THE DEPARTMENT OF

COMPUTER SCIENCE & ENGINEERING
APERMBRTIERA

S FEHNEAS
THE HONG KONG
ll JJ UNIVERSITY OF SCIENCE
AND TECHNOLOGY

A Survey on Heap Analysis

PhD Qualifying Examination
Chengpeng Wang

Supervisor:

Dr. Charles Zhang

Committee Members:
Prof.Shing-Chi Cheung, Prof.Ke Yi, and Dr.Wei Wang

Oct 5t, 2020

Outline

* Background
* Problem
* Existing works

 Conclusion and future work

Outline

* Background
* Problem
* Existing works

 Conclusion and future work

Program Heap

* Dynamic allocation is managed by programmers

* Pointers form complex connectivity relation

[

&

addr p |
run
—————> 0x..cO
addr q
program)
NULL
Node* p = Node(l, NULL);
p->next = Node(2, NULL); heap
q = p->hext;
free(q);

cout << p->next->data;

0x..a0
Ox..ad

0x..a8

0x..cO
0Ox..c4

0x..c8

use after free

Heap Memory Bug

* Heap memory bugs are common and critical
* 4079 CVE entries in tota

e Use-after-free @

* Memory leak

* Sensitive information exposure “

* etc.

Static Analysis

* Analyze source code without actual execution
* Approximate runtime states by abstract states

 Transform abstract states based on statement effect, i.e., semantics of
operations

e Cover abnormal runtime states

* Typical static analysis clients for heap bug detection [Nor, SAS 00][Fink,
ISSTA 06][Xiao, ISSTA 14][Arzt, PLDI 14]

* Rely on heap properties

Heap Memory Bug Detection

* UAF detection [Nor, SAS 00]
* Heap property: aliasing

List™ y = createList(); use

List* t = NULL; [\

while (...) { malloc Clive > free use/free
t = y->n; t *
Yy=¢

} y t aliasing

) free(y);
int d = t->data; A,Q

Outline

* Background
* Problem
* Existing works

 Conclusion and future work

Problem

* Problems in heap analysis can be concluded into one question
* How to infer heap properties [Kanvar, CSUR [6]

) ¢
% === Heap Analysis —K—} Stati&;ﬁéﬁlysis =l n

Heap
source code Properties heap memory bugs

Heap Property

* Formally, heap is a set of objects and a connectivity relation on them
[Barr, ISSTA 13]
* Connectivity relation induces a variety of properties, including
* Aliasing
* Reachability
* Ownership

Complexity of Heap

* Dynamic allocation
* Unable to determine heap allocation statically

* Various data structures and operations
* Infeasible to model semantics of operations

N = input(); A {
Node* prev = malloc(); Node™ datalList;
(int k = 0; k <= N; k++) { size = 0;
Node™ f = malloc();
f->next = prey; f(Node* d) {...}

Node* g() {...}
} }

Two Kinds of Structural Heap

* Structural heap with pointers

* Structural heap in containers

Structural Heap with Pointers

* Connecting objects by pointers
* Composed of same type of objects with pointer-valued fields
* Manipulated by pointer operations

aliasing \z
o
Property . o
* Aliasing O disjointness

* Reachability Q |

* Disjointness r reachability

X=1z
y = y->left

Structural Heap in Containers

* Storing objects in containers
* Composed of objects with index
* Manipulated by standard library interfaces

* Property
* Ownership

Index-value correlation

dq | dz | 43

v[0]

v.push_back()

C++ STL vector

I-V correlation

O OO

ownership

14

Two Kinds of Structural Heap

* Structural heap with pointers

* Structural heap in containers

_ Heap Property Bug Type

aliasing use-after-free

Pointer reachability memory leak
disjointness data race
ownership

Container sensitive information exposure

|-V correlation

15

Heap Analysis

* How to infer heap properties in structural heaps
* Dynamic allocation
* Various data structures and operations

* Two technical questions
* QIl:How to abstract unbounded structural heap
* Q2:How to model semantics of operations

Outline

* Background
* Problem

* Existing works
* Structural heap with pointers
* Structural heap in containers

 Conclusion and future work

17

Structural Heap with Pointers

* How to infer heap property in structural heap with pointers
* QIl:How to abstract objects connected by pointers
* Q2:How to encode semantics of pointer operations

Solutions

* Shape analysis based on abstract interpretation
* Encode and update finite-sized abstract heap by logical formulas

* Typical works

* TVLA:Three-valued logic based shape analysis [Reps, TOPLAS 02][Jeannet, TOPLAS 10]
* Infer:Separation logic based shape analysis [Distefano, TACAS 06][Cristiano, POPL 09]

Preliminary: Abstract Interpretation

* Regard actual execution as concrete state transition system
* Associate program locations with concrete states

* Associate operation with concrete transformers x=1; w4
(input) {

x=x+ I; \

* Construct customized abstract state transition system '} X: +

* lIterate abstract transformers until a fixed point reaches e INT

x € {+,-, 0}

TVLA:Three-Valued Logic Analyzer

* Ql:Heap abstraction in TVLA

* Encode and abstract heap by predicates in three-valued logic
n

-~

/
() (1)) x,y—-(:>—f>

x(uy,) =0 x(uz) =0 n(vy,v,) =1/2

Predicate Meaning

x(u) X points to u

n(uq, uy) n field of u; points to u,

21

TVLA:Three-Valued Logic Analyzer

* Q2:Semantic encoding in TVLA

* Update predicates by predicate-update formulas for fixed points

List* y = createList();
List* t = NULL;
(--){ t'(uw) = 3v: y(v) An(v, u)
—> t = y->n;

T) _'@_'\GD_“

1 y'(w) = t(w)

N\ ; v »
ORON° @2020

vv: y(v) =t(v)

Strength

* Expressive and general
* Depicting fine-grained connectivity relation by low-level predicates
* Customizing logical formulas for various heap properties

Heap property Logical formula

aliasing vv: y(v) =t(v)

reachability xT(u) =x(w) v @Av: x*(v) An(v,u))

disjointness =(3v: xT (W) Ay (V)

23

Weakness

* Inefficient

* Updating a host of predicates by solvers
« Heap size: 34l [Reps, TOPLAS 02]
* Presence of loops

* Dependent to expertise
* Defining predicates for heap abstraction

|A|: #predicates for abstraction

Test Program in TVLA

Single-linked list create
Single-linked list merge

Single-linked list reverse

24

Infer: Separation Logic Analyzer

* Ql:Heap abstraction in Infer
* Partition heap into disjoint atomic blocks root

Node* root = createTree();
(root != 0) {
Node *x = root->|;
Node *y = root->r;
free(root);

}

root — [L: x,1: y] * tree(x) * tree(y)

Infer: Separation Logic Analyzer

* Q2:Semantic encoding in Infer
* Update the relevant atomic blocks by SL rules

Node* root = createTree();
if (root !=0) {
Node *x = root->l;
Node *y = root->r;

) free(root);
}

root = [l:x, r:y] root — [l:x,r: y] * tree(x) * tree(y)

1 m—)

emp

root

!

tree(x) * tree(y)

26

Strength

* Efficient
* Local reasoning disjoint heap blocks

* Intuitive
* Summarizing heap by high-level predicates [Distefano, TACAS 06][Rival, SAS 07]

Weakness

* Difficult to extend
* Relying on specific rules to assure terminality

Comparison

* TVLA equipped with low-level, analyzer-oriented predicates
* Expressive and general
* Inefficient and hard for non-expert

* Infer equipped with high-level predicates and local reasoning
* Intuitive and efficient
* Difficult to extend

Application

* Data race detection [W. O’Hearn, CACM 19]

main() { thread|: write(x)

t| = pthread_create(write, x);
t2 = pthread_create(write, y); //no data race
destroy(x); destroy(y);

0; //memory leak

disjointness

reachability
thread2: write(y)

* Memory leak detection [Shaham, SAS 03]

Summary

* Shape analysis infers heap properties in structural heap with pointers
* How are objects connected by pointers in the heap!

structural heap

/

pointer

N\

TVL based SL based
shape analysis shape analysis

aliasing disjointness

reachability

Outline

* Background
* Problem

* Existing works
* Structural heap with pointers
* Structural heap in containers

 Conclusion

32

Structural Heap in Containers

* How to infer heap property in structural heap in containers
* QIl:How to abstract same type of objects in containers
* Q2:How to encode semantics of standard library interfaces

Solutions

* Flow analysis

* Symbolic heap analysis

Solutions

* Flow analysis [Xu, PLDI 10] [Sridharan, OOPSLA 05]
* Reduce property inference to CFL-reachability problem in flow graph

Preliminary: CFL-reachability

* Flow graph OFG ={V, E} A*a = new A();
* V:object set A*b =23
A* ¢ = b;

* E:labeled edge set

* CFL-reachability problem

* Find paths of which label sequence is in a given context-free
language
flowsTo — new (assign)”*

* Infer properties by solving CFL-reachability problems assign
in flow graph

assign

Flow Analysis

* QIl:Heap abstraction in flow analysis
* Merge objects allocated by the same statement

mm) vector<A*>*y = vector<A*>();
(inti=0;i <N;i++) {
m) Afb= A();
v->push_back(b); new

new

}

Flow Analysis

* Q2:Semantic encoding in flow analysis
* Encode library interface semantics by labeled edges

vector<A*>* v = new vector<A*>(); new
for (inti=0;i < N;it++) { A Oy,
A* b = new A();
m) v->push_back(b); new store
01 —> b
} 1

ownership — flowsTo store flowsTo

38

Strength

* Efficient
* Constructing flow graph
* 0(m) where m is #statements

* Solving a given CFL-reachability problem
« 0(n®) where n = |V| is a small term

Weakness

* Unable to depict inner storage

* |nsensitive to the order of statements

vector<A*>*y =
A*a = NULL;

vector<A*>();

v->push_back(a); NullObj
(inti=0;i<N;it++) {
A*b = A();
v->push_back(b);
} 0,

A* c = v[0];

new
— a store

Op
new store

new

Solutions

* Symbolic heap analysis

* Encode and update index-value correlation by constraints [Dillig, PLDI 201 |]
[Dillig, ESOP 2010]

Symbolic Heap Analysis

* QIl:Heap abstraction in symbolic heap analysis
* Qualify points-to edges by constraints on index

vector<A*>*y = vector<A*>();
A*a = NULL; ip =0
v->push_back(a);
(inti=0;i <N;i++) {
A*b = A();
v->push_back(b);
}

NullObj

Symbolic Heap Analysis

* Q2: Semantic encoding in symbolic heap analysis
* Update edges by checking satisfiability

(%2 ==0){ s = 0% doer
m) Vv[i] = NULL;
}
A* c = v[0];
1<i; <NRALLEN -1
Al —1
il =0v (l)index ¢index: i1%2 =0
ip=0

4
[Solver } m) SAT

43

Strength

* Able to express index-value correlation
* Reflecting the storage locations of objects
* Establishing the connection between index and loop count

v->push_back(NULL); =—— | -, >4
for (inti=0;i < N;i++) {
A* b = new A(); 1<i, <N
v->push_back(b); Nig=i;—1

}

44

Weakness

* Imprecise encoding of complex branch conditions

(foo(i) > 0) { m >0 _
(?

}

* Conjunctive explosion in a single symbolic heap

¢1/\¢2/\"' /\¢n
<V >;

Iq

o < f >

l2

Comparison

* Flow analysis infers ownership effectively but is unable to infer index-
value correlations

* Regard container as black box
* |nsensitive to statement order

* Symbolic heap analysis reasons precise index-value correlations
* Maintain the effects of library interfaces on indices
* Sensitive to statement order

Application

* Detecting sensitive flow exposure

for (int k = 0; k <= 3; k++) { 69
File™ f = malloc();
if (k % 2)
f->inputPassword();

v.push_back(f);
} _l |-V correlation

v[0]->printAll(); O O O O > ownership
v[]->printAll(); v/

47

Summary

* Shape analysis: How are objects linked by pointers in the heap!?
* Flow analysis: How do object flow in and out of containers?

* Symbolic heap analysis: How are objects stored in containers!?

structural heap

/\

pointer container
TVL based SL based />1bolic
shape analysis shape analysis flow analysis heap analysis
aliasing disjointness ownership |.v correlation

reachability

Outline

* Background
* Problem
* Existing work

 Conclusion and future work

49

Conclusion

* The analysis of structural heap improves the precision of static
analysis clients by inferring specific heap properties

Structural Heap | Heap Property Bug Type

aliasing use-after-free
Pointer reachability memory leak
disjointness data race
. ownership o .
Container sensitive information exposure

|-V correlation

50

Conclusion

* Precise heap analysis demands constraint solvers in the analysis of
real-world programs

structural heap

/\

pointer container
TVL based SL based symbolic

shape analysis shape analysis heap analysis

Future Work

* Multi-domain property inference
* Layout of pointers
* Application: library implementation verification

Node* curr = a; Ab.@ sll(a, NULL) * sll(b, NULL)
(curr->next != NULL) {

curr = curr->next;

a
} § . sll(a, curr) * sll(b, NULL)
curr->next = b;
curr b

dis’(a, curr) = dis(a, NULL)-1
dis’(curr, NULL) = dis(b, NULL)+ |

Future Work

* Semantic identification of interfaces
* Load and store sequence of inner storage
* Application: semantic fingerprint

A
Data[] content;
size = 0;

add(Data d) { content[size]=d; size++;}
Data get() { content[size-1];}

}

i
o>

aliasing

Q&A

Thank you for your listening!

o4

Program Heap

* Dynamic allocation managed by programmers
* Heap memory is allocated and deallocated in the execution
* Lifetime lasts if the heap is not deallocated

* Complex connectivity relation formed by pointers
* Stack pointers provide an entry to access heap
* Objects are manipulated though pointers flexibly

* lllegal heap manipulations commonly exist

Characteristics of Heap

* Unnamed location
* Only pointers named
* Association between symbolic names and memory locations changes

* Unbounded size
* Caused by loop and recursive function

* Heap escape
* Unpredictable lifetime, dependent to the control flow

X,
x = 5: var {

* p; addr;
p = &X; content;
*p = | 5

o; 4

Get MAX from Syntactic Analysis

A program that is restricted only to stack and static
data can be rewritten without using pointers.

f002() {

var localVar[MAX];
int cnt = 0;

var Xx;

x.addr =cnt;
x.content = 5;
localVar[cnt++] = x;

var p;

p.addr = cnt;

p.content = x.addr;
localVar[cnt++] = p;
localVar[p.content].content = |;

0;

Rice’s Theorem

* All non-trivial questions about program behaviors are undecidable[Rice,
TAMS 53]

* Approximate program states under a hypothesis specifically

Rice’s Theorem

* Decidability: The language L= {(T, p(x))} is recursive language, i.e., there
exists a Turing machine accepting L and rejecting L

A

yes

(T,x)

Is the value of variable x

" in T always a constant

when T is executed? \

no

Other non-trivial properties
* Does the program terminate for all inputs?

Trivial properties
* |s the number of function parameters positive or equal to 0 ?

https://en.wikipedia.org/wiki/Halting_problem

Rice’s Theorem

* All non-trivial questions about program behaviors are undecidable

* Corollary: Given an arbitrary program with a heap property P and
program location Lc, the problem is undecidable that whether the

property P holds at Lc or not.

* Restrict heap analysis to two forms of structural heap

* Structural heap with pointers
* Structural heap in containers

TVLA: Partial Concretization

~
y— X = X—>n y—O—0O

——> X -~
\ concrete ~
j/(:@—’@@ " semantics Y—’@__'G"'@

- canonical
partial abstractio
concretization n

N
y—C—0O

=0 OO

61

TVLA:Abstract Heap Size

» Upper bound: 34!
* Three-valued logic
* Merge objects if predicates evaluate to the same value on them

TVLA:Weakness

7\
So 7 W

* Updating a host of predicates by wf,/ focus
* Heap size: 34 10 Sita Su

* Presence of loops e My N O
=) " () ROROxO
O=O Oan0=O
¢ Example , update formula
° 52,0 Sovc Sy 1 x'(v) = 3vy: x(v1)An(vy, v)
X=X-">N o3 : :
I’\\" Ir e \X\I,\\” n ,t\‘n
Xy y ‘m n = y . ~->
—(G| | —EOHEFEE
S | S L L L

SL based Shape analysis

* Abstract heap model in Separation Logic [Rival, SAS 2007]:

* Pattern based abstraction
* data structures type
* checking function

bool bluelist(List* 1) {
if (I == null) return true; . DIEHSE \ . . next . ety
= \%
else return (I—>color==Dblue) L cur 1

_ [, cur » Cur
&& bluelist(l—>next);

Infer: Weakness

e Difficult to extend

* Relying on specific operator(widening) to assure terminality

. bluelist ‘ next . bluelist
cur ;

|, cur , last

. next . bluelist ‘ next ‘ next . bluelist I
| cur

L, last s last

. next . next ‘ bluelist l

L last cur

. next . next ‘ next ' bluelist %‘e““. next . bluelist |

l last cur

fixed-point 65

Symbolic Heap Analysis: VWeakness

* Difficulty in determining updated edges

void send_packets(struct packet** buf, int c, int size) {
assert(2*c <= size);
for(int j=0; j< 2%c; j+=2)
if (transmit_packet (buf[j]) == SUCCESS. { free(buf[j]); buf[j] = NULL; }

66

Data-driven Shape Analysis

* Verify and refine properties by verifier [Le, PLDI 2019] [Zhu, PLDI 2016]

-

~

Program C

Location |

_[

Collect Heap \W

mnfer

~

Synthesize]

Snapshot J

[Testcase T]

N

/

gl Feature J/[

|

-

VALID

Validate)

o

J

'\

Invariant]

INVALID

[
(

New testcase T’]

67

—b»@ sll(a, nil) * sli(b, nil)
/ 0 / 1 \insert_head

a
(== @
0 1 2

