problem domains of Pinpoint and IFDS/IDE framework, and 
demonstrate the feasibility of adapting IFDS/IDE problems to Pinpoint. Advanced bugs, which are 
out of the problem domain of Pinpoint, are briefly introduced with an example of loop hoisting. 

Meanwhile, the layers of pointer analysis in the IFDS/IDE framework and Pinpoint are compared 
to point out the difference in terms of the way to use the result of pointer analysis and their 
precision. Although these two styles of approaches are both based on layer design, IFDS/IDE 
framework does not suffer pointer trap， because top clients of data flow analysis are path 
insensitive and do not rely on sparse analysis, which makes Pinpoint distinguished from it.

The conclusion is delivered in the end. Pinpoint reduces the value flow analysis to the constrained 
reachability problem in the symbolic expression graph, and processes the attributes of general 
graph representation and uniform bug specification, which support flexible scheduling of a 
collection of bug detectors. Based on the observation, an IFDS/IDE problem can be formulated as 
a value flow problem in the problem domain of Pinpoint.

 

Part 1: Problem Domain of IFDS/IDE  

The solving of IFDS/IDE problem is formulated by two components

A set of data flow fact

IFDS: A finite set of dataflow fact D
IDE: Environment Env  mapping dataflow elements to values in a lattice.

Flow function

IFDS: Gen-Kill function
IDE: Environment transformer

Example  

IFDS Problem  

According to whether the form of the flow function depends on the input or not, IFDS problem 
can be classified into two types. For separable problems, the function in the program can be 
summarized by a bit-vector function f(x) = (x - Kill) \cup Gen , where Kill  and Gen  are 
constant [7].

Separable problems: 

Reaching definition
 Available expression
Live variables

Non-separable problems



Possibly-uninitilized variables
May/Must-alias analysis
Truly-live variables
Copy-constant propagation
Taint analysis

IDE Problem  

Constant propagation [10]
Software product line analysis [9]

 

Part 2: Problem Domain of Pinpoint  

The detection of bug type BType  can be defined by a set of value-flow properties S_p = {(src; 
sink; psc; agg)}  [1, 2].

Modeled by Single Value-flow Property  

Bug Type 1: Null-Dereference-Like Bugs

(SinkMustNotReach) The operation never occurs in any path, i.e., agg=never

Example

Null pointer dereference
Bad buffer size From System function
Divide by zero
Free of non-heap memory
Use of uninitialized variables
Integer overflow
File descriptor use after free (Taint-style)
Data race (Taint-style)

Remark: DivideByZero and NPD are similar

Example The value-flow property of NPD is

                                                  null-deref:=(v = malloc(_); _ = ∗v,∗v = _;v = 0; never)

Bug Type 2: Memory-Leak-Like Bugs

(SinkMustReach) The operations must occur in any path, i.e., agg=always

Example

Memory leak
File descriptor leak

Bug Type 3: Double-Free-Like Bugs

Two operations never occur simultaneously in one path, i.e., agg=non-sim

Example

Double-free



Modeled by Compositional Value-flow Property  

Buffer overflow (SinkMustNotReach)

Buffer copy without checking input size
Incorrect calculation buffer size

Conclusion  

The value-flow property is defined by a 4-tuple (src; sink; psc; agg) . Bug specification 
is a composition of one or more value-flow properties.
The bugs with the same value-flow properties distinguished from each other in terms of the 
type of value and the operations on them in the program, although the conditions of 
triggering the bugs might be totally the same, e.g., DividedByZero and Null Pointer 
Dereference. 

 

Part 3: Model IFDS/IDE Problem in Pinpoint Style  

IFDS problem  

Copy-constant propagation: Given a program P  and a variable x  at a certain point lc , 
determine whether the variable x  has the same value at lc  for any program execution. 
The constant value does not depend on the execution.

IFDS/IDE framework collects all constant integers to form D  and obtain the facts 
reachable at lc .
For Pinpoint, two SEG traces: 0 -> a   and 1 -> b -> a  The analysis demands the 
comparison of two traces. It should be noticed that searching strategy affects the 
problem domain of Pinpoint. Specifically, the comparison can be reduced to searching 
SEG paths in two directions, and the path  1 -> b -> a -> 0  indicates that the 
property is violated.

IDE problem  

Constant propagation: Generalize the program to any arithmetic program [10].

IDE-style framework records the computation in the environment Env
It is straightforward to adapt Pinpoint by collecting constant-value in the constraints, 
which records the mapping of variables in Env  in essence.

//Syntactic assumption: a = const; a = b;
int a = 0;
int b = 1;
if (c) {
  a = b;
}
//whether a is constant or not



Conclusion  

Searching stragety affects the domains of problems in Pinpoint. In different configurations, 
the searching direction and constraint types determine the border of problem domains.

 

Part 4: Advanced Bugs  

For other types of bugs, such as loop hoisting [5], it is out of the problem domain of Pinpoint, 
because the specification of these bugs can not be formulated by value-flow properties.

 

Part 5: Pointer-Analysis Layer  

Pinpoint  

Pinpoint outperforms IFDS/IDE framework in terms of path sensitivity. In the phase of SEG 
construction, path conditions are encoded in a sparse manner, i.e., irrelevant statements are cut 
out according to the data dependency, so that the scalable analysis can be achieved with high 
precision.

The calculation of data dependency relies on the results of pointer analysis. Imprecise pointer 
analysis causes spurious data dependency, and degrades the precision improvement of sparse 
analysis. In order to solve this pointer trap, Pinpoint offloads path sensitive analysis to the 
detection of specific bug, i.e., 

Step 1: Perform intraprocedural flow-sensitive pointer analysis and interprocedural 
parameter-return points-to summary.

int incr(int x) {
  return x + 1;
}

// incr will not be hoisted since it is cheap(constant time)
void foo_linear(int size) {
  int x = 10;
  for (int i = 0; i < size; i++) {
    incr(x); // constant call, don't hoist
  }
}

// call to foo_linear will be hoisted since it is expensive(linear in size).
void symbolic_expensive_hoist(int size) {
  for (int i = 0; i < size; i++) {
    foo_linear(size); // hoist
  }
}

https://fbinfer.com/docs/all-issue-types%23expensive_loop_invariant_call


Step 2: Obtain data dependance based on points-to relation and construct Symbolic 
Expression Graph(SEG)
Step 3: Traverse SEG and collect constraints.

IFDS/IDE Framework  

Path insensitivity makes IFDS/IDE framework escape from pointer trap. For a particular analysis, 
such as typestate analysis, the preprocess of pointer analysis is required to aliasing.

One of the typical work is IDEal [9] and it takes advantages another IFDS/IDE framework 
Boomerang for pointer analysis [4]. The analysis takes the following steps:

(Boomerang) Backward analysis to identify the allocation sites.
(Boomerang) Forward analyisis to obtain aliasing relation.
(IDEal) During the phase of value-flow propagation, aliasing relation is utilized to propagate 
in-direct value flow.

The examples illustrate the procedure of computing aliasing relation and value-flow propagation.

Conclusion  

The layers of pointer analysis in these two frameworks both perform flow-sensitive analysis. 
The differences include

The usage of result: Pinpoint utilizes it to construct SEG for sparse analysis while 



IFDS/IDE framework takes advantage of it to propagate value flow fact in a full manner.
The demand of precision: Pinpoint calls for path sensitive result and offload the 
overhead to clients to mitigate pointer trap. IFDS/IDE framework focus on flow- and 
context-sensitivity rather than path sensitivity.

 

Conclusion  

Pinpoint reduces the value flow analysis to the constrained reachability problem in the 
symbolic expression graph.

Given a symbolic expression graph(SEG), the detection of bug type BType  can be 
defined by a set of value-flow properties S_p = {(src; sink; psc; agg)}  

Constraint 1(Reachability Constraint) 

The environment CondEnv  computes the conditions of the path in SEG, from src  to 
sink . src  and sink  are reachable if and only if there is a path such that the 
condition in CondEnv  implies psc .

Constraint 2(Aggregation Constraint) 

agg=never : There is no reachable path from any one pair of source and sink.
agg=always : The disjunction of condition from any one of source to all the sinks 
is valid.

The paths violating these two constraints are the evidence of the presence of bug 
BType

Attribute of Pinpoint

General program representation, i.e., SEG is dependent to bug type.
Uniform bug specifications, i.e., bug specifications are formulated by value-flow 
properties, based on which bugs can be grouped according to the sinks and pre-
conditions.

Advantage over IFDS/IDE framework

Precision: Pinpoint benefits from the sparse analysis and achieves path sensitive with 
low cost, while exploded super graph does not store the branch condition and yield 
path insensitive result.
Efficiency: Uniform bug specification supports the multiple bug detection in one pass 
and searching process of reachable paths can even be optimized according to mutual 
synergies.

Relationship of problem domain

The problem domain of Pinpoint subsume IFDS and IDE problems.

 

Appendix and Memo: Optimization in Pinpoint  



For multi-bug detection, it is costly to perform the analysis for each bug. Pinpoint support the 
detection of all bug types in one check. The observation is that the bugs with the same sinks can 
be detected simultaneously, in which the searching process of one type of bug can be terminated 
soundly according to the information collected when searching SEG traces for the other type.

The similar observation is the inconsistent pre-condition provides extra information to reduce the 
overhand of constraint solving.

Dual Group 1(Same sink)

Memory leak
Free global pointer

Dual Group 2 (Inconsistent pre-condition)

Memory leak
Null pointer dereference
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