
A Survey on Heap Analysis

1

PhD Qualifying Examination
Chengpeng Wang

Supervisor:
Dr. Charles Zhang
Committee Members:

Prof.Shing-Chi Cheung, Prof.Ke Yi, and Dr.Wei Wang

Oct 5th, 2020

Outline

• Background
• Problem
• Existing works
• Conclusion and future work

2

Outline

• Background
• Problem
• Existing works
• Conclusion and future work

3

Program Heap

• Dynamic allocation is managed by programmers
• Pointers form complex connectivity relation

4

program

heap

run

Node* p = new Node(1, NULL);
p->next = new Node(2, NULL);
q = p->next;

1

0x..c0

0x..a0

0x..a4

0x..a8

addr p

free(q);

use after free

cout << p->next->data;

2

NULL

0x..c0

0x..c4

0x..c8

addr q

• Heap memory bugs are common and critical
• 4079 CVE entries in total

• Use-after-free

• Memory leak

• Sensitive information exposure

• etc.

Heap Memory Bug

5

Static Analysis

• Analyze source code without actual execution
• Approximate runtime states by abstract states
• Transform abstract states based on statement effect, i.e., semantics of

operations
• Cover abnormal runtime states

• Typical static analysis clients for heap bug detection [Nor, SAS 00][Fink,
ISSTA 06][Xiao, ISSTA 14][Arzt, PLDI 14]
• Rely on heap properties

6

Heap Memory Bug Detection

• UAF detection [Nor, SAS 00]
• Heap property: aliasing

7

List* y = createList();
List* t = NULL;
while (…) {

t = y->n;
y = t;

}
free(y);
int d = t->data;

y t aliasing

Outline

• Background
• Problem
• Existing works
• Conclusion and future work

8

Problem

• Problems in heap analysis can be concluded into one question
• How to infer heap properties [Kanvar, CSUR 16]

9

Heap
Properties

Heap Analysis Static Analysis
Client

heap memory bugssource code

Heap Property

• Formally, heap is a set of objects and a connectivity relation on them
[Barr, ISSTA 13]

• Connectivity relation induces a variety of properties, including
• Aliasing
• Reachability
• Ownership

10

Complexity of Heap

• Dynamic allocation
• Unable to determine heap allocation statically

11

int N = input();
Node* prev = malloc();
for (int k = 0; k <= N; k++) {

Node* f = malloc();
f->next = prev;
…

}

class A {
Node* dataList;
int size = 0;

void f(Node* d) {…}
Node* g() {…}

}

• Various data structures and operations
• Infeasible to model semantics of operations

Two Kinds of Structural Heap

• Structural heap with pointers
• Structural heap in containers

12

Structural Heap with Pointers

• Connecting objects by pointers
• Composed of same type of objects with pointer-valued fields
• Manipulated by pointer operations

• Property
• Aliasing
• Reachability
• Disjointness

13

z

y

r

l

x

y

r

l

aliasing

disjointness

reachability

x = z
y = y->left

Structural Heap in Containers

• Storing objects in containers
• Composed of objects with index
• Manipulated by standard library interfaces

14

a" a#a$ a%
I-V correlation

ownership

C++ STL vector

v[0]
v.push_back()

• Property
• Ownership
• Index-value correlation

Two Kinds of Structural Heap

• Structural heap with pointers
• Structural heap in containers

15

Heap Property Bug Type

Pointer
aliasing use-after-free
reachability memory leak
disjointness data race

Container
ownership

sensitive information exposure
I-V correlation

Heap Analysis

• How to infer heap properties
• Dynamic allocation
• Various data structures and operations

• Two technical questions
• Q1: How to abstract unbounded structural heap
• Q2: How to model semantics of operations

16

in structural heaps

Outline

• Background
• Problem
• Existing works
• Structural heap with pointers
• Structural heap in containers

• Conclusion and future work

17

Structural Heap with Pointers

• Two technical questions
• Q1: How to abstract unbounded structural heap
• Q2: How to model semantics of operations

• How to infer heap property in structural heap with pointers
• Q1: How to abstract objects connected by pointers
• Q2: How to encode semantics of pointer operations

18

Solutions

• Shape analysis based on abstract interpretation
• Encode and update finite-sized abstract heap by logical formulas

• Typical works
• TVLA:Three-valued logic based shape analysis [Reps,TOPLAS 02][Jeannet, TOPLAS 10]
• Infer: Separation logic based shape analysis [Distefano,TACAS 06][Cristiano, POPL 09]

19

Preliminary:Abstract Interpretation

• Construct customized abstract state transition system
• Iterate abstract transformers until a fixed point reaches

20

x ∈ INT

x ∈ {+, -, 0}

int x = 1;
while (input) {

x = x + 1;
}

x: +

• Regard actual execution as concrete state transition system
• Associate program locations with concrete states
• Associate operation with concrete transformers

x: +

TVLA:Three-Valued Logic Analyzer

• Q1: Heap abstraction in TVLA
• Encode and abstract heap by predicates in three-valued logic

21

nu"x, y nu# u$

Predicate Meaning

x & x points to u
' &", &# n field of u" points to u#

n

n

v" v#x, y

* &# = 0 * &$ = 0 ' -", -# = 1/2

TVLA:Three-Valued Logic Analyzer

• Q2: Semantic encoding in TVLA
• Update predicates by predicate-update formulas for fixed points

22

List* y = createList();
List* t = NULL;
while (…) {

t = y->n;
y = t;

}

!"
y

!"

t

n !#

!# !$

!$

%&(u) = ∃!: - ! ∧ n(v, u)
y

y′ 4 = t(u)

!"

y, t

n !# !$
!" !$

n

n
t, y

n !#

∀!: - ! = t(v)

Strength

• Expressive and general
• Depicting fine-grained connectivity relation by low-level predicates
• Customizing logical formulas for various heap properties

23

Heap property Logical formula
aliasing

reachability

disjointness ¬(∃$: &' $ ∧)' $)

∀$:) $ = t(v)
&' / = & / ∨ (∃$: &' $ ∧ 1 $, /)

Weakness

• Inefficient
• Updating a host of predicates by solvers

• Heap size: 3|#| [Reps,TOPLAS 02]
• Presence of loops

• Dependent to expertise
• Defining predicates for heap abstraction

24

Test Program inTVLA

Single-linked list create

Single-linked list merge

Single-linked list reverse

$: #predicates for abstraction

Infer: Separation Logic Analyzer

• Q1: Heap abstraction in Infer
• Partition heap into disjoint atomic blocks

25

root → l: x, r:) ∗ tree , ∗ tree)

Node* root = createTree();
if (root != 0) {

Node *x = root->l;
Node *y = root->r;
free(root);

}

root

l r

x y

Infer: Separation Logic Analyzer

• Q2: Semantic encoding in Infer
• Update the relevant atomic blocks by SL rules

26

root → l: x, r:) ∗ tree , ∗ tree)

tree , ∗ tree)

Node* root = createTree();
if (root != 0) {

Node *x = root->l;
Node *y = root->r;
free(root);

}

root

l r

x y

root → l: x, r:)

emp

Strength

• Efficient
• Local reasoning disjoint heap blocks

• Intuitive
• Summarizing heap by high-level predicates [Distefano,TACAS 06][Rival, SAS 07]

27

Weakness

• Difficult to extend
• Relying on specific rules to assure terminality

28

Comparison

• TVLA equipped with low-level, analyzer-oriented predicates
• Expressive and general
• Inefficient and hard for non-expert

• Infer equipped with high-level predicates and local reasoning
• Intuitive and efficient
• Difficult to extend

29

Application

• Data race detection [W. O’Hearn, CACM 19]

30

y

r

l

x

y

r

l

thread1: write(x)

thread2: write(y)

int main() {
…

t1 = pthread_create(write, x);
t2 = pthread_create(write, y); //no data race
destroy(x); destroy(y);
return 0; //memory leak

}

disjointness

reachability

• Memory leak detection [Shaham, SAS 03]

Summary

• Shape analysis infers heap properties in structural heap with pointers
• How are objects connected by pointers in the heap?

31

structural heap

pointer

TVL based
shape analysis

SL based
shape analysis

aliasing disjointness

reachability

Outline

• Background
• Problem
• Existing works
• Structural heap with pointers
• Structural heap in containers

• Conclusion

32

Structural Heap in Containers

• Two technical questions
• Q1: How to abstract unbounded structural heap
• Q2: How to model semantics of operations

• How to infer heap property in structural heap in containers
• Q1: How to abstract same type of objects in containers
• Q2: How to encode semantics of standard library interfaces

33

Solutions

• Flow analysis
• Symbolic heap analysis

34

Solutions

• Flow analysis [Xu, PLDI 10] [Sridharan, OOPSLA 05]
• Reduce property inference to CFL-reachability problem in flow graph

• Symbolic heap analysis

35

• Flow graph OFG = {V, E}
• V: object set
• E: labeled edge set

Preliminary: CFL-reachability

o

c

a

b

new

assign

A* a = new A();
A* b = a;
A* c = b;

assign

• CFL-reachability problem
• Find paths of which label sequence is in a given context-free

language

• Infer properties by solving CFL-reachability problems
in flow graph

36

Flow Analysis

• Q1: Heap abstraction in flow analysis
• Merge objects allocated by the same statement

37

vector<A*>* v = new vector<A*>();
for (int i = 0; i < N; i++) {

A* b = new A();
v->push_back(b);

}
o1 b

v ov

new

new

Flow Analysis

• Q2: Semantic encoding in flow analysis
• Encode library interface semantics by labeled edges

38

vector<A*>* v = new vector<A*>();
for (int i = 0; i < N; i++) {

A* b = new A();
v->push_back(b);

} o1 b

v

storenew

ov
new

Strength

• Efficient
• Constructing flow graph

• !(#) where m is #statements
• Solving a given CFL-reachability problem

• !(%&) where % = |)| is a small term

39

Weakness

• Unable to depict inner storage
• Insensitive to the order of statements

40

vector<A*>* v = new vector<A*>();
A* a = NULL;
v->push_back(a);
for (int i = 0; i < N; i++) {

A* b = new A();
v->push_back(b);

}
A* c = v[0];

o1

a

b

NullObj
new

v

store

store

o0
new

new

Solutions

• Flow analysis
• Symbolic heap analysis
• Encode and update index-value correlation by constraints [Dillig, PLDI 2011]

[Dillig, ESOP 2010]

41

Symbolic Heap Analysis

• Q1: Heap abstraction in symbolic heap analysis
• Qualify points-to edges by constraints on index

42

NullObj

< " >$%
1 ≤ () ≤ *
⋀ (, = () − 1

< v >01

() = 0
vector<A*>* v = new vector<A*>();
A* a = NULL;
v->push_back(a);
for (int i = 0; i < N; i++) {

A* b = new A();
v->push_back(b);

}

Symbolic Heap Analysis

• Q2: Semantic encoding in symbolic heap analysis
• Update edges by checking satisfiability

43

if (i % 2 == 0) {
v[i] = NULL;

}

NullObj

< " >$%
1 ≤ () ≤ *
⋀ (, = () − 1

< v >01

() = 0

3$4567: ()%2 = 0

() = 0 ∨ 3$4567

1 ≤ () ≤ * ⋀ (, = () − 1
⋀¬3$4567

A* c = v[0];

i) = 0 ∨ 3$4567
() = 0

Solver SAT

Strength

• Able to express index-value correlation
• Reflecting the storage locations of objects
• Establishing the connection between index and loop count

44

< " >$%v->push_back(NULL);
for (int i = 0; i < N; i++) {

A* b = new A();
v->push_back(b);

}
< & >$'

NullObj
() = 0

1 ≤ () ≤ .
⋀ (0 = () − 1

Weakness

• Imprecise encoding of complex branch conditions

45

if (foo(i) > 0) {
v[i] = NULL;

}

>0
foo v[i]=NULLfoo(i)

< " >$%
&'⋀&)⋀… ⋀ &*< v >,-

• Conjunctive explosion in a single symbolic heap

Comparison

• Flow analysis infers ownership effectively but is unable to infer index-
value correlations
• Regard container as black box
• Insensitive to statement order

• Symbolic heap analysis reasons precise index-value correlations
• Maintain the effects of library interfaces on indices
• Sensitive to statement order

46

Application

• Detecting sensitive flow exposure

47

a" a#a$ a%

for (int k = 0; k <= 3; k++) {
File* f = malloc();
if (k % 2)

f->inputPassword();
v.push_back(f);

}
v[0]->printAll();
v[1]->printAll();

I-V correlation
ownership✘

✓

Summary

• Shape analysis: How are objects linked by pointers in the heap?
• Flow analysis: How do object flow in and out of containers?
• Symbolic heap analysis: How are objects stored in containers?

48

structural heap

pointer container

TVL based
shape analysis

SL based
shape analysis flow analysis

symbolic
heap analysis

aliasing disjointness

reachability

ownership I-V correlation

Outline

• Background
• Problem
• Existing work
• Conclusion and future work

49

Conclusion

• The analysis of structural heap improves the precision of static
analysis clients by inferring specific heap properties

50

Structural Heap Heap Property Bug Type

Pointer
aliasing use-after-free
reachability memory leak
disjointness data race

Container
ownership

sensitive information exposure
I-V correlation

Conclusion

• Precise heap analysis demands constraint solvers in the analysis of
real-world programs

51

structural heap

pointer container

TVL based
shape analysis

SL based
shape analysis

flow analysis symbolic
heap analysis

Future Work

• Multi-domain property inference
• Layout of pointers
• Application: library implementation verification

52

Node* curr = a;
while (curr->next != NULL) {
curr = curr->next;

}
curr->next = b;

!"
b

!# !$
a

!#a !$!"

bcurr

dis’(a, curr) = dis(a, NULL)-1

dis’(curr, NULL) = dis(b, NULL)+1

sll ', NULL ∗ sll -, NULL

sll ', curr ∗ sll -, NULL

Future Work

• Semantic identification of interfaces
• Load and store sequence of inner storage
• Application: semantic fingerprint

53

class A {
Data[] content;
int size = 0;

void add(Data d) { content[size]=d; size++;}
Data get() {return content[size-1];}

}

add

get

!"#$%&

'

aliasing

54

Thank you for your listening!

Program Heap

• Dynamic allocation managed by programmers
• Heap memory is allocated and deallocated in the execution
• Lifetime lasts if the heap is not deallocated

• Complex connectivity relation formed by pointers
• Stack pointers provide an entry to access heap
• Objects are manipulated though pointers flexibly

• Illegal heap manipulations commonly exist

55

Characteristics of Heap

• Unnamed location
• Only pointers named
• Association between symbolic names and memory locations changes

• Unbounded size
• Caused by loop and recursive function

• Heap escape
• Unpredictable lifetime, dependent to the control flow

56

57

int foo1() {
int x;
x = 5;
int* p;
p = &x;
*p = 1;

return 0;
}

int foo2() {
var localVar[MAX];
int cnt = 0;

var x;
x.addr =cnt;
x.content = 5;
localVar[cnt++] = x;

var p;
p.addr = cnt;
p.content = x.addr;
localVar[cnt++] = p;
localVar[p.content].content = 1;

return 0;
}

struct var {
int addr;
int content;

};

A program that is restricted only to stack and static
data can be rewritten without using pointers.

Get MAX from Syntactic Analysis

Rice’s Theorem

• All non-trivial questions about program behaviors are undecidable[Rice,
TAMS 53]
• Approximate program states under a hypothesis specifically

58

Rice’s Theorem

59

Other non-trivial properties
• Does the program terminate for all inputs?

Trivial properties
• Is the number of function parameters positive or equal to 0 ?

• Decidability:The language L= {(T, p(x))} is recursive language, i.e., there
exists a Turing machine accepting L and rejecting !"

https://en.wikipedia.org/wiki/Halting_problem

Rice’s Theorem

• All non-trivial questions about program behaviors are undecidable

• Corollary: Given an arbitrary program with a heap property P and
program location Lc, the problem is undecidable that whether the
property P holds at Lc or not.

• Restrict heap analysis to two forms of structural heap
• Structural heap with pointers
• Structural heap in containers

60

TVLA: Partial Concretization

61

TVLA:Abstract Heap Size

62

• Upper bound: 3|#|
• Three-valued logic
• Merge objects if predicates evaluate to the same value on them

TVLA:Weakness

63

• Updating a host of predicates by solvers
• Heap size: 3|#|
• Presence of loops

• Example
• x=x->n

SL based Shape analysis

• Abstract heap model in Separation Logic [Rival, SAS 2007]:
• Pattern based abstraction
• data structures type
• checking function

bool bluelist(List* l) {
if (l == null) return true;
else return (l−>color==blue)

&& bluelist(l−>next);
}

64

Infer:Weakness

• Difficult to extend
• Relying on specific operator(widening) to assure terminality

65fixed-point

Symbolic Heap Analysis:Weakness

66

• Difficulty in determining updated edges

Data-driven Shape Analysis

Program C

Location l

Testcase T

Collect Heap
Snapshot

Infer

Feature

Validate

Synthesize

VALID

INVALID

New testcase T’

Invariant

• Verify and refine properties by verifier [Le, PLDI 2019] [Zhu, PLDI 2016]

67

68

!"b !# !$
a

!"a !# !$

sll ',)*+ ∗ sll -,)*+

sll ', nil

insert_head0 1

0 1 2

