
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Detecting Query Inefficiencies in Web Applications
Chengpeng Wang
cwangch@cse.ust.hk

The Hong Kong University of Science and Technology
Hong Kong, China

Abstract
The emerging database-as-a service platforms and persis-
tent data framework create the convenience of deploying
web applications than before. Developers can implement the
functionality of an application in a compact development cy-
cle. However, it is quite challenging to develop efficient web
applications which can query records from database in an
optimal manner. Developers may introduce anti-patterns un-
consciously when coding SQL statements in the applications.
These anti-patterns, which can be in different forms, are
intended to meet their requirements, while they sometimes
cause the efficiency issues in different ways.

In this survey, we summarize the existing works on the de-
tection of inefficient queries in Web applications. According
to the manners of generating queries, the big picture can be
partitioned into three parts. Firstly, the interfaces offered by
ORM frameworks allows developers to construct the queries
by composing them, and the abstraction in these interfaces
might cause the inefficient query construction. Secondly,
the data required in the application is often fetched by SQL
queries and data manipulation in programming language,
which means the queries are composed by SQL queries and
the interfaces of data structures, such as traversal in contain-
ers. Redundant records or attributes can be fetched by SQLs
but not actually used in the application. Thirdly, the same
query can be expressed by SQL queries in multiple ways,
while different implementations differ in terms of efficiency.
We will discuss recent works from these three perspectives
and draw several conclusions and future works in the end.

1 Introduction
To manage a huge amount of data, web applications are de-
signed by following a two-stack architecture. A back-end
applications stack stores the persistent data, generate the
requests of processing data retrieval. A front-end application
stack implements the program logic, i.e., process the data
fetched by the back-end stack. This architecture has gradu-
ally evolve into more concrete designs of architectures, such
as Model-Controller-View(MVC) design. Figure 1 displays
the architectures of MVC application. Controllers respond to
the user’s actions and invoke the proper queries to fetch data
from the DBMS. In some cases, such queries are constructed
by the APIs in frameworks, such as ORM frameworks, and

PL’18, January 01–03, 2018, New York, NY, USA
2018.

Figure 1. MVC architecture [1]

then translated to native SQL queries. The result of queries
will be mapped to the objects in the applications, which
are the instances of the models, and then these models are
processed by the applications.
The application code often interacts with the DBMS in

three ways, and mostly they are combined in many real-
world applications. Firstly, developers can write native SQL
statements to manipulate the database directly. Secondly,
applications can use frameworks to operate the data in the
DBMS instead of construct native SQL statement directly.
For example, Object Relational Mapping(ORM) frameworks
of general-purpose programming languages expose conve-
nient interfaces for SQL construction and easy to be applied
to a MVC architecture. Thirdly, program logic can also help
SQL queries manipulate the data fetched from the DBMS.
For instance, a query might return a list of the objects which
we are interested in, and the list is then processed by the
interfaces of a list in order to find the final desired result.
Therefore, the implementations of a certain functionality
often have multiple alternatives, with different combinations
of native SQL statements, APIs in the frameworks and the
program logic, and each implementation might behave dif-
ferently in terms of efficiency. In this survey, we will discuss
the performance issue of a query from these three aspects.

The organization of the survey is as follows. Section 2 sum-
marizes the inefficient use of APIs in ORM framework and
introduce how to detect them. Section 3 reviews a fundamen-
tal problem of SQL statements and discusses its application
in the removal of redundant SQL execution. Section 4.1 sum-
marizes the optimization of SQL statements, ORM usage

1



111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

PL’18, January 01–03, 2018, New York, NY, USA Chengpeng Wang

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

and program logic simultaneously. The limitation of each
approach is briefly discussed and some interesting future
works are also mentioned at the end of each section.

2 Detecting Inefficient ORM Usage
To help developers implement database-backed applications,
Object Relational Mapping(ORM) frameworks have been
proposed and gained a significant increase of popularity. For
almost all common programming languages, there are corre-
sponding implementations: Hibernate for Java, SQLAlchemy
for Python, and the Ruby on Rails for Ruby. Benefited from
the APIs exposed by these ORM frameworks, developers
are able to operate persistent data stored in the database
in the same way of manipulating regular heap objects. It is
proper to take an analogy that an ORM frameworks is an
variant of Java Collection Framework which wraps the tables
and records in the database in its containers and offers the
interfaces manipulating them.

Figure 2. Different APIs cause huge performance differ-
ence [2]

Although ORM frameworks release the burden of writing
complex native SQL statements, developers often ignore the
implementation details of these APIs and write the inefficient
queries. A functionality can be implemented by different
compositions of the APIs, while they can make big difference
in performance. For example, Figure 2 shows two implemen-
tations of checking if there are products whose inventories
are not tracked in an online shopping system. The Ruby on
Rails contains two APIs, namely any? and exists?, which
supports this functionality. However, these two queries have
a substantial difference in terms of performance. Specifically,
the first implementation is transformed into a SQL query
which scan the whole table, collect the records satisfying the
specified property and count the number of these records,
while the query transformed from the second implementa-
tion stops scanning the remaining records if one records with
the property is found. By fixing such API misuse, the server
time of an application can be improved significantly. As re-
ported in [2], the replacement of any? with exists? improves
server time by 1.7×. It is quite a promising performance op-
timization because the detecting and fixing process are both
simple and straightforward, which do not demand advanced
program analysis and testing techniques.
Table 3 lists other equivalent pairs in the Ruby on Rails.

Based on these patterns observed by experts, Yang and Lu

Functionality Inefficient Efficient
Pick one item by a condition where.first find_by
Update records by a condition each.update update_all
Find the number of items .count .size

Figure 3. Equivalent pairs in Rails

propose an approach to detecting the existing of such inef-
ficient patterns by regular expression matching [2, 3]. The
analysis only perform syntactic check upon the source code,
and even does not require the integrity of the application
code. Therefore, it permits the incremental analysis of the
applications by checking each modules individually so that
developers can analyze their own modules once developed,
which is quite important to analyze large-scaled applications.

One major limitation is that the detection rules are higly
dependent to expertise knowledge. The equivalence relation
and performance superiority are sometimes not easy to ob-
tain. It is an interesting problem to automatically generate
such equivalent API sequences with the fact of their per-
formance superiority from available artifacts, such as the
documentations of ORM frameworks. Some techniques in
the community of programming language, such as equational
reasoning, might provide new insight to this problem [4, 5].

3 Optimizing Native SQL Statements
Writing native SQL statements is often more efficient than
constructing SQL queries by ORM APIs because no construc-
tion process is involved. Even if native SQL statements have
optimized the performance to some extent, the writing na-
tive SQL statements still often exhibit significant overlap of
computation. Typically, redundant execution of particular
sub-queries introduce the unnecessary overhead of applica-
tions. If we find two SQL statements across the application
perform the same operation on the storage of DBMS, we can
omit the second one safely and reuse the former query result
directly.

Figure 4. Equivalent SQL queries [6]

It is an challenging problem to determine if two SQL
queries are semantically equivalent. It has been proved that
the general form of this problem is undecidable [7]. Fortu-
nately, it is still possible to identify a subset of relational
algebra. For example, the problem of deciding the equiva-
lence of two SELECT-PROJECT-JOIN queries is decidable.

2



221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Short Title PL’18, January 01–03, 2018, New York, NY, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

Zhou has proposed a series of works on verifying the equiv-
alence by a logic method [6, 8]. He borrows the insight from
the equivalence verification in programming language [9]
and describe the input-output relation of a SQL query by log-
ical formula. Technically, the expressions and predicates in a
SQL query are encoded by logical formulae. By checking the
implication of two logical formulae, it is easy to determine
whether two queries are equivalent or not. Figure 4 shows
an example of two equivalent SQL queries. Regardless of the
table content, the result of executing these two SQL queries
must be the same, which is the number of employees that
satisfy certain predicates.

Figure 5. Constraints in set semantics [6]

Figure 5 shows the constraints corresponding to Q1 and
Q2. Here (v4,n4) and (v5,n5) represent the values of the ag-
gregate function COUNT returned by Q1 and Q2. The COND
in each constraint determines the existence of a record in
the query result completely. It is obvious that Q1 and Q2 are
equivalent by inspecting COND1 and COND2.

The approach is applied to detect equivalent SQL queries
in real-world systems, such as Alibaba’s MaxCompute
database-as-a-service platform. It is reported that 11%
queries are detected as equivalent thus redundant ones
among a set of 17,461 queries, which reduces the com-
pute and memory resource consumption by 36% and 35%,
respectively.
Other automated approaches of determining SQL query

equivalence adopt algebraic approaches [10]. They performs
query rewrites by applying a set of rules to algebraic ex-
pressions of queries, and check the isomorphisms and ho-
momorphisms between the rewritten algebraic expressions.
However, these algebraic approaches are limited and unable
to support certain widely-used forms of SQL queries. In com-
parison, the logic method proposed by Zhou is more general
and applicable. In the future, logic representation of SQL
queries can be an interesting and meaningful problem. Ex-
cept for equivelance checking for performance optimization,
the logical formulae abstracting the effect of SQL queries
can also help us understand the functionality of application
code and perform further analysis [11].

4 Optimizing Imperative Code
In real-world web applications, the logic of processing data
in DBMS is often implemented in a combined way, i.e., the
imperative code in the application and the SQL statements

manipulate the data together. In this section, we discuss two
kinds of the works which focus on the optimize imperative
code by transforming it to SQL statements and identifying
redundant data access respectively.

4.1 Rule-based Transformation
Aweb application is a hybrid system composed of imperative
code in programming language and the statements in query
language. One functionality can be achieved by different com-
positions of these two kinds of languages. On the one hand,
we can query all the data we possibly need and post-process
the data byimperative code in a programming language. On
the other hand, we can implement the post-processing in
the query language and get the data we actually desire by a
query directly. Due to the mature optimization mechanism
of the DBMS, the second implementation is likely to be more
efficient.

Figure 6. Code for highest score calculation [12]

Figure 7. Walk-through of equivalent SQL derivation [12]
3



331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

PL’18, January 01–03, 2018, New York, NY, USA Chengpeng Wang

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

Figure 8. An architecture of redundant data detection [13]

Different from the works summarized in Section 2 and 3,
the works located into this scope focus on multiple subjects
of languages, and a uniform representation is necessary to
reason the semantics of the code written in different lan-
guages. Emani and Sudarshan propose an algebraic repre-
sentation of imperative code and queries uniformly [12, 14].
They define rule-based transformations on the algebraic rep-
resentations to find whether it is possible to push computa-
tion into the relational algebra query or not.
Consider the code snippet shown in Figure 6. The high-

est score across all tables is found by a SQL query followed
by a traversal of the fetched result. Figure 7(a) is the alge-
braic representation of the code where Q denotes the query
σrnd_id=1(Board). After the transformations, a representa-
tion which can be expressed in the relational algebra finally
reaches, i.e., the algebraic representation in Figure 7(c), and
the SQL statement in (d) performs the same computation as
the original code fragment.
The rule-based transformation is a powerful equational

reasoning techniques, which is widely applied not only in
query optimization, but also in the code of programming
languages [15, 16]. The transformation can utilize more op-
portunities of optimization in the side of target languages,
such as the query optimization in the DBMS. However, these
optimizations still preserve all the computations even if they
are performed in a more efficient way. Therefore, these ap-
proaches can not discover the efficient issues in the compu-
tation itself, such as the redundant data access.

4.2 Dynamic Profiling and Static Analysis
To analyze the web application in a finer grain, Chen and
Flora propose an approach to analyzing the data access mode
by dynamic profiling and then comparing profiled data with
the result of static analysis [13, 17]. They focus on the prob-
lem that a huge amount of records and attributes are not
actually used in the applications after being fetched from the
database, and redundant data access takes the unnecessary
bandwidth and execution time, which slows the respond
time of the web application. Motivated by finding the perfor-
mance impact of redundant data access, they compare the
needed database accesses with requested database accesses
to find the clues of redundant access.

Figure 8 shows the architecture of their approach. Firstly,
they take advantage of static analysis to identify how the
database accessing functions read and modify the instance
variables mapped to database columns. Secondly, they lever-
age code instrumentation to collect the system traces which
reflect which data is read or modified in the database. Finally,
the comparison of these two facts exactly indicates the exis-
tence of redundant data access. The combination of dynamic
profiling and static analysis provides a new possibility of de-
tecting sophisticated query inefficiencies in the granularity
of database columns, and can find more optimization oppor-
tunities than detecting redundant SQL execution discussed
in Section 3.

5 Future Work
Based on the survey, we discover several interesting topics
to be further explored.

Automatic discovery of equivalent API invocations.
As summarized in Section 2, the inefficiency patterns are
specified manually and highly depend on expertise knowl-
edge. For a new ORM framework, developers have to endure
a long process to discover such empirical rules to guide the
performance analysis. If the equivalent relations of API invo-
cation sequences are automatically obtained, then the whole
detection process does not rely on the human guidance. For-
tunately, the works on SQL equivalence checking has shown
the feasibility of encoding the SQL interfaces and APIs in
ORM frameworks by a constraint in bag semantics. The docu-
mentations of ORM frameworks define the semantics of each
API, which is easily encoded by a constraint. Based on these
materials, it is possible to enumerate API sequences and iden-
tify their equivalence relations by checking the implication
of the constraints.

Data dependence analysis. Data dependence analysis
is a fundamental static analysis techniques. When analyzing
inefficient queries in the database-backed applications, data
dependence analysis enables a detailed reasoning of def-use
relationship. However, it is often restricted in the presence
of frameworks and configuration files. Data dependency
might be affected by the framework code and the segments
in configurations [11]. It is an open problem to design a
robust data dependence analysis for these system.

4



441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Short Title PL’18, January 01–03, 2018, New York, NY, USA

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

Loop analysis in SQL. Some queries are frequently in-
voked in a loop or a recursive function while return the
same results. Loop hoisting techniques can be applied to
these program structures to enhance the performance of the
systems. Meanwhile, a SQL query might behave similarly to
a function containing a loop, which means that there is a sub-
query scanning all the records in a table. The results might
be reused if the sub-queries are executed multiple times and
the results are always the same. Loop analysis, such as loop
hoisting, is a classical problem in programming language,
and the analysis of SQL might discover more interesting
optimizations for web applications.

6 Conclusion
This survey reviews three lines of works on query ineffi-
ciency detection in web applications. ORM frameworks, na-
tive SQL statements and imperative code in applications can
introduce the inefficient queries in different ways. Pattern-
matching based approaches are effective in detecting ineffi-
cient API usage of ORM frameworks. Constraint based ap-
proaches enables the identification of redundant SQL queries
which can be removed to enhance the performance. Equa-
tional reasoning of imperative code and SQL statements
provides more opportunities of optimization, by utilizing op-
timization mechanism of DBMS engine. Hybrid approaches,
which combine dynamic profiling and static data dependence
analysis, can cover the redundant data access problem in a
finer grain. The sub-problems in each category are worth fur-
ther exploring, most of which are the common concerns in
the communities of database and programming languages.

Acknowledgment
The figures and examples are extracted from the papers. The
citations are added to the titles of the figures.

References
[1] Cong Yan, Alvin Cheung, Junwen Yang, and Shan Lu. Understanding

database performance inefficiencies in real-world web applications.
In Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, pages 1299–1308, 2017.

[2] Junwen Yang, Cong Yan, Pranav Subramaniam, Shan Lu, and Alvin
Cheung. How not to structure your database-backed web applications:
a study of performance bugs in the wild. In 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), pages 800–
810. IEEE, 2018.

[3] PowerStation. A Tool for Detecting Performance Bugs in Rails Appli-
cations, 2021.

[4] Timotej Kapus, Oren Ish-Shalom, Shachar Itzhaky, Noam Rinetzky,
and Cristian Cadar. Computing summaries of string loops in C for
better testing and refactoring. In Kathryn S. McKinley and Kathleen
Fisher, editors, Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2019, Phoenix,
AZ, USA, June 22-26, 2019, pages 874–888. ACM, 2019.

[5] Varot Premtoon, James Koppel, and Armando Solar-Lezama. Semantic
code search via equational reasoning. In Alastair F. Donaldson and Em-
ina Torlak, editors, Proceedings of the 41st ACM SIGPLAN International

Conference on Programming Language Design and Implementation, PLDI
2020, London, UK, June 15-20, 2020, pages 1066–1082. ACM, 2020.

[6] Qi Zhou, Joy Arulraj, Shamkant Navathe, William Harris, and Dong
Xu. Automated verification of query equivalence using satisfiability
modulo theories. Proceedings of the VLDB Endowment, 12(11):1276–
1288, 2019.

[7] Joseph Albert. Algebraic properties of bag data types. In Guy M.
Lohman, Amílcar Sernadas, and Rafael Camps, editors, 17th Inter-
national Conference on Very Large Data Bases, September 3-6, 1991,
Barcelona, Catalonia, Spain, Proceedings, pages 211–219. Morgan Kauf-
mann, 1991.

[8] Qi Zhou. A Symbolic Approach to Proving Query Equivalence Under
Bag Semantics, 2021.

[9] Deokhwan Kim and Martin C Rinard. Verification of semantic commu-
tativity conditions and inverse operations on linked data structures.
In Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 528–541, 2011.

[10] Shumo Chu, Chenglong Wang, Konstantin Weitz, and Alvin Cheung.
Cosette: An automated prover for sql. In CIDR, 2017.

[11] Jie Wang, Yunguang Wu, Gang Zhou, Yiming Yu, Zhenyu Guo, and
Yingfei Xiong. Scaling static taint analysis to industrial soa applica-
tions: a case study at alibaba. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 1477–1486, 2020.

[12] K Venkatesh Emani, Karthik Ramachandra, Subhro Bhattacharya, and
S Sudarshan. Extracting equivalent sql from imperative code in data-
base applications. In Proceedings of the 2016 International Conference
on Management of Data, pages 1781–1796, 2016.

[13] Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E Hassan,
Mohamed Nasser, and Parminder Flora. Finding and evaluating the
performance impact of redundant data access for applications that
are developed using object-relational mapping frameworks. IEEE
Transactions on Software Engineering, 42(12):1148–1161, 2016.

[14] K Venkatesh Emani and S Sudarshan. Cobra: A framework for cost-
based rewriting of database applications. In 2018 IEEE 34th International
Conference on Data Engineering (ICDE), pages 689–700. IEEE, 2018.

[15] Grégory M. Essertel, Guannan Wei, and Tiark Rompf. Precise reason-
ing with structured time, structured heaps, and collective operations.
Proc. ACM Program. Lang., 3(OOPSLA):157:1–157:30, 2019.

[16] Anders Møller and Oskar Haarklou Veileborg. Eliminating abstrac-
tion overhead of java stream pipelines using ahead-of-time program
optimization. Proc. ACM Program. Lang., 4(OOPSLA):168:1–168:29,
2020.

[17] Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E Hassan,
Mohamed Nasser, and Parminder Flora. Detecting performance anti-
patterns for applications developed using object-relational mapping. In
Proceedings of the 36th International Conference on Software Engineering,
pages 1001–1012, 2014.

5


	1 Introduction
	2 Detecting Inefficient ORM Usage
	3 Optimizing Native SQL Statements
	4 Optimizing Imperative Code
	4.1 Rule-based Transformation
	4.2 Dynamic Profiling and Static Analysis

	5 Future Work
	6 Conclusion
	References

